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Problem Description

Context

o Juvenile idiopathic arthritis is a chronic inflammatory disease that affects children
It can present in the the jaw/temporomandibular joint (TMJ) - painful & disfiguring
Early detection via MRI and subsequent rapid treatment is critical
Problem:

m Large degree of variability in diagnosis amongst radiologists.

m Very limited dataset (123 patients)
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Project statement
o Goal: Accurately diagnose TMJ arthritis from MRI scans using neural networks
o Data: MRI scans of patients from the Bristol Hospital UK



Data Processing
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1Nyu, Laszlo G. and Udupa, Jayaram K. On standardizing the MR image intensity scale. Magnetic Resonance in Medicine, 42:1072-1081, 1999.



Experimental Methodology - Series-Level Approach

Series-Level Approach

e All slices are stacked into one series and treated
as a single training example
AlexNet e Train the model to generate a single diagnosis

Max Pro: Fully end-to-end
Pooling Con: Requires a large number of patients

' Example: MRNet? (2018)
. e Combine AlexNet activations across all MRI slices
E‘;‘%ecte . (Global MaxPool)
e Single fully connected layer

e Trained on ~1000 patients
2Bien N, Rajpurkar P, Ball RL et al. Deep-learning-assisted diagnosis for knee magnetic resonance 4

imaging: development and retrospective validation of MRNet. PLoS Med2018;15(11):e1002699.




Results - Series-Level Approach

Quantitative Results

Qualitative Results

Accuracy F1 AUC
Model: AlexNet
Train Val Train Val Train Val
w/o Normalization 0.72 0.875 0.75 0.91 0.81 0.83
w/ Normalization 0.83 0.87 0.84 0.91 0.85 0.85
Validation ROC curve
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Experimental Methodology - Slice-Level Approach

MRI Slice-Level Approach

e Treat each MRI slice as a single training example

e Train the models to generate slice-level votes

e Use a custom voting scheme to generate
diagnosis

Pro: Requires fewer patients to train
' e Many more disease applications

Con: Cannot train end-to-end

' Our implementation
. e Train first network to detect diagnostic relevance of
each slice
e Train second network to make slice-level diagnosis
e Try combining models for multi-task approach 6




Results - Slice-Level Approach

Accuracy F1 AUC
Stage Model Criteria Train Val Train Val Train Val
Best F1 0.855 0.898 0.689 0.816 0.917 .952
| ResNet18
Best AUC 0.855 0.898 0.689 0.816 0.917 .952
Best F1 0.660 0.872 0.765 0.923 0.702 0.746
" ResNet34
Best AUC 0.735 0.805 0.805 0.874 0.786 0.748
ROC for Both Stages Separately
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MRI Slice-Level Results - Multitask

Goal: Combine both tasks into a single model Quantitative Results

¢ % o [
° /\/ Model Train Val Train Val
Resnet18 .82 g7 .73 .70
 m— Resnet34 83 75 74 70
/ \ Resnet50 .87 .79 .76 72
Output | Densenet121 93 83 78 74

Softmax over:
PNASNet-5-Larg 91 .84 .79 .745
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Voting Scheme

How to combine slice-level model outputs into a diagnosis?

Step 1: Select slices by diagnostic relevance Multitask model w/ global max voting scheme
using a selection threshold on Stage | output o
' \ L
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Step 2: Combine Stage Il outputs for selected 3 o s - o
slices using voting scheme to diagnose Selection Threshold

Potential voting schemes:
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Future Works

e Continue tuning the models
o Directly tune F1/AUC via alternative loss functions®
o Tune voting schemes and parameters
e Introduce more complex disease labels
o Left/Right specific
o Mild/moderate/severe
e Incorporate other MRI imaging orientations and modalities
o Coronal/Sagittal orientations
o T1/T2/T1 fs/T2 fs modalities
e Incorporate expert radiologists into analysis
o Quantify current expert biases
o Assess differential performance using model as decision support

3Eban et al. Scalable Learning of Non-Decomposable Objectives. AISTATS, 54. 2017. 10
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