It’s play time!
Recall, Hawk/Dove Game

- Hawk/Dove – highest total payoff gets $50

<table>
<thead>
<tr>
<th>Hawk (H)</th>
<th>Dove (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hawk (H)</td>
<td>(-2, -2)</td>
</tr>
<tr>
<td>Dove (D)</td>
<td>(0, 6)</td>
</tr>
</tbody>
</table>

- Version 1: single round, no communication
 - Again, but with a different partner
- Version 2: single round, communication allowed
 - Again, but with a different partner
- Version 3: ??? rounds, no communication
- Version 4: ??? rounds, communication allowed
What happened?
Discuss.
Axelrod’s Prisoner’s Dilemma Simulation

- Recall Prisoner’s Dilemma in normal form

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>(-1, -1)</td>
<td>(-4, 0)</td>
</tr>
<tr>
<td>D</td>
<td>(0, -4)</td>
<td>(-3, -3)</td>
</tr>
</tbody>
</table>

- In 1980, political scientist Robert Axelrod runs a tournament playing Prisoner’s Dilemma

 - Entries invited
 - Entry: well-defined rules of play (computer programs)

 - Game is played with 200 rounds

 - Each entry plays every other entry five times

 - Entries sorted by score after all games
Axelrod’s Prisoner’s Dilemma Simulation

- Entries include:
 - Always defect
 - Always cooperate
 - Random (50/50 chance)
 - Tit-for-tat
 - In 1st round: cooperate
 - In round n ($n > 1$), take action of other player from round $(n - 1)$
 - Submitted by Anatol Rapoport, psychology professor (Toronto)
 - Various other (more complicated) strategies
 - Tit-for-tat was winner of simulation
 - Consider it’s behavior when faced with various strategies
 - Modern versions of simulation still run
Policy Implications of Game Theory

• “Mutually Assured Destruction” Doctrine
 - Policy for the avoidance of nuclear war during cold war
 - Notice similarity in structure to Prisoner’s Dilemma

	Don’t Fire	Fire
Don’t Fire	(0, 0)	(-1010, 10)
Fire	(10, -1010)	(-1000, -1000)

 - Notice similarity in structure to Prisoner’s Dilemma

	C	D
C	(-1, -1)	(-4, 0)
D	(0, -4)	(-3, -3)

 - But, we both know the other player’s action will be when we choose our action
Extensive Form Games

- Represented as tree of players choices
 - Captures order in choice making
 - Normal-form representation doesn’t show this information
 - We consider perfect information case
 - All information in game state known (e.g., chess, checkers)
 - 2008: Schaeffer’s Chinook program used to solve checkers
 - But 2 losses by Tinsley were among only 7 games he lost in 45 years!
 - Many games involve imperfect information
 - Some information in game state is not shared (e.g., poker)
 - Complication: need probability distribution over possible states of unknown information