Thermally Driven Cavity

The Problem

\[\delta T/\delta n = 0 \]

- Water in a heated cavity. What is the effect of gravity?
- What is the temperature of the bottom/top insulated walls?
- What is the heat flux on the vertical walls?
Thermally Driven Cavity
The Governing Equations (differential form)

Mass conservation
\[
\frac{\partial \rho}{\partial t} + \frac{\partial \rho u_i}{\partial x_i} = 0
\]

Momentum balance
\[
\frac{\partial \rho u_i}{\partial t} + \frac{\partial \rho u_i u_j}{\partial x_j} = \frac{\partial \tau_{ij}}{\partial x_j} - \frac{\partial p}{\partial x_i} - \rho g_i
\]

where \(\tau_{ij} = \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{2}{3} \mu \delta_{ij} \frac{\partial u_j}{\partial x_j} \)

Energy conservation
\[
\frac{\partial \rho e}{\partial t} + \frac{\partial \rho e u_j}{\partial x_j} = \frac{\partial u_i \tau_{ij}}{\partial x_j} - \frac{\partial u_j p}{\partial x_j} - \frac{\partial q_j}{\partial x_j}
\]

where \(e = (c_p T + \frac{1}{2} \| V \|^2 + \| g \| \Delta z) \) and \(q_j = -k \frac{\partial T}{\partial x_j} \)
Thermally Driven Cavity
Qualification Step

Assumptions already present:

- Newton-law for viscous stresses: τ_{ij}
- Fourier-law for heat flux: q_j

Additional assumptions:

- Ignore changes in potential energy: Δz small
- Neglect kinetic energy compared to internal energy $c_p T \gg \frac{1}{2} ||V||^2$: slow speed
- Neglect work done by the pressure and friction forces (viscous heating)
- Equation of state: $\rho = f(p, T) \approx \rho_{\text{ref}} = \text{const}$
- Buoyancy force: $\rho g_i = \rho_{\text{ref}} \beta (T - T_{\text{ref}}) g_i$ (Boussinesq approximation: valid for small temperature differences)
Thermally Driven Cavity
The Governing Equations (Boussinesq approximation)

Mass conservation
\[
\frac{\partial u_i}{\partial x_i} = 0
\]

Momentum balance
\[
\frac{\partial u_i}{\partial t} + \frac{\partial u_i u_j}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\frac{\mu}{\rho_{\text{ref}}} \left(\frac{\partial u_i}{\partial x_j} \right) \right] - \frac{1}{\rho_{\text{ref}}} \frac{\partial p}{\partial x_j} - \beta (T - T_{\text{ref}}) g_i
\]

Energy conservation
\[
\frac{\partial T}{\partial t} + \frac{\partial u_j T}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\frac{k}{\rho_{\text{ref}} C_p} \left(\frac{\partial T}{\partial x_j} \right) \right]
\]
Thermally Driven Cavity
Controlling Parameters, I

Fluid Properties
- Density: ρ_{ref}
- Thermal conductivity k
- Viscosity μ
- Specific heat C_p
- Thermal expansion coefficient β

Operating Conditions
- Wall temperatures: T_h, T_c
- Reference Temperature T_{ref}
- Gravity vector g_i
Non-dimensional Numbers

- Reynolds number: \(Re = \frac{\rho UL}{\mu} \)
- Grashof number: \(Gr = \frac{\rho^2 \| g \| \beta (T_h - T_c) L^2}{\mu^2} \)
- Prandtl number: \(Pr = \frac{C_p \mu}{k} \)
- Scaled temperature: \(\theta = \frac{T - T_{ref}}{T_h - T_{ref}} \)
Thermally Driven Cavity
The governing equations (non-dimensional Boussinesq)

Mass conservation
\[
\frac{\partial u_j}{\partial x_i} = 0
\]

Momentum Balance
\[
\frac{\partial u_i}{\partial t} + \frac{\partial u_i u_j}{\partial x_j} = \frac{1}{Re} \frac{\partial}{\partial x_j} \frac{\partial u_i}{\partial x_j} - \frac{\partial p}{\partial x_i} - \frac{Gr}{Re^2} \theta \tilde{g}_i
\]

Energy Conservation
\[
\frac{\partial \theta}{\partial t} + \frac{\partial \theta u_j}{\partial x_j} = \frac{1}{PrRe} \frac{\partial}{\partial x_j} \frac{\partial \theta}{\partial x_j}
\]

where \(\tilde{g}_i = \frac{g_i}{\|g\|} \)
Computational Code

mycavity.cpp

- 2D, Navier Stokes solver for Boussinesq fluid
- Structured, colocated grid, implicit discretization
- SIMPLE fractional step
- Incomplete LU decomposition for solving linear system
- Visualization files in tecplot
- Written in C

Consider it a starting point...not a golden standard but a testbed for verification!
Solution Procedure

1. Start with T^n and u^n (divergence free)

2. Solve for an intermediate velocity (implicitly)

$$ u_i^* - u_i^n = \frac{\Delta t}{\rho_{ref}} \left(H_i^* - \frac{\delta p^n}{\delta x_i} \right) - \beta (T^n - T_{ref}) g_i $$

3. Solve the Poisson equation for $\Delta p = p' = p^{n+1} - p^n$

$$ \frac{\delta}{\delta x_i} \left[\left(\frac{\Delta t}{\rho} \right) \frac{\delta p'}{\delta x_i} \right] = \frac{\delta u_i^*}{\delta x_i} $$

4. Correct the velocity field and update the pressure

$$ u_i^{n+1} = u_i^* - \frac{1}{\rho_{ref}} \frac{\delta p'}{\delta x_i}; \quad p^{n+1} = p^n + p' $$

5. Solve for the temperature (implicitly)

$$ T_i^{n+1} - T_i^n = \Delta t D_i^{n+1} $$
Solution Procedure

1. Start with T^n and u^n (divergence free)

2. Solve for an **intermediate** velocity (implicitly)

 \[A_P^u u_P + \sum_{nb} A_{nb}^u u_{nb} = Q^u \]

3. Solve the Poisson equation for $\Delta p = p' = p^{n+1} - p^n$

 \[A_P^p p_P' + \sum_{nb} A_{nb}^p p_{nb}' = Q^p = -\Delta \dot{m}^*_P - \Delta \ddot{m}'_P \]

4. **Correct** the velocity field and update the pressure

 \[u_e^{n+1} = u_e^* - \frac{S_e}{A_P^u} (p_E' - p_P') \]

5. Solve for the temperature (implicitly)

 \[A_P^T T_P + \sum_{nb} A_{nb}^T T_{nb} = Q^T \]
Solution Procedure

1. Start with T^n and u^n (divergence free)
2. Solve for an intermediate velocity (implicitly)
 \[\text{calcuv()} \]
3. Solve the Poisson equation for $\Delta p = p' = p^{n+1} - p^n$
 \[\text{calcp()} \]
4. Correct the velocity field and update the pressure
 \[\text{correct()} \]
5. Solve for the temperature (implicitly)
 \[\text{calct()} \]
int main(int argc, char **argv){

 // read input file
 FILE *fp; fp=fopen("mycavity.in","r");
 [...]
 // allocate arrays
 x = new double[nx+1]; y = new double[ny+1];
 [...]
 // solve momentum equations
 resu = calcuv();

 // solve pressure equation and update momentum
 resp = calcp();

 // correct velocity and pressure field
 correct();

 // solve energy equation
 resT = calct();
 [...]
 // output global quantities of interest...
 output();
}
Computational Code

Physical Properties

- cavity size: $L_x = l_x$, $L_y = l_y$
- integration time: finaltime
- gravity: $g_i = [\text{gravx}, \text{gravy}]$
- fluid properties: $\rho_{\text{ref}} = \text{densit}$, $\mu/\rho_{\text{ref}} = \text{visc}$, $\beta = \text{beta}$, $T_{\text{ref}} = T_{\text{ref}}$
- wall temperature: $T_h = \text{Th}$; $T_c = \text{Tc}$

...mycavity.cpp

// read input file
FILE *fp; fp=fopen("mycavity.in","r");
scanf(fp," %lf %lf %lf \n ",&lx,&ly,&finaltime); // domain size, number of inner steps
scanf(fp," %lf %lf %lf \n",&densit,&visc,&prm); // density, viscosity, Pr #
scanf(fp," %lf %lf %lf \n",&gravx,&gravy,&beta); // buoyancy force
scanf(fp," %d %d %lf %d %lf \n",&nx,&ny,&dt,&nsteps,&converged); // discretization
scanf(fp," %d %d \n",&adim); // output
fclose(fp);
Computational Code
Controlling Parameters

Discretization Properties

- grid size: \([nx, ny]\)
- time step: \(dt\)
- inner iteration steps (non-linearity): \(nsteps\)
- ..few others are hardcoded

...mycavity.cpp

```c
// read input file
FILE *fp; fp=fopen("mycavity.in","r");
fscanf(fp," %lf %lf %lf \n ",&lx,&ly,&finaltime); // domain size, number of inner steps
fscanf(fp," %lf %lf %lf \n",&densit,&visc,&prm); // density, viscosity, Pr #
fscanf(fp," %lf %lf %lf \n",&gravx,&gravy,&beta); // buoyancy force
fscanf(fp," %lf %lf %lf \n",&Th,&Tc,&Tref); // wall BC
fscanf(fp," %d %d %lf %d %lf \n",&nx,&ny,&dt,&nsteps,&converged); // discretization
fscanf(fp," %d %d \n",&adim); // output
fclose(fp);
```
Computational Grid

Vertices

Control Volume

Boundary Conditions
Computational Code

Data Structures

- Indices: \(i, j \)
- Global CV index: \(i j \)
- Vertex coordinates: \(x[i], y[j] \) (Cartesian grid)
- CV centers coordinates: \(x_c[i]; y_c[j] \)
- Unknowns in CV: \(u[ij], v[ij], p[ij], T[ij] \)
- Time-history:
 - \(u_0 = u^{n+1}, u_0 = u^n, u_{00} = u^{n-1} \)
 - similarly for other variables..
 - no-time history for \(p \). But we need \(\Delta p = pp \)
- Implicit operator:
 - left hand side: \(a_p[ij], a_w[ij], a_e[ij], a_n[ij], a_s[ij] \)
 - right hand side: \(s_u[ij], s_v[ij] \)

Heavy reuse of memory in the code (e.g. \(u^* \) is not stored)
Computational Grid
Understanding the indices

Control Volume

Boundary Conditions
Computational Grid

Indices - \(NX=NY=10 \)
• The Computational grid is generated in routine `grid()`

• Ordering
 • The indices \((i, j)\) are \textit{notionally} connected to CVs centroids
 • The cavity boundaries correspond to \(i=1, i=n_x, j=1\) and \(j=n_y\)
 • The CVs are in the range \(i \in [2, n_x-1]\) and \(j \in [2, n_y-1]\)

• Global index
 • An \textit{offset} index array is introduced: \(l_i[i]=(i-1) \times n_y\)
 • The \(ij\) index is defined as \(ij=j+l_i[i]\)
 • The complete \(ij\) range is \(ij \in [1, n_x \times n_y]\) and include CV centroids and boundaries

• In addition to vertices & CV centroids coordinates it also stores the weight factor (face-centroid location):
 \[
 f_x[i]=\frac{(x[i]-x_c[i])}{(x_c[i+1]-x_c[i])}; f_y[j]\
 \]
Solution Procedure
Example of Loops

Loop over all CVs

```c
for (int i=2; i<=nx-1; i++) {
    for (int j=2; j<=ny-1; j++) {
        int ij = li[i]+j;
        u[ij]=...  
    ...
```

Loop over south faces of CVs

```c
// south boundaries  
for (int i=2; i<=nx-1; i++) {
    int ij=li[i]+1;
    u[ij]=...
    ...
```

Loop over west faces of CVs

```c
// west boundaries  
for (int j=2; j<=ny-1; j++) {
    int ij=li[2]+j;
    u[ij]=...
    ...
```
Solution Procedure

Routine calcuv

double calcuv() { // solve the momentum equations
 int nsw = 5; // iterations for the linear system solver
 double tol = 0.2; // tolerance for the linear system solver
 double urf = 0.8; // under-relaxation factor

 uvlhs(); // computing fluxes...
 uvrhs(); // computing source terms...
 // time terms (gamt 0=backward implicit; non-zero=3-level scheme)
 for (int i=2; i<=nx-1; i++) {
 for (int j=2; j<=ny-1; j++) {
 int ij = li[i]+j;
 double dx = x[i]-x[i-1];
 ...
 apv[ij]=apv[ij]+(1.+0.5*gamt)*apt;
 }
 }
 uvbc(); // apply boundary conditions
 // apply under-relaxation for u
 for (int i=2; i<=nx-1; i++) {
 for (int ij=li[i]+2;ij<=li[i]+ny-1;ij++) {
 ...
 ap[ij] = (apu[ij]-ae[ij]-aw[ij]-an[ij]-as[ij])/urf;
 su[ij] = su[ij] +(1.-urf)*ap[ij]*u[ij];
 apu[ij]=1./ap[ij];
 }
 }
 // solve linear system for u...
 resu = sipsol(nsw, u, su, tol);
 ...
}
Solution Procedure
Routine calcuv()

- Evaluate **left** hand side (implicit flux operator): uvlhs()
- Evaluate **right** hand side (explicit flux operator and buoyancy terms): uvrhs()
- Apply boundary conditions: uvbc()
- Evaluate time term and add to left or right hand side
- Apply under-relaxation factor: urf
- Solve linear systems
 - resu = sipsol(nsw, u, su, tol);
 - resv = sipsol(nsw, v, sv, tol);
- **Hardcoded parameters**: urf=0.9, nsw=5 and tol=0.2
Solution Procedure

Routine \texttt{resu = sipsol(nsw, u, su, tol)}

- **SIP**: Strong Implicit Procedure (Stone's Implicit Procedure)
- Incomplete LU solver - iterative linear system solver
- Stops after \texttt{nsw} steps of if the residual \texttt{resu} \leq \texttt{tol}

Can be replaced easily by Jacobi, Gauss-Seidel, Conjugate-gradient-like approaches, Krylov solvers, etc..
Solution Procedure

Routine uvlhs

```c
void uvlhs() { // implicit flux discretization for the momentum equations
    // east/west fluxes
    for (int i=2; i<=nx-2; i++) {
        double fxe = fx[i];
        double fxp = 1. - fxe;
        double dxpe = xc[i+1] - xc[i];
        for (int j=2; j<=ny-1; j++) {
            int ij = li[i] + j;
            int ije = ij + ny;
            double s = (y[j] - y[j-1]);
            double d = visc * s / dxpe;
            double ce = fmin(f1[ij], 0.);
            double cp = fmax(f1[ij], 0.);
            double fuuds = cp * u[ij] + ce * u[ije];
            double fvuds = cp * v[ij] + ce * v[ije];
            double fucds = f1[ij] * (u[ije] * fxe + u[ij] * fxp);
            double fvcds = f1[ij] * (v[ije] * fxe + v[ij] * fxp);
            ae[ij] = ce - d;
            aw[ije] = -cp - d;
            su[ij] = su[ij] + gds * (fuuds - fucds);
            su[ije] = su[ije] - gds * (fuuds - fucds);
            sv[ij] = sv[ij] + gds * (fvuds - fvcds);
            sv[ije] = sv[ije] - gds * (fvuds - fvcds);
        }
    }
    // south/north fluxes
    for (int j=2; j<=ny-2; j++) {
        ...
    }
}
```
Solution Procedure
Routines \texttt{uvlhs}

- \texttt{uvlhs} computes fluxes, i.e. loop on faces and stores quantities for the CVs at either side of the face (avoid double work)
- The convective fluxes are computed using both \textit{upwind} and \textit{central} differencing stencils - the parameter gds blends the two (hardcoded to $gds=0.9$)
- Mass flux through faces is stored in separate arrays $f1$ and $f2$: this is used to enforce mass conservation for the CV
- Each momentum equation has an RHS array (su, sv) but \textit{only} one LHS matrix is stored!
void uvrhs() { // source terms for the momentum equations

 for (int i=2; i<=nx-1; i++) {
 double dx=x[i]-x[i-1];
 for (int j=2; j<=ny-1; j++) {
 double dy=y[j]-y[j-1];
 double vol=dx*dy;
 int ij=li[i]+j;
 double pe=p[ij+ny]*fx[i]+p[ij]*(1.-fx[i]);
 double pw=p[ij]*fx[i-1]+p[ij-ny]*(1.-fx[i-1]);
 double pn=p[ij+1]*fy[j]+p[ij]*(1.-fy[j]);
 double ps=p[ij]*fy[j-1]+p[ij-1]*(1.-fy[j-1]);
 dpx[ij]=(pe-pw)/dx;
 dpy[ij]=(pn-ps)/dy;
 su[ij]=su[ij]-dpx[ij]*vol;
 sv[ij]=sv[ij]-dpy[ij]*vol;
 double sb=-beta*densit*vol*(T[ij]-Tref);
 su[ij]=su[ij]+gravx*sb;
 sv[ij]=sv[ij]+gravy*sb;
 }
 }
}
Solution Procedure
Under-relaxation step

• Each discretized equation looks like:

\[A_p\phi_P + \sum_{nb} A_{nb}\phi_{nb} = Q \]

• We do not solve for \(\phi \) directly but under-relax the update to achieve better convergence: \(\phi^{new} = \phi^{old} + \alpha \Delta \phi \)

• How is this implemented?

 Explicitly
 1 solve \(A_p\phi_P + \sum_{nb} A_{nb}\phi_{nb} = Q \)
 2 relax \(\phi^{new} = \alpha\phi + (1 - \alpha)\phi^{old} \)

• Implicitly:
 1 solve \(A_p\phi_P/\alpha + \sum_{nb} A_{nb}\phi_{nb} = Q + A_p\phi^{old}(1 - \alpha)/\alpha \)

• The choice of \(\alpha \) (ururf) is not straightforward.
Solution Procedure

Correction step: `correct()`

- Solution Step:
 \[
 A_p^u u_P + \sum_{nb} A_{nb}^u u_{nb} = Q^u
 \]
 \[
 A_p^p p'_P + \sum_{nb} A_{nb}^p p'_{nb} = Q^p
 \]

- Correction Step:
 \[
 u_e^{n+1} = u_e^* - \frac{S_e}{A_p^u} (p'_E - p'_P)
 \]
 \[
 p^{n+1} = p^n + p'
 \]
Solution Procedure

Routine `correct()`

```c
void correct() { // correct velocity and pressure field

    double urf = 0.2; // under-relaxation factor for pressure

    // set reference pp
    int ijpref=li[3]+3; // a "random" internal point...
    double ppo=pp[ijpref];

    // correct mass fluxes
    for (int i=2; i<=nx-2;i++) {
        for (int ij=li[i]+2;ij<=li[i]+ny-1;ij++) {
            f1[ij]=f1[ij]+ae[ij]*(pp[ij+ny]-pp[ij]);
        }
    }

    // correct cell center velocity and pressure
    for (int i=2; i<=nx-1;i++) {
        double dx=x[i]-x[i-1];
        for (int j=2; j<=ny-1;j++) {
            int ij=li[i]+j;
            double dy=y[j]-y[j-1];
            double ppe=pp[ij+ny]*fx[i]+pp[ij]*(1.-fx[i]);
            ...
            u[ij]=u[ij]-(ppe-ppw)*dy*apu[ij];
            v[ij]=v[ij]-(ppn-pps)*dx*apv[ij];
            p[ij]=p[ij]+urf*(pp[ij]-ppo);
        }
    }
}
```
Routine `calcp()`

```c
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
double calcp() { // solve the pressure equation and update momentum

    int nsw = 200; // iterations for the linear system solver
    double tol = 0.02; // tolerance for the linear system solver

    // east and west fluxes and coefficients
    for (int i=2; i<=nx-2; i++) {
        double dxpe = xc[i+1] - xc[i];
        double fxe = fx[i];
        double fxp = 1.0 - fxe;
        for (int j=2; j<=ny-1; j++) {
            int ij = li[i] + j;
            int ije = ij + ny;
            double s = (y[j] - y[j-1]);
            double vole = dxpe * s;
            double d = densit * s;
            double dpxe = (p[ije] - p[ij]) / dxpe;
            double uel = u[ije] * fxe + u[ij] * fxp;
            double apue = apu[ije] * fxe + apu[ij] * fxp;
            double dpxe = (p[ije] - p[ij]) / dxpe;
            double ue = uel - apue * vole * (dpxe - dpxe);
            f1[ij] = d * ue;
            ae[ij] = -d * apue * s;
            aw[ije] = ae[ij];
        }
    }
}
```
Solution Procedure
Routine calcp()

• What are: \(ae, apu, apue \)
• Construction of the pressure correction equation

\[
\begin{align*}
ae[i,j] &= A_E^p = - \left(\frac{\rho S^2}{A_P^u} \right)_e = - (\rho S^2)_e \times apue[i,j] \\
\end{align*}
\]

• Rhie-Chow Interpolation:

\[
\begin{align*}
ue &= \bar{ue} + \frac{1}{A_e^u} \left(\left(\frac{\delta p}{\delta x} \right)_e - \left(\frac{\delta p}{\delta x} \right)_e \right) \\
f1[i,j] &= (\rho S)_e \times ue
\end{align*}
\]
Solution Procedure

Final comments

- Mass conservation is enforced through the \textit{face} velocities: \(f_1 \), \(f_2 \) (mass-conserving velocities)
- Pressure-velocity decoupling is eliminated using the Rhie-Chow interpolation for the mass-conserving velocities
- Convective fluxes (in momentum AND energy transport) are based on the mass conserving velocities
- Only pressure gradients are important. Pressure is \textit{anchored}...
Thermally Driven Cavity

- This is a *classical* test case for Navier-Stokes
- Many references available...

Thermally driven cavity flow with Neumann condition for the pressure

Obidio Rubio a,*, Elba Bravo b, Julio R. Claeysen c

a Facultad de Ciencias, Universidad Nacional de Trujillo, Trujillo, Peru
b Departamento de Engenharia e Computação, Universidade Regional Integrada-URI, 98.400-000 Frederico Westphalen, RS, Brazil
c Universidade Federal do Rio Grande do Sul, IM-PROMEC, P.O. Box 10673, 90.001-000 Porto Alegre, RS, Brazil

Abstract

We develop a velocity-pressure algorithm with a pressure Neumann condition in primitive variables using finite differences, for a 2D thermally driven square cavity flow with the Boussinesq approximation and a fixed Prandtl number. The pressure field is updated in a one-step weighted form. Simulations were made for several Rayleigh numbers and the results are close to those found in the literature. © 2002 IMACS. Published by Elsevier Science