

# Representation Learning in Computer Vision

Monday 1:30-4:20pm Braun Music Center, Room 126

Instructors: Prof. Silvio Savarese, Dr Amir Zamir

Email: <u>ssilvio@stanford.edu</u>, <u>zamir@cs.stanford.edu</u>

Silvio's office hour: Friday 2-3pm or by appointment, Office: Gates 154

Amir's office hour: TBA

Course assistant (CA):

Sasha Sax, Email: asax@stanford.edu

Trevor Standley, Email: trevor.standley@gmail.com

## Agenda

- Administrative
  - Requirements
  - Grading policy

Overview of this course

## Prerequisites

 Required Prerequisites: One of the following: CS131A, CS231A, CS231B, CS231N

 If you do not have the required prerequisites, please contact us!

## What do we do in this class?

 Attend lectures by the instructors, domain experts, invited speakers and student teams

### What do we do in this class?

#### Co-present once during the course

- Each lecture will have 1-2 themes
- N students form a team and focus on one theme.
- Each student team will study papers related to the selected theme and prepare material for in-class presentation
- Students are expected to show instructors the prepared material 1-week in advance (before in-class presentation) for feedback
- Each student team will offer an in-class presentation
- An in-class presentation must include:
  - Goals & motivation, prev. work review
  - Technical presentations
  - Conclusions and discussion on how presented work fits in the landscape of representation learning research.

## What do we do in this class?

- Read papers related to themes, and participate at class discussion
  - During the lecture be prepared to ask questions.
  - At the end of each lecture, we will have 5-minute discussion panel; the quality of the questions & discussion panel will be used for evaluating class participation.
  - The more questions you ask during each lecture, the better!
  - We are taking attendance

# What do we do in this class? Course Project:

#### Form your team:

- 1-2 people per team
- The quality is judged regardless of the number of people in the team
- Be nice to your partner: do you plan to drop the course?

#### Evaluation

- Quality of the project (including writing)
- Final ~10 minutes project presentation in class students will vote your presentation!

### **Grading policy**

- Course project: 50%
  - progress report 10%
  - final report 30%
  - presentation 10%
- Attendance and class participation: 20%
  - See class participation protocol
- Paper presentation (quality, clarity, depth, etc.): 30%
- Late policy project:
  - If 1 day late, 25% off the grade for the project
  - If 2 days late, 50% off the grade for the project
  - Zero credits if more than 2 days
- Collaboration policy
  - Read the student code book, understand what is 'collaboration' and what is 'academic infraction'.
  - Discussing project assignment with each other is allowed, but coding must be done individually
  - Using on line presentation material (slides, etc...) is not allowed in general. Exceptions
    can be made and individual cases will be discussed with the instructor.

## Syllabus

 Syllabus contains the schedule of the course with the list of papers to present:

http://web.stanford.edu/class/cs331b/

 Look at the syllabus page for important dates (e.g., reports due dates) and updates;

NOTE: the syllabus page is still under construction

### Course resources

- We'll provide links to:
  - Background reading, tutorial and other important material
  - Code repositories, functions, libraries and other resources that are useful for your projects

### Course resources

#### Computer vision libraries:

Open CV: <a href="http://sourceforge.net/projects/opencylibrary/">http://sourceforge.net/projects/opencylibrary/</a>

- The Open Computer Vision Library has > 500 algorithms, documentation and sample code for real time computer vision.
- Tutorial documentation is in O'Reilly Book: Learning OpenCV

PCL: <a href="http://pointclouds.org/">http://pointclouds.org/</a>

3D point cloud processing

VLFeat: <a href="http://www.vlfeat.org/">http://www.vlfeat.org/</a>

## Agenda

- Administrative
  - Requirements
  - Grading policy
- Overview of this course



## Representation Learning in Computer Vision

### What is this course about?

Forming the proper representation for a task is an essential problem in modern computer vision.



## Representation Learning in Computer Vision

♦ Why representations matter?



## Representation Learning in Computer Vision

- ♦ Why representations matter?
- ♦ What are classical and moderns methods of forming representations



## Representation Learning in Computer Vision

- ♦ Why representations matter?
- ♦ What are classical and moderns methods of forming representations
- ♦ Methods of analyzing representations



## Representation Learning in Computer Vision

# Going beyond vision based representations



## Representation Learning in Computer Vision

#### The course comprises:

- Lectures by instructors
- Lecture by invited speakers
- Presentations by students