Multi-Task Learning & Transfer Learning Basics

CS 330
Logistics

Homework 1 posted **Monday 9/21**, due **Wednesday 9/30 at midnight**.

TensorFlow review session **tomorrow at 6:00 pm PT**.

Project guidelines posted **early next week**.
Plan for Today

Multi-Task Learning
- Problem statement
- Models, objectives, optimization
- Challenges
- Case study of real-world multi-task learning

Transfer Learning
- Pre-training & fine-tuning

Goals for by the end of lecture:
- Know the key design decisions when building multi-task learning systems
- Understand the difference between multi-task learning and transfer learning
- Understand the basics of transfer learning
Multi-Task Learning
Some notation

Typical loss: negative log likelihood

\[\mathcal{L}(\theta, \mathcal{D}) = -\mathbb{E}_{(x, y) \sim \mathcal{D}}[\log f_\theta(y | x)] \]

A task:

\[\mathcal{T}_i \triangleq \{ p_i(x), p_i(y | x), \mathcal{L}_i \} \]

data generating distributions

Single-task learning:

\[\mathcal{D} = \{(x, y)_k\} \]

Minimize loss

\[\min_{\theta} \mathcal{L}(\theta, \mathcal{D}) \]

What is a task? (more formally this time)

Corresponding datasets:

\[\mathcal{D}^{tr}_i, \mathcal{D}^{test}_i \]

will use \(\mathcal{D}_i \) as shorthand for \(\mathcal{D}^{tr}_i \):
Examples of Tasks

A task: \(T_i \triangleq \{ p_i(x), p_i(y \mid x), \mathcal{L}_i \} \)

data generating distributions

Corresponding datasets: \(\mathcal{D}_i^{tr}, \mathcal{D}_i^{test} \)

will use \(\mathcal{D}_i \) as shorthand for \(\mathcal{D}_i^{tr} \):

Multi-task classification: \(\mathcal{L}_i \) same across all tasks

e.g. per-language handwriting recognition

e.g. personalized spam filter

Multi-label learning: \(\mathcal{L}_i, p_i(x) \) same across all tasks

e.g. CelebA attribute recognition

e.g. scene understanding

\[
L_{tot} = w_{depth} L_{depth} + w_{kpt} L_{kpt} + w_{normals} L_{normals}
\]

When might \(\mathcal{L}_i \) vary across tasks?

- mixed discrete, continuous labels across tasks
- multiple metrics that you care about
Decisions on the model, the objective, and the optimization.

How should we condition on z_i? What objective should we use?
How to optimize our objective?

Vanilla MTL Objective: $\min_{\theta} \sum_{i=1}^{T} L_i(\theta, D_i)$

e.g. one-hot encoding of the task index
or, whatever meta-data you have
- personalization: user features/attributes
- language description of the task
- formal specifications of the task
Model

What parameters of the model should be shared?

Objective

How should the objective be formed?

Optimization

How should the objective be optimized?
Conditioning on the task

Let’s assume z_i is the one-hot task index.

Question: How should you condition on the task in order to share as little as possible? (raise your hand)
Conditioning on the task

\[
y = \sum_{j} 1(z_i = j)y_j
\]

\(\rightarrow\) independent training within a single network!
with no shared parameters
The other extreme

Concatenate z_i with input and/or activations

all parameters are shared
(except the parameters directly following z_i, if z_i is one-hot)
An Alternative View on the Multi-Task Architecture

Split θ into shared parameters θ^{sh} and task-specific parameters θ^{i}.

Then, our objective is: $\min_{\theta^{sh}, \theta^{1}, \ldots, \theta^{T}} \sum_{i=1}^{T} \mathcal{L}_i(\{\theta^{sh}, \theta^{i}\}, \mathcal{D}_i)$

Choosing how to condition on \mathbf{z}_i equivalent to Choosing how & where to share parameters
Conditioning: Some Common Choices

1. **Concatenation-based** conditioning
 - Conditioning representation Z_i
 - The result is passed through a linear layer to produce the output.

2. **Additive** conditioning
 - Conditioning representation Z_i
 - The bias vector is then added to the input.

These are actually equivalent!

Question: why are they the same thing? (raise your hand)

Application of following fully-connected layer:
3. **Multi-head architecture**

![Diagram of multi-head architecture](image1)

Ruder ‘17

Why might multiplicative conditioning be a good idea?
- more expressive per layer
- recall: multiplicative gating

4. **Multiplicative conditioning**

![Diagram of multiplicative conditioning](image2)

Multiplicative conditioning **generalizes** independent networks and independent heads.

Conditioning: More Complex Choices

Cross-Stitch Networks. Misra, Shrivastava, Gupta, Hebert ’16

Multi-Task Attention Network. Liu, Johns, Davison ’18

Deep Relation Networks. Long, Wang ’15

Sluice Networks. Ruder, Bingel, Augenstein, Sogaard ’17
Unfortunately, these design decisions are like neural network architecture tuning:

- problem dependent
- largely guided by intuition or knowledge of the problem
- currently more of an art than a science
What parameters of the model should be shared?

How should the model be conditioned on z_i?

How should the objective be formed?

How should the objective be optimized?
Vanilla MTL Objective: \[
\min_\theta \sum_{i=1}^{T} \mathcal{L}_i(\theta, \mathcal{D}_i)
\]

Often want to weight tasks differently:
\[
\min_\theta \sum_{i=1}^{T} w_i \mathcal{L}_i(\theta, \mathcal{D}_i)
\]

How to choose \(w_i\)?
- dynamically adjust throughout training
- manually based on importance or priority

a. various heuristics
encourage gradients to have similar magnitudes
(Chen et al. GradNorm. ICML 2018)

b. use task uncertainty
(e.g. see Kendall et al. CVPR 2018)

c. aim for monotonic improvement towards Pareto optimal solution
(e.g. see Sener et al. NeurIPS 2018)

d. optimize for the worst-case task loss
\[
\min_\theta \max_i \mathcal{L}_i(\theta, \mathcal{D}_i)
\]
(e.g. for task robustness, or for fairness)

\(\theta_a\) dominates \(\theta_b\) if \(\mathcal{L}_i(\theta_a) \leq \mathcal{L}_i(\theta_b)\ \forall i\)
and if \(\sum_i \mathcal{L}_i(\theta_a) \neq \sum_i \mathcal{L}_i(\theta_b)\)

\(\theta^*\) is Pareto optimal if there exists no \(\theta\) that dominates \(\theta^*\)
(At \(\theta^*\), improving one task will always require worsening another)
What parameters of the model should be shared?

How should the model be conditioned on z_i?

How should the objective be formed?

How should the objective be optimized?
Optimizing the objective

Vanilla MTL Objective: \(\min_{\theta} \sum_{i=1}^{T} \mathcal{L}_i(\theta, \mathcal{D}_i) \)

Basic Version:

1. Sample mini-batch of tasks \(\mathcal{B} \sim \{\mathcal{T}_i\} \)
2. Sample mini-batch datapoints for each task \(\mathcal{D}_i^b \sim \mathcal{D}_i \)
3. Compute loss on the mini-batch: \(\hat{\mathcal{L}}(\theta, \mathcal{B}) = \sum_{\mathcal{T}_k \in \mathcal{B}} \mathcal{L}_k(\theta, \mathcal{D}_k^b) \)
4. Backpropagate loss to compute gradient \(\nabla_{\theta} \hat{\mathcal{L}} \)
5. Apply gradient with your favorite neural net optimizer (e.g. Adam)

Note: This ensures that tasks are sampled uniformly, regardless of data quantities.

Tip: For regression problems, make sure your task labels are on the same scale!
Challenges
Challenge #1: Negative transfer

Negative transfer: Sometimes independent networks work the best.

<table>
<thead>
<tr>
<th>Multi-Task CIFAR-100 recent approaches</th>
<th>% accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>task specific, 1-fc (Rosenbaum et al., 2018)</td>
<td>42</td>
</tr>
<tr>
<td>task specific, all-fc (Rosenbaum et al., 2018)</td>
<td>49</td>
</tr>
<tr>
<td>cross stitch, all-fc (Misra et al., 2016b)</td>
<td>53</td>
</tr>
<tr>
<td>independent</td>
<td>67.7</td>
</tr>
</tbody>
</table>

(Yu et al. Gradient Surgery for Multi-Task Learning, 2020)

Why?
- optimization challenges
 - caused by cross-task interference
 - tasks may learn at different rates
- limited representational capacity
 - multi-task networks often need to be much larger than their single-task counterparts
If you have negative transfer, **share less** across tasks.

It’s not just a binary decision!

$$\min_{\theta^{sh}, \theta^1, \ldots, \theta^T} \sum_{i=1}^{T} \mathcal{L}_i(\{\theta^{sh}, \theta^i\}, \mathcal{D}_i) + \sum_{t'=1}^{T} \| \theta^t - \theta^{t'} \|$$

“soft parameter sharing”

+ allows for more fluid degrees of parameter sharing
- yet another set of design decisions / hyperparameters
Challenge #2: Overfitting

You may not be sharing enough!

Multi-task learning \leftrightarrow a form of regularization

Solution: Share more.
Plan for Today

Multi-Task Learning
- Problem statement
- Models, objectives, optimization
- Challenges
- Case study of real-world multi-task learning

Transfer Learning
- Pre-training & fine-tuning

short break here
Case study

Recommending What Video to Watch Next: A Multitask Ranking System

Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Aniruddh Nath, Shawn Andrews, Aditee Kumthekar, Maheswaran Sathiamoorthy, Xinyang Yi, Ed Chi
Google, Inc.
{zhezhao,lichan,liwei,jilinc,aniruddhnath,shawandrews,aditeek,nlogn,xinyang,edchi}@google.com

Goal: Make recommendations for YouTube

Figure 4: Recommending what to watch next on YouTube.
Case study

Recommending What Video to Watch Next: A Multitask Ranking System

Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Aniruddh Nath, Shawn Andrews, Aditee Kumthekar, Maheswaran Sathiamoorthy, Xinyang Yi, Ed Chi
Google, Inc.
{zhezhao,lichan,liwei,jilinc,aniruddhnath,shawnandrews,aditeek,nlogn,xinyang,edchi}@google.com

Goal: Make recommendations for YouTube

- videos that users will rate highly
- videos that users they will share
- videos that user will watch

Conflicting objectives:

implicit bias caused by feedback: user may have watched it because it was recommended!
Framework Set-Up

Input: what the user is currently watching (query video) + user features

1. Generate a few hundred of candidate videos
2. Rank candidates
3. Serve top ranking videos to the user

Candidate videos: pool videos from multiple candidate generation algorithms
- matching topics of query video
- videos most frequently watched with query video
- And others

Ranking: central topic of this paper
The Ranking Problem

Input: query video, candidate video, user & context features

Model output: engagement and satisfaction with candidate video

Engagement:
- binary classification tasks like **clicks**
- regression tasks for tasks related to **time spent**

Satisfaction:
- binary classification tasks like **clicking “like”**
- regression tasks for tasks such as **rating**

Weighted combination of engagement & satisfaction predictions -> **ranking score**

score weights manually tuned

Question: Are these objectives reasonable? What are some of the issues that might come up? (answer in chat)
The Architecture

Basic option: “Shared-Bottom Model"
(i.e. multi-head architecture)

-> harm learning when correlation
between tasks is low
Instead: use a form of soft-parameter sharing “Multi-gate Mixture-of-Experts (MMoE)”

Allow different parts of the network to “specialize” expert neural networks \(f_i(x) \)

Decide which expert to use for input \(x \), task \(k \):

\[
g^k(x) = \text{softmax}(W_{g^k} x)
\]

Compute features from selected expert:

\[
f^k(x) = \sum_{i=1}^{n} g^k_{(i)}(x) f_i(x)
\]

Compute output:

\[
y_k = h^k(f^k(x)),
\]
- Implementation in TensorFlow, TPUs
- Train in **temporal order**, running training continuously to consume newly arriving data
- **Offline** AUC & squared error metrics
- **Online A/B testing** in comparison to production system
 - live metrics based on time spent, survey responses, rate of dismissals
- Model **computational efficiency** matters

Results

<table>
<thead>
<tr>
<th>Model Architecture</th>
<th>Number of Multiplications</th>
<th>Engagement Metric</th>
<th>Satisfaction Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared-Bottom</td>
<td>3.7M</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Shared-Bottom</td>
<td>6.1M</td>
<td>+0.1%</td>
<td>+1.89%</td>
</tr>
<tr>
<td>MMOE (4 experts)</td>
<td>3.7M</td>
<td>+0.20%</td>
<td>+1.22%</td>
</tr>
<tr>
<td>MMOE (8 Experts)</td>
<td>6.1M</td>
<td>+0.45%</td>
<td>+3.07%</td>
</tr>
</tbody>
</table>

Table 1: YouTube live experiment results for MMOE.

Found 20% chance of gating polarization during distributed training -> use drop-out on experts
Plan for Today

Multi-Task Learning
- Problem statement
- Models & training
- Challenges
- Case study of real-world multi-task learning

Transfer Learning
- Pre-training & fine-tuning
Multi-Task Learning vs. Transfer Learning

Multi-Task Learning

Solve multiple tasks $\mathcal{T}_1, \ldots, \mathcal{T}_T$ at once.

$$\min_{\theta} \sum_{i=1}^{T} \mathcal{L}_i(\theta, \mathcal{D}_i)$$

Transfer learning is a valid solution to multi-task learning. (but not vice versa)

Transfer Learning

Solve target task \mathcal{T}_b after solving source task \mathcal{T}_a by transferring knowledge learned from \mathcal{T}_a.

Key assumption: Cannot access data \mathcal{D}_a during transfer.

Side note: \mathcal{T}_a may include multiple tasks itself.

Question: In what settings might transfer learning make sense? (answer in chat or raise hand)
Transfer learning via fine-tuning

\[\phi \leftarrow \theta - \alpha \nabla_\theta \mathcal{L}(\theta, D^{tr}) \]

(typically for many gradient steps)

Where do you get the pre-trained parameters?
- ImageNet classification
- Models trained on large language corpora (BERT, LMs)
- Other unsupervised learning techniques
- Whatever large, diverse dataset you might have

Pre-trained models often available online.

<table>
<thead>
<tr>
<th>Pre-trained Dataset</th>
<th>PASCAL</th>
<th>SUN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>58.3</td>
<td>52.2</td>
</tr>
<tr>
<td>Random</td>
<td>41.3 [21]</td>
<td>35.7 [2]</td>
</tr>
</tbody>
</table>

What makes ImageNet good for transfer learning? Huh, Agrawal, Efros. ‘16

Some common practices
- Fine-tune with a smaller learning rate
- Smaller learning rate for earlier layers
- Freeze earlier layers, gradually unfreeze
- Reinitialize last layer
- Search over hyperparameters via cross-val
- Architecture choices matter (e.g. ResNets)
Universal Language Model Fine-Tuning for Text Classification. Howard, Ruder. ‘18

Figure 3: Validation error rates for supervised and semi-supervised ULMFiT vs. training from scratch with different numbers of training examples on IMDb, TREC-6, and AG (from left to right).

Fine-tuning doesn’t work well with small target task datasets

Upcoming lectures: few-shot learning via meta-learning
Plan for Today

Multi-Task Learning
- Problem statement
- Models, objectives, optimization
- Challenges
- Case study of real-world multi-task learning

Transfer Learning
- Pre-training & fine-tuning

Goals for by the end of lecture:
- Know the key design decisions when building multi-task learning systems
- Understand the difference between multi-task learning and transfer learning
- Understand the basics of transfer learning
Reminders

Homework 1 posted **Monday 9/21**, due **Wednesday 9/30 at midnight**.

TensorFlow review session **tomorrow at 6:00 pm PT**.

Project guidelines posted **early next week**.

Next time: Meta-learning problem statement, Black-box meta-learning, GPT-3