Good Decision, Bad Outcome

• Important to distinguish quality of **decision** from quality of **outcome**
 - Buying lottery ticket
 - Even if you win lottery, buying ticket was likely a bad decision
 - Not everyone understands that…
Good Decision, Bad Outcome

- Important to distinguish quality of decision from quality of outcome
 - Buying lottery ticket
 - Even if you win lottery, buying ticket was likely a bad decision
 - Stanford and the 1989 Loma Prieta earthquake
 - Incurred over $150M in damage
 - Stanford chose to “self-insure” (i.e., not buy insurance)
 - Stanford’s earthquake reserve fund had $3.4M in 1989
 - Earthquake insurance cost $5M/annually
 - Had a $100M deductible
 - This was not a bad decision, it was just a bad outcome
Overton Window

- Joseph Overton was a policy analyst at Mackinac Center for Public Policy
- “Overton Window”
 - Concept named based on Overton’s suggestion that an idea’s political viability depends on where it falls on the spectrum of acceptability with respect to public opinion (not policy maker preferences)
 - Shifting the Overton window involves persuading the public to expand the window
 - Limits the set of alternatives/choices that policy makers might consider viable to pursue

Example of Shifting Overton Window

- Support for same-sex marriage in the US

Sunk Cost Principle

- A decision is made by considering only the possible futures that it might generate.
- Sunk Cost Principle: Any resources consumed in the past are pertinent to the present decision only to the extent that they have provided information useful in assessing the likelihood of a decision leading to possible futures.
 - “Look at the time and money we have already wasted”
 - Wasted resources should have no bearing on present decision.
Sunk Cost Example

• You are CEO. Two proposals are presented:
 ▪ Last year, you approved Project A. It will generate $100M in revenue when complete and cost $90M.
 ◦ You spent $90M so far. You now found out that it will cost an addition $20M to complete the project and realize $100M in revenue. Otherwise, no revenue will be realized.
 ▪ Also presented with Project B that will generate $80M in revenue. Can complete Project B for cost of $20M.

• If you have $20M to invest today, which project do you fund?

• If you had $100M to invest today, which project(s) do you fund?
Value of Perfect Information

- Howard calls this “value of clairvoyance”
 - What is the maximal amount you should pay to get information in a decision making process?

- Example:
 - How much would you pay to know that result of coin flip before you make your decision?
 - Information in decision making is only valuable to the extent that is potentially changes your decision
 - No value to paying for information that would never impact your decision.
Value of Perfect Information

• Another example:
 - How much would you pay to know that result of coin flip before you make your decision?
 - Consider maximal value of choice in each condition:
 - Heads: $6 (choose to play)
 - Tails: $4 (choose not to play)
 - Expected value with perfect information: $6 	imes 0.5 + 4 	imes 0.5 = 5
 - Choice with maximum expected value: play = 4.5
 - Value of perfect information = $5 – 4.5 = 0.5
Value of Perfect Information

- Consider decision to invest money
 - Choices: Bonds, Stocks, Mixed fund
 - Economy is either Strong, Neutral or Weak

<table>
<thead>
<tr>
<th>Returns per investment</th>
<th>Strong (50%)</th>
<th>Neutral (20%)</th>
<th>Weak (30%)</th>
<th>Expected value (EV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonds</td>
<td>50</td>
<td>30</td>
<td>10</td>
<td>25+6+3 = 34</td>
</tr>
<tr>
<td>Stocks</td>
<td>100</td>
<td>20</td>
<td>-20</td>
<td>50+4-6 = 48</td>
</tr>
<tr>
<td>Mixed fund</td>
<td>80</td>
<td>25</td>
<td>-5</td>
<td>40+5-1.5 = 43.5</td>
</tr>
</tbody>
</table>

- What is value of knowing state of economy (variable)?
Value of Perfect Information

• Consider decision to invest money
 ▪ Choices: Bonds, Stocks, Mixed fund
 ▪ Economy is either Strong, Neutral or Weak

<table>
<thead>
<tr>
<th>Returns per investment</th>
<th>Strong (50%)</th>
<th>Neutral (20%)</th>
<th>Weak (30%)</th>
<th>Expected value (EV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonds</td>
<td>50</td>
<td>30</td>
<td>10</td>
<td>25+6+3 = 34</td>
</tr>
<tr>
<td>Stocks</td>
<td>100</td>
<td>20</td>
<td>-20</td>
<td>50+4-6 = 48</td>
</tr>
<tr>
<td>Mixed fund</td>
<td>80</td>
<td>25</td>
<td>-5</td>
<td>40+5-1.5 = 43.5</td>
</tr>
</tbody>
</table>

• What is value of knowing state of economy (variable)?
 o Consider maximal value in each state of economy (variable)
 o Expected value with perfect information (EVPI):
 \[(0.5)(100) + (0.2)(30) + (0.3)(10) = 50 + 6 + 3 = 59\]
 o Value of Perfect Information = EVPI – max EV = 59 – 48 = 11
 o Most you should pay for perfect information about variable

Returns per investment

- Strong: 50%, 100%, 80%
- Neutral: 30%, 20%, 25%
- Weak: 10%, -20%, -5%
- Expected value (EV): 34, 48, 43.5

Expected value (EV) calculation:

- Bonds: (0.5)(50) + (0.2)(30) + (0.3)(10) = 25 + 6 + 3 = 34
- Stocks: (0.5)(100) + (0.2)(20) + (0.3)(-20) = 50 + 4 - 6 = 48
- Mixed fund: (0.5)(80) + (0.2)(25) + (0.3)(-5) = 40 + 5 - 1.5 = 43.5
Making a Series of Decisions

• Consider this game:

- Play? yes
 - 0.5 $12
- Play? no
 - 0.5 -$10

• Would you play?
Making a Series of Decisions

• Consider this game:

 0.5
 yes
 0.5
 no

Play? $12
 no $0

• Would you play 100 times?

• Binomial distribution
 • PMF looks like “bell curve”. This is not a coincidence.

In life, you don’t know how many times you’ll play, but if you never play the first time, you can’t get to 100
Normal Random Variable

• \(X \) is a **Normal Random Variable**: \(X \sim N(\mu, \sigma^2) \)
 - Probability Density Function (PDF):
 \[
 f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \quad \text{where} \quad -\infty < x < \infty
 \]
 - \(E[X] = \mu \)
 - \(Var(X) = \sigma^2 \)
 - Also called “Gaussian”
 - Note: \(f(x) \) is symmetric about \(\mu \)
 - Common for natural phenomena: heights, weights, etc.
 - Often results from the sum of multiple variables
Carl Friedrich Gauss

- Carl Friedrich Gauss (1777-1855) was a remarkably influential German mathematician
- Started doing groundbreaking math as teenager
 - Did not invent Normal distribution, but popularized it
- He looked more like Martin Sheen
 - Who is, of course, Charlie Sheen’s father