Many people have exponential (risk averse) curves

\[U(x) = 1 - e^{-x/R} \]

- R is your “risk tolerance”
- Larger R = less risk aversion
 - Makes utility function more “linear”
- \(R \approx \) highest value of Y for which you would play:

```
Play?  yes  no
       0.5  0.5

Y       0.5

-$Y/2  $0
```
Caveat I: Framing Effects

• How gambles are *framed* matters
 ▪ There are psychological effects that aren’t captured in model
 ▪ More on this later in class

• Zero illusion
 ▪ Gambles are usually not in a vacuum
 ○ Coin flip for $10 vs. -$5 is really (bank account + $10) vs. (bank account - $5)
 ▪ Utility function needs to reflect your assets, potential, etc. (which includes intangibles)
 ○ This can be really hard to determine

• Take care in determining and verifying utility functions
 ▪ Try assessing many points along your utility curve
 ▪ Adjust curve and repeat
Caveat II: Portfolio Effects

- The decisions you make may sometime need to be considered as part of portfolio
 - E.g., buying stock in a company you work for
 - If company does badly, stock goes down and you might lose your job
 - There is correlated risk here: losing job impacts utility function
- Sometimes there is negative correlation
 - E.g., working for a company that does well when the economy does poorly (e.g., vehicle repossession)
 - Job security is negatively correlated with value of other assets
- Need to be mindful of this in decision making
Thomas Bayes Needs a Volunteer

So good to see you again!
Two Envelopes

• I have two envelopes, will allow you to have one
 ▪ One contains X, the other contains $2X$
 ▪ Select an envelope
 ○ Before you open it, want to switch for other envelope?
 ▪ Open it. Would you like to switch for other envelope?
 ▪ To help you decide, compute $E[$ in other envelope$]$
 ○ Let $Y = $ in envelope you selected
 $$E[$ in other envelope$] = \frac{1}{2} \cdot \frac{Y}{2} + \frac{1}{2} \cdot 2Y = \frac{5}{4} Y$$
 ▪ Before opening envelope, think either equally good
 ▪ So, what happened by opening envelope?
 ○ And does it really make sense to switch?
Discuss!
Two Envelopes Solution

• The “two envelopes” problem set-up
 ▪ Two envelopes: one contains X, other contains $2X$
 ▪ You select an envelope and open it
 o Let $Y = \$ in envelope you selected
 o Let $Z = \$ in other envelope
 \[E[Z | Y] = \frac{1}{2} \cdot \frac{Y}{2} + \frac{1}{2} \cdot 2Y = \frac{5}{4} Y \]
 ▪ Before opening envelope, think either equally good
 o So, what happened by opening envelope?
 ▪ $E[Z | Y]$ above assumes all values X (where $0 < X < \infty$) are equally likely
 o Note: there are infinitely many possible values of X
 o Can’t have equal (non-zero) probabilities over infinitely many possibilities (total probability of all outcomes won’t sum to 1)
Subjectivity of Probability

• Belief about contents of envelopes
 - Since implied probability over X is not a true probability distribution, what is our probability distribution over X?
 - Frequentist: play game infinitely many times and see how often different values come up.
 - Problem: I only allow you to play the game once
 - Bayesian probability
 - Have prior belief of probability for X (or anything for that matter)
 - Prior belief is a subjective probability
 - By extension, all probabilities are subjective
 - Allows us to answer question when we have no/limited data
 - E.g., probability a coin you’ve never flipped lands on heads
The Envelope, Please

• **Bayesian**: have prior probability over X, P(X)
 - Let Y = $ in envelope you selected
 - Let Z = $ in other envelope
 - Open your envelope to determine Y
 - If Y > E[Z | Y], keep your envelope, otherwise switch
 - No inconsistency!
 - Opening envelope provides data to compute P(X | Y) and thereby compute E[Z | Y]
 - Of course, there’s the issue of how you determined your prior distribution over X…
 - Bayesian: Doesn’t matter how you determined prior, but you must have one (whatever it is)
 - Imagine if envelope you opened contained $20.01
The Dreaded Half Cent

![Image of a coin with 'LIBERTY' on one side and 'HALF CENT' on the other side, with the year 1847.]
Probability Gets Weird

• Consider that we have three spinners:

 ▪ Each spinner has probability of getting some number
 ▪ You and opponent each pick a distinct spinner
 ▪ Person who spins highest number wins
 ○ You get to choose first!
Probability Gets Weird

- Consider that we have three spinners:

- If you are only choosing between A and B, what is pick?
 - A has 0.56 chance of winning

- If you are only choosing between A and C, what is pick?
 - A has 0.51 chance of winning

- If you are only choosing between B and C, what is pick?
 - B has \((0.56 + 0.22) \times 0.51 + 0.22 \times 1 = 0.6178\) chance of winning

- A dominant and C dominated with two players
Probability Gets Weird

Consider that we have three spinners:

- A has $0.56 \times 0.51 = 0.2856$ chance of winning
- B has $0.22 \times 0.51 + 0.22 \times 1 = 0.3322$ chance of winning
- C has $0.49 \times 0.78 = 0.3822$ chance of winning

C is best choice with three players
A fares the worst with three players

What if spinners represent efficacy of three different medicines?

This is known as “Blythe’s Paradox”