Making a Series of Decisions (Revisited)

• Consider this game:

Play?

yes

0.5

$12

0.5

-no

$0

• Would you play 100 times?

• Binomial distribution

In life, you don’t know how many times you’ll play, but if you never play the first time, you can’t get to 100
Making a Series of Decisions

- Consider this game:

 - Play?
 - yes: 0.5 \(\times \) $12
 - no: 0.5 \(\times \) $0

- Would you play 100 times?

- Expected values for each outcome \((x \cdot p(x)) \)
 - Note: there is far more mass above 0 than below
 - Sum over the graph to get expected value
 - \(E[X] = $100 \)
Recall, Normal Random Variable

- X is a **Normal Random Variable**: $X \sim N(\mu, \sigma^2)$
 - Probability Density Function (PDF):
 \[
 f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \quad \text{where} \quad -\infty < x < \infty
 \]
 - $E[X] = \mu$
 - $Var(X) = \sigma^2$
 - Also called “Gaussian”
 - Note: $f(x)$ is symmetric about μ
 - Common for natural phenomena: heights, weights, etc.
 - Often results from the sum of multiple variables
The Central Limit Theorem (CLT)

- Consider a series of random variables $X_1, X_2, ...$
 - X_i are all independent
 - X_i have same distribution with $E[X_i] = \mu$, $\text{Var}(X_i) = \sigma^2$
 - Consider the mean of all X_i
 - Let $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
 - Central Limit Theorem: $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$ as $n \to \infty$
 - Recall, for Binomial $E[X_i] = np$, $\text{Var}(X_i) = np(1 - p)$
 - In example, $np = 100(0.5) = 50$, $np(1 - p) = 100(0.5)(0.5) = 25$
 - To lose money, would need at least 55 losses
 - There’s only an 18.4% chance that would happen
Central Limit Theorem in Real World

- CLT is why many things in “real world” appear Normally distributed
 - Many quantities are sum of independent variables
 - Exams scores
 - Sum of individual problems
 - Election polling
 - Ask 100 people if they will vote for candidate X ($p_1 = \# \text{ “yes”}/100$)
 - Repeat this process with different groups to get p_1, \ldots, p_n
 - Will have a normal distribution over p_i
Confidence Intervals

- Fact that sample means are normally distributed allows us to compute a “confidence interval”
 - In election example, determine how likely is it that estimate for true p is “close” to our measurement of p
 - Rule of thumb for “large” n: $n > 30$, but larger is better (> 100)
It’s play time!
Sum of Dice

• You will roll 10 dice
 ▪ $X = \text{total value of all 10 dice}$
 ▪ Win if: $X \leq 25$ or $X \geq 45$
 ▪ Roll!

• What is the probability that you would win?

• How can we figure this out?
 ▪ Play game many times, see how often you win
 ▪ Use a computer to simulate it!
 ▪ Or, use Central Limit Theorem to approximate it
 ▪ Probability of winning is about 7.8%
Reasoning About Choice of Another

• Problem
 • n people are on an island, k (> 0) have blue eyes
 o No one knows their own eye color (no mirrors)
 o Each person knows everyone else’s eye color
 o Everyone on the island is a perfect logician
 • If someone determines they have blue eyes, they must leave the island at the coming dawn
 • If someone doesn’t know their own eye color, they sleep past dawn
 • Outsider comes to island and announces to everyone that at least one person on the island has blue eyes

• What happens? Discuss.
Reasoning About Choice of Another

• Solution
 ▪ On the k-th dawn after the announcement, all the blue-eyed people on the island leave
 ▪ Why?
 o Say k = 1, that person realizes they have blue eyes since they know no one else does. They leave island on first dawn.
 o Say k = 2, each blue-eyed person sees one other person with blue eyes. If k = 1, that person would leave at first dawn. But since no one leaves at first dawn, the people with blue eyes realize k > 1. Since they only see one other blue-eyed person, they realize they must have blue eyes in order for k > 1.
 o Say k = 3, same argument as above, but no one leaves on first or second dawn, so k > 2. Since each blue-eyed person only sees two other blue-eyed people, they realize they must have blue eyes for k > 2, and leave at next dawn.
So What Did Announcement Provide?

• If $k > 1$, didn’t everyone already know there was a blue-eyed person on the island?
 - The announcement creates “common knowledge”
 - Everyone now knows that everyone else shares this same knowledge.
 - Common knowledge allows us to reason about each other’s actions
 - In this case, it synchronizes when islanders can start “counting” knowing that everyone else is counting from the same point

• Reasoning using common knowledge forms one of the main bases for Game Theory