The Beginnings of AI and ML

- 1950: Alan Turing -- “Computing Machinery and Intelligence”
 - Introduced what would come to be known as the “Turing Test”
 - Can interrogator distinguish between computer and human?
 - If not, then we might infer that the “machine thinks”

- 1956: Dartmouth AI Conference
 - 1955: John McCarthy coins term “Artificial Intelligence”

- 1959: Arthur Samuel develops learning checkers program
 - Evaluation function of board with learned weights
 - Learning based on data from professional players and playing against itself
 - Program was eventually able to beat Samuel
Models Can Be Complicated

- Binomial or Normal distribution have well-defined parameters to estimate
- Sometimes, you don’t have a well-known distribution
 - E.g., want to estimate the probability of the next word given a set of words that came before, such as in a Large Language Model
- Need to learn a more complicated model
What is Machine Learning?

• Many different forms of “Machine Learning”
 ▪ We focus on the problem of prediction

• Want to make a prediction based on observations
 ▪ Vector \mathbf{X} of m observed variables: $<X_1, X_2, \ldots, X_m>$
 ▪ X_1, X_2, \ldots, X_m are called “input features/variables”
 ▪ Also called “independent variables,” but this can be misleading!
 • X_1, X_2, \ldots, X_m need not be (and usually are not) independent
 ▪ Based on observed \mathbf{X}, want to predict unseen variable Y
 ▪ Y called “output feature/variable” (or the “dependent variable”)
 ▪ Seek to “learn” a function $g(\mathbf{X})$ to predict Y: $\hat{Y} = g(\mathbf{X})$
 ▪ When Y is discrete, prediction of Y is called “classification”
 ▪ When Y is continuous, prediction of Y is called “regression”
Training a Learning Machine

• Set-up of the *supervised* learning task
 ▪ We are given set of N “training” *instances*
 o Each training instance is pair: ($<x_1, x_2, \ldots, x_m>$, y)
 o Training instances are *previously* observed data
 o Gives the output value y associated with each observed vector of input values $<x_1, x_2, \ldots, x_m>$
 ▪ Learning: use training data to specify $g(X)$
 o Generally, first select a parametric form for $g(X)$
 o Then, estimate parameters of model $g(X)$ using training data
 o For regression, usually want $g(X)$ that minimizes $E[(Y - g(X))^2]$
 • Mean squared error (MSE) “loss” function. (Others exist.)
 o For classification, generally best choice of $g(X) = \arg \max_y \hat{P}(Y \mid X)$
The Machine Learning Process

- **Training data**: set of N pre-classified data instances
 - N training pairs: $(x^{(1)}, y^{(1)})$, $(x^{(2)}, y^{(2)})$, ..., $(x^{(N)}, y^{(N)})$
 - Use superscripts to denote i-th training instance
- **Learning algorithm**: method for determining $g(X)$
 - Given a new input observation of $X = <X_1, X_2, ..., X_m>$
 - Use $g(X)$ to compute a corresponding output (prediction)
 - When prediction is discrete, we call $g(X)$ a “classifier” and call the output the predicted “class” of the input
A Grounding Example: Linear Regression

• Predict real value Y based on observing variable X
 - Assume model is linear: $\hat{Y} = g(X) = aX + b$
 - Training data
 - Each vector X has one observed variable: $<X_1>$ (just call it X)
 - Y is continuous output variable
 - Given N training pairs: $(<x>^{(1)},y^{(1)}), (<x>^{(2)},y^{(2)}), \ldots, (<x>^{(N)},y^{(N)})$
 - Use superscripts to denote i-th training instance
 - Determine a and b minimizing $E[(Y - g(X))^2]$
 - Take partial derivatives, set to 0, solve simultaneous equations
 - Thankfully, we won’t do that right now
Motivation for Artificial Neurons

- A neuron
- An artificial neuron
- Formalized

\[\begin{align*}
&\text{Dendrites} \\
&\text{Axon} \\
&\text{Synapses} \\
&\text{Neuron scheme}
\end{align*}\]

\[\begin{align*}
\text{dendrites} & \quad \text{neuron} \\
\text{axon} & \quad \text{formalized}
\end{align*}\]

\[\begin{align*}
X_1 & \quad w_1 \\
X_2 & \quad w_2 \\
X_3 & \quad w_3 \\
X_4 & \quad w_4 \\
& \quad y
\end{align*}\]
Perceptron Learning Algorithm

Compute $S = \sum_{i=0}^{n} X_i \cdot w_i$

If $S > 0$, set $Q = 1$, else $Q = 0$ \textit{(Q is prediction)}

if $(Q \neq y)$ \{
 \text{if (Q = 1) \{}
 For all weights w_i (where $i = 0$ to n)
 \[w_i = w_i - X_i \]
 \} else {
 For all weights w_i (where $i = 0$ to n)
 \[w_i = w_i + X_i \]
 }
Learning Linearly Separable Functions

- Consider function: \(y = x_1 \) and \(x_2 \)
 - Note: \(y = 1 \) iff both \(x_1 \) and \(x_2 = 1 \)

- Can draw a line that successfully separates all the \(y = 1 \) points (blue) from the \(y = 0 \) points (red)
Data Often Not Linearly Separable

- Many data sets/functions are not linearly separable
 - Consider function: \(y = x_1 \text{ XOR } x_2 \)
 - Note: \(y = 1 \) iff one of either \(x_1 \) or \(x_2 = 1 \)
 - Not possible to draw a line that successfully separates all the \(y = 1 \) points (blue) from the \(y = 0 \) points (red)
Network of Neurons for XOR

XOR

X1 & X2

X1 or X2

XOR

X1

X2
Biological Basis for Neural Networks

- A neuron

- Your brain

Actually, it’s probably someone else’s brain
Neural Networks

- Neural network:

 ![Diagram of a neural network with input nodes x_1, x_2, x_3, x_4 and output nodes.]

 - But how do we learn all the weights in the network?
 - 1986: Back-propagation algorithm
 - Due to Rumelhart, Hinton and Williams
 - Overcomes limitations of Perceptron
 - Shows general learning mechanism
 - With enough nodes, can approximate *any* function
The Deep Learning Revolution

2010’s: Deep Learning
- Essentially, neural networks with many nodes/layers and billions of parameters
 - Represent enormously complicated functions
- Have led to impressive (human beating) results on a number of tasks

A sampling of systems related to deep learning
- Convolutional neural network (e.g., LeNet for digit recognition)
- Recurrent neural networks (sequences, e.g. translation)
- Large scale image recognition tasks (e.g., ImageNet)
- Generative adversarial networks (e.g., text to image generation)
- Transformers and large language models (GPT, LLaMA, BARD, etc.)
Large Language Model: GPT-3

- GPT-3 (Generative Pre-trained Transformer 3)
 - Deep learning (175 billion parameters) model developed by OpenAI
 - Predictive language model: predict next word given previous text
 - Give it a short prompt to generate text

Example:
For my child's lunch, I made a peanut ______
For my child's lunch, I made a peanut butter ______
For my child's lunch, I made a peanut butter and ______
For my child's lunch, I made a peanut butter and jelly ______
For my child's lunch, I made a peanut butter and jelly sandwich.