
sBiLSAN:stacked Bidirectional Self-Attention LSTM Network for Anomaly
Detection and Diagnosis from System Logs

Chenyu You
Department of Electrical Engineering

Stanford University
uniycy@stanford.edu

Qiwen Wang
Department of Computer Science

Stanford University
qwang26@stanford.edu

Chao Sun
Department of Computer Science

Stanford University
chao.sun@stanford.edu

Abstract

High service availability is crucial for computer systems.
Monitoring computing systems has become increasingly dif-
ficult as researcher and system analysts face the challenge
of analysis a wide range of monitoring information. Thus,
the anomaly detection system along with firewalls and in-
trusion prevention systems are the must-have tools. The
primary purpose of a system log is to record system states
and significant events for enhanced system reliability. Such
system logs are universally available in all computer sys-
tem. Efficient anomaly detection and prediction via log min-
ing over unstructured texts are highly required. Therefore,
we seek to leverage machine learning (ML)-based model
to increase the reliability of computer systems. This work
aims to detect and predict system failures and errors via
stacked Bidirectional self-attention long short-term memory
(LSTM) networks in certain time intervals. Also, we present
a comprehensive study and evaluation of existing anomaly
detection algorithms, using a new large-scale benchmark
consisting of both synthetic and real-world network traffic
failures of various error types. Our evaluation and analysis
indicate the performance of our proposed method can cap-
ture the complex representations of the anomaly, and obtain
promising results as compared to the other state-of-the-art
methods.

1. Introduction
System log analysis is critical for a wide range of tasks

in maintaining large-scale computer systems such as high-
performance computing clusters and cloud computing. Log
files, generated in almost all computer systems today, con-

tain highly valuable information about health and behavior
of the system and thus they can be utilized to analyze be-
havioral aspects of the system. However, there exists a large
number of log entries in computer systems; it is challenging
to seek relevant information in these files. Thus, computer-
based log analysis techniques are indispensable for the pro-
cess of finding relevant data in log files. The major issue
to detect the cause of errors is the lack of enough informa-
tion by searching with regular expressions. For the aspect
of computer networks, a typical computer system encom-
passes a wide range of issues, such as intrusion detection,
preventative security, and network monitoring, and associ-
ated investigative and remediation efforts [15]. Network er-
rors are one of the most significant reasons that result in ser-
vice unavailability. Network errors can be seen as a form of
gray failure, e.g., sector error and latency error, since subtle
failures are hard to be detected, even when applications are
afflicted by them.

These consist of critical security tasks such as intrusion
detection, malware detection, maintenance tasks, and mod-
eling data or traffic flow patterns. Since computer sys-
tems and applications become more complicated than be-
fore, they are subject to more bugs and vulnerabilities for
online attacks. Also, the attacks are becoming increasingly
more sophisticated, and most users only realize they are un-
der attack when attackers have leaked data and corporate
secrets. Extracting knowledge from a wide range of system
logs is complicated by several factors:

1. The system generates log files including over terabytes
of data per day.

2. Label data applied in the current investigation are sys-
tem specific and biased.

1

Figure 1. A visualization of LSTM network.

3. The connections across logging sources and system
entities such as processes, nodes, and I/O, are obscure
and complex.

According to these factors, challenges central to anomaly
detection in multivariate time series data hold for the net-
work system. Data being monitored are often heteroge-
neous, noisy, and high-dimensional. In scenarios, anomaly
detection is being used as a diagnostic tool for identifying
the existence of a potential issue on the network. Also,
the recent work reports that it is challenging to diagnose
a problem using unstructured logs even after the error loca-
tion has been determined [30]. Many traditional anomaly
detection methods and unaided human monitoring are no
longer effective. The reasons can be identified in two
folds. First, traditional methods often focus on the low-
dimensional domain and will face difficulties when fitting
the high-dimensional data. Second, they require the manual
engineering of features [13]. Therefore, how to derive the
highly effective automated methods for visualization and
analysis of system logs has been one of the major endeavors
in the computer security field. The ideal system should be
able to detect attacks, diagnose attacks, and deploy counter-
measures and repairs [21].

Almost all computer systems document the history of
events and states in system logs. Such operation serves as a
keyhole to computer system work-flow and allows mainte-
nance of large-scale systems for either business or compu-
tation purposes. Access to the past processes from logs also
provides an approach for monitoring and anomaly detec-
tion. Current methods of anomaly detection using log data
can be categorized into workflow analysis, Principal com-
ponent analysis (PCA) of message counters, and invariant
mining of co-occurrence patterns, each of which can be re-
stricted in different cases to defend online attacks.

Figure 2. The different anomaly types.

Challenges vary from deviation of log formats in dif-
ferent systems, to problem identification with the detected
errors, and to the use of extensive data in online anomaly
detection. Although the rule-based methods are proposed,
the prerequisite to extract features in the logs deviates it
from general purpose [30, 32]. To intervene attack cur-
rently in progress, prompt anomaly detection is critical and
thus, the off-line approach is inapplicable due to the pro-
cesses on entire log data. Other proposed approaches that
involve the use of specific anomalies limit anomaly de-
tect from unknown types [31]. Concurrent generation of
log data poses another challenge, especially for workflow-
based approaches where a model generated from a standard
workflow can only apply to log messages produced sequen-
tially [24, 11]. Apart from that, most approaches fail to
leverage comprehensive log messages including the log key,
the timestamp and metric values. Especially, such results in
limitation in varied anomaly detection [25, 16, 24, 29].

In this paper, we apply and extend methods from various
domain to mitigate and balance the limitations mentioned
above. Specifically, we utilize Long Short-Term Memory
(LSTM) recurrent neural networks (RNNs) to learn ordered
sequences of network traffic representation of a computer
network and then construct a new large-scale computer sys-
tem log dataset consisting of both synthetic and real-world
network traffic failures of various error types. Next, we
evaluate the ability of the proposed model to detect mali-
cious activity. The experimental results demonstrate that
our proposed algorithms can effectively detect patterns of
traffic indicative of malicious activity.

2. Related Work
Machine learning (ML) has been widely studied, partly

due to a large amount of future promising in a wide range
of real applications [9, 26, 27], especially sequence-to-
sequence learning tasks [4, 22]. A large number of appli-
cation in anomaly detection involving large sets of high-
dimensional data were forced to use methods less capable
of modeling temporal information. Specifically, several re-

2

Input
time

series
%

over-
and

under-
sampli

ng

Binary labely

MultiplicativeSelfAttentionStacked
Bidirectional
LSTM Layer

Flatten

LSTM LSTM

LSTM LSTM…
…

X5

Figure 3. Stacked Bidirectional Self-Attention Network Architecture.

searchers introduced Long Short-Term Memory Networks
(LSTM) [6] to perform system log analysis by efficiently
processing and prioritizing historical information valuable.
Compared with Deep Neural Networks (DNN), LSTMs
have shown the superior ability to maintain the memory of
long-term dependencies due to a weighted self-loop condi-
tioned on context [28, 17, 12, 33]. It is well-known that
the LSTM model can handle high-complexity, temporal, or
sequential data in their widespread applications in multiple
domains [28, 33].

Figure 4. The example of filtered data format.

In the anomaly detection context, LSTMs can leverage
time-series, non-linear numeric streams of data for anomaly
detection. LSTMs could learn a complicated relationship
between past data points and current data points. LSTM
trained on normal data could capture and model normal
behavior of a system and could also handle multivariate
time-series data without the need for dimensionality reduc-
tion [2]. In addition, LSTM models have proved its ability
to model complex nonlinear feature interactions in multi-
variate time-series data streams by utilizing the shared pa-
rameters across time [12, 2].

Zhang et al. [31] utilized clustering system logs together
with similar format and content to parse streamed console
logs and detects early warning signals for failure predic-
tion. Du et al. [3] employed customized processing meth-

ods on the raw system logs and then to generate language
sequences by LSTM networks. Pascanu et al. [14] have
adopted LSTM networks to preprocess sequences of pro-
cess application programming interface (API) calls as com-
ponents to malware detection trained on labeled malware
examples.

3. Dataset
We promoted two different datasets to validate anomaly

detection algorithms. The datasets we investigate in this
study are simulated network traffic dataset and real-life
server log dataset.

3.1. Simulated Network Traffic Dataset

We generated simulation of the actual network traffic
data to validate the functionality of our methods. We de-
fine seven features, termed as tid, systime, bytes-sent, bytes-
recv, packet-sent, packet-recv,and label, respectively. Data
for each time series was assigned a value (0 or 1) and was
generated for each minute. Normal data was labeled as 1 for
each time series, and then generating random values with
normal distribution between 6.25 and 50 around that num-
ber. Anomalous data was 10 or 50 standard deviations from
the normal noise distribution. Anomalous data deviated
from the normal noise distribution by the interval ranging
between 2 and 5 standard deviation randomly was gener-
ated. Anonymous data was generated throughout the entire
time-period and had a maximum duration of 20 hours. An
example of generated anomalous data is shown in 2. The
simulated network traffic dataset includes around 1090 nor-
mal and 400 abnormal data points.

3.2. Real-life Server Log Dataset

The dataset was collected from the remote server oper-
ated 7 day. The size of the dataset is around 20GB per day
for a single server. Various system logs were saved every 10
seconds. Also, the system summary data was collected on
average every 1 second). The processes of events include
start, exit, and resource used. In this study, the information

3

Figure 5. Visualization of examples of simulated data. The abnormal data points were marked by red points.

Table 1. Benchmarking results associated with different ap-
proaches over simulated network traffic dataset. Note that the ex-
perimental dataset utilizes random injected random errors.

Pre Rec F1 .
LR 0.961 0.890 0.924
DT 0.953 0.988 0.970

SVM 0.974 0.902 0.937
PCA 0.894 0.927 0.910

LSTM 0.998 0.629 0.772
LSTM+Dropout 0.989 0.784 0.875
sLSTM+Dropout 0.929 0.765 0.765

of Network I/O and File I/O, such as cpu, tcp, accept, con-
nect, send, are utilized for data analysis. To generate real-
life normal and attack traffic, we configured several hosts,
workstations, and servers. The event data is composed of
network activities from collected summary data. We de-
fine the network in Table. 2. Fig. 2 presents the types of
anomalies that we observed in monitoring computer activ-
ities. Furthermore, we include more system features such
as tcp-stats,, cpu-time-system,and cpu-time-irq to boost the
network performance.

4. Methods
In this section, we describe the anomaly detection ap-

proach that uses LSTMs to detect anomaly from the time
series. Then we discuss the data preprocessing, experimen-
tal setup, and evaluation metrics.

4.1. LSTM-AD: LSTM-based Anomaly Detection
Consider a time series X = xxx(1),xxx(2),xxx(3), . . . ,xxx(n),

where each step xxx(t) 2 Rn in the time series is an n-

dimensional vector x(1), x(2), x(3), . . . , x(n), whose ele-
ments correspond to input variables [12].

Anomaly detection using the prediction error distri-
bution: With a prediction length of l, each of the selected
d dimensions of xxxt 2 X for l < t  n � l is predicted
l times. Then we compute an error vector e(t) for point
x(t) as eee(t) = [eee(t)11 , . . . , eee

(t)
1l , . . . , eee

(t)
d1 , . . . , eee

(t)
dl], where e(t)ij

denotes the difference between x(t)
i and the corresponding

value at time t�j. Next, we model the error vectors in order
to fit a multivariate Gaussian distribution N = N (µ,⌃).
Then we could formulate the likelihood p(t) of observing
an error vector eee(t) given by the value of N . The recent
work points out that the likelihood is similar to normalized
innovations squared (NIS) used for novelty detection using
Kalman filter based dynamic prediction model [5]. Also,
the error vector with respect to the corresponding points is
used to estimate the parameters µ and ⌃ using Maximum
Likelihood Estimation (MLE). An observation xxx(t) is iden-
tified as “normal” if p(t) > ⌧ . On the other hand, the ob-
servation is classified as “anomalous”. Fig. 1 shows the
LSTM model. Then we apply the dropout layer is to pre-
vent the over-fitting to the training dataset. Next, binary
cross-entropy is used as a loss function with Adam opti-
mizer. Specifically, the binary cross-entropy loss can be for-
mulated as loss = �(y log(p) + (1� y) log(1� p)) where
y is binary indicator (0 or 1). In this practice, we empirically
set ⌧ = 0.5.

4.2. Stacked LSTM based model
To enhance the detection performance of LSTM model,

we stacked 5 LSTM layers, termed as “sLSTM”, s.t. since
LSTM units are fully connected through recurrent connec-
tions, each unit in the lower hidden layer is fully connected

4

Table 2. Taxonomy of Network attacks and the corresponding characteristics
Attack Type Characteristics

Denial of service (DoS) Attempts to block access to system or network resources
General network attack Maliciously attempt to compromise the security of the network

Password attack Aims to gain a password by a series of log-in failures
Information gathering attack Finds known vulnerabilities by scanning or probing computers or networks

(a) Ground Truth (b) LSTM w/ dropout

Figure 6. Anomaly detection by LSTM model over the simulated network traffic dataset in the certain time interval.

to each unit in the LSTM hidden layer through feed-forward
connections.

4.3. Stacked Bidirectional LSTM based model

One shortcoming of conventional LSTMs is that they are
only able to leverage previous time state. However, in the
anomaly detection tasks, where each program is executed
at once, there is no reason not to exploit future correlations
as well. Stacked Bidirectional LSTMs (sBiLSTMs) [18]
is able to exploit data in both time-sequence directions
with two separate hidden layers by making use of past fea-
tures (via forward states) and future features (via backward
states) for a specific time frame [8].

4.4. Attention Mechanism

Given the vector representation of a query q, the atten-
tion mechanism uses a parameterized compatibility func-
tion f(xxxt, q) to measure the dependence between xxxt and qt,
or the attention of q to xxxt [1]. A softmax function is then
applied to transform the alignment score a 2 Rn to a proba-
bility distribution p(z|xxx, q) by normalizing over all the n to-
kens on q on a specific task, where z is an indicator of which
token is crucial to q [8, 20]. That is, a large p(z = t|xxx, q)
means that xxxt contributes important information to q. The

process can be summarized as follows:

a = [f(xxxt, q)]nt=1

p(z|xxx, q) = softmax(a).

Specially,

p(z = t|xxx, q) = exp (f(xxxt, q))Pn
t=1 exp (f(xxx

t, q))

The output s of this attention mechanism is the weighted
expectation of a token sampled according to its importance,
where the weights are given by p(z|xxx, q), i.e.,

s =
nX

t=1

p(z = t|xxx, q)xt = Ei⇠p(z|xxx,q)(xt)

The most commonly used attention mechanisms are ad-
ditive attention (or multi-layer perceptron attention) [1]
and multiplicative attention (or dot-product attention) [23].
They share the same and unified form of attention type, but
are different in the compatibility function f(xxxt, q). Additive
attention is expressed as:

f(xxxt, q) = WT�(W (1)xxxi +W (2)q)

where W 2 Rn and � are a weight vector and the activation
function, respectively.

5

(a) Packet Sent (b) Packet Received

Figure 7. Anomaly detection by sBiLSAN model over the real network traffic dataset in certain time interval.

Multiplicative attention, which utilizes inner product or
cosine, is expressed as:

f(xxxt, q) = hW (1)xxxi,W (2)qi

The recent work [19] reports that additive attention often
outperforms multiplicative attention in prediction quality.
However, the latter is faster and more computational effi-
cient due to optimized matrix multiplication.

4.5. Self-Attention
Self-Attention is an extended version of multi-layer per-

ceptron attention at the feature level. It replaces the vector
representation of a query q with a token embedding xj from
the source input itself. It can be applied for both long-range
and local dependencies by exploiting latent correlation from
elements at different positions for both long-range and local
dependencies.

Multi-dimensional attention [23, 7, 19] explores the
dependency between xxxi and xxxj from the same source xxx, and
produce context-aware representations. The formula is ex-
pressed as:

f(xxxi,xxxj) = WT�(W (1)xxxi +W (2)xxxj + b(1)) + b

Similar to the p in multi-dimensional attention, each input
token xxxj is corresponding to a probability matrix pj , s.t.
pjki , p(zk = i| xxx,xxxj). The output representation for xxxj is
sj =

Pn
i=1 p

j
i � xxxi.

4.6. Stacked Bidirectional LSTM based model with
Self-Attention

We combine a stacked Bidirectional LSTM network and
a self-attention layer to form a Stacked Bidirectional LSTM
based model with Self-Attention (sBiLSAN). The network
is able to utilize the past input features and future input fea-
tures in both directions. Also, the self-attention block can

produce temporal order encoded and context-aware vector
representation for each element/token. The proposed sBiL-
SAN framework is shown in Fig. 3.

Figure 8. Plots of binary cross-entropy loss versus the number of
epochs.

4.7. Data Processing

The system log data is unstructured but contains com-
mon event information such as timestamps, and raw traf-
fic (both packet and flows). An unbiased network traffic
dataset in a standard format is required. In order to evalu-
ate the anomaly detection system (ADS), an unbiased net-
work traffic dataset in a standard format is required. In gen-
eral, a packet contains a wide range of raw data, some of
which may not be relevant in the context of an ADS. Thus,
one of the significant preprocessing steps is to filter irrel-
evant parameters before capturing and extractions of fea-
tures from the filtered data. Furthermore, data type conver-
sion, normalization, and discretization are also applied to
the anomaly detection mechanism.

6

Table 3. Benchmarking results associated with different approaches over real network traffic dataset.

Pre Rec F1 AUC
LR 0.538 0.689 0.604 0.756
DT 0.473 0.721 0.741 0.741

SVM 0.589 0.541 0.564 0.714
PCA 0.600 0.541 0.569 0.717

LSTM 0.758 0.967 0.850 0.976
sLSTM 0.909 0.962 0.935 0.978

sBiLSTM 0.913 0.960 0.936 0.979
sBiLSTM+Additive Attention 0.792 0.865 0.827 0.927

sBiLSTM+Additive Local Attention 0.847 0.958 0.899 0.975
sBiLSTM+Multiplicative Attention 0.962 0.960 0.961 0.979

In the pre-processing stage, we first sort the events by the
timestamps, then group events that were logged in the same
second, and create additional features indicating the group
information by two nature of attributes, especially Contin-
uous, and Binary. Intuitively, the logs with timestamps
nearby are highly related, information of the nearby logs
are also be added to the feature vector. Since the anomalous
state happens much less often than the normal state, our data
is highly unbalanced. To adjust the class distribution, we
used a combination of Synthetic Minority Over-sampling
Technique(SMOTE) and Tomek links to clean up overlap
between classes on the training data. Note that we observe
that applying over-sampling and down-sampling achieve a
significantly better result. Please refer to Section 5.2 for
more details. Lastly, we visualize the filtered input data for-
mat in Fig. 4.

0.9

0.92

0.94

0.96

0.98

Window Size
10

Window Size
30

Window Size
60

Precision Recall F1 Auc

Figure 9. The effects of different history window size on detection
accuracy with sBiLSAN.

4.8. Experimental Setup

For the simulated network traffic dataset, we compared
nine different state-of-the-art methods, including Logistic
Regression (LR), Decision Tree (DT), Support Vector Ma-
chine (SVM), Principal component analysis (PCA) [24],
LSTM [3], LSTM with dropout layer, and stacked LSTM
with dropout layer. Next, to further evaluate the robustness
of the proposed method in the real scenarios, we conduct
the experiments of several popular methods for anomaly
detection and prediction. For the anomaly detection, we
determine the anomaly of the current timestamp using fea-
tures from the history data. Also, for predicting network
anomaly, we predicted the anomaly of the future status
using the feature from the history data. All the models
used for comparisons are listed as follows: Logistic Re-
gression (LR), Decision Tree (DT), Support Vector Ma-
chine (SVM), Principal component analysis (PCA) [24],
LSTM [3], sLSTM, sBiLSTM, sBiLSAN over real network
traffic dataset. Note that all parameters of these selected
comparing methodologies were set to the suggestions from
the original implementation [10]. All experimental codes
are implemented in Python with Tensorflow and run on two
Nvidia K80 graphics cards.

4.9. Evaluation Metrics

We compared the proposed algorithms with the state-of-
the-art over the system information in servers, such CPU,
memory, disk I/O, network I/O activities. Furthermore, we
utilize the following metrics, namely Precision (Pre), Re-
call (Rec), and F1 score to evaluate the anomaly detection
performance of each method in this study. Note that TP,
FP, and FN stand for true positive, false positive, and false
negatives, respectively.

The formula of Precision (Pre) is defined as:

Pre =
T P

T P + FP

7

Wrongly classified normal
traffic as abnormal

Prediction results on test data with
history window size 10.

Prediction results on test data with
history window size 60.

Figure 10. Prediction Visualization Results. Note that the blue line shows the real network activities. The yellow regions are real anomalies
marking that the network attacks happened. The red line indicates the output logits from the sBiLSAN model. Data which is greater than
the above a threshold (0.5) is classified as anomalies.

0

0.25

0.5

0.75

1

LSTM Bidirection
Multiplicative
Self Attention

Stacked LSTM Bidirection LSTM

Precision Recall F1 Auc

Figure 11. LSTM Prediction Result. Using the features of the pre-
vious 60 seconds to predict the state of the future 10 seconds.

The formula of Recall (Rec) is defined as:

Rec =
T P

T P + FN
The formula of F1 score is defined as:

F1 = 2⇥ Pre ⇥ Rec
Pre + Rec

To better show the performance of a classification model
at all classification thresholds, we introduce Area under the
ROC Curve (AUC) to measure the entire two-dimensional
area underneath the entire receiver operating characteristic
curve (ROC).

The simplified formula of AUC score is defined as:

AUC =
1

mn

mX

i=1

nX

j=1

1pi>pj

Where i denotes all m data points with true label 1, and j
denotes all n data points with true label 0. Also, pi and
pj devote the probability score assigned by the classifier
to data point i and j, respectively. 1 denotes the indica-
tor function. Specifically, it outputs 1 iff the condition is
satisfied (here pi > pj).

5. Experimental Results
We evaluate and compare the performance of enhanced

LSTM model on the simulated and real network traffic
datasets to perform anomaly detection and prediction tasks.
We use a hybrid approach for anomaly detection and pre-
diction tasks, wherein the neural networks estimate hidden
Markov model (HMM) state posteriors.

5.1. Simulated Network Traffic Dataset
We present the results of the state-of-the-art methods on

simulated network traffic dataset. We report precision, re-
call, and F1-score in Table 1. We observe that the conven-
tional LSTM model with a single layer performs very well
for the anomaly detection task. With two layers of LSTM
model, the performance does not have improvements but
have alleviated. The possible reason is that the size of this
dataset is small; therefore, LSTM model with a single layer

8

and a large number of memory cells tends to overfit the
training data. In the Fig. 6, the normal data point in ground-
truth marked by green circle was classified as the abnormal
data point by LSTM w/ dropout. Note that the experimental
data uses manually injected random errors.

Table 4. The effect of feature size on the vanilla LSTM method
over real network traffic dataset. Note feature denotes as FEAT for
abbreviation

Pre Rec F1 AUC.
FEAT-4-win-1 0.589 0.989 0.739 0.978
FEAT-4-win-15 0.594 0.988 0.745 0.978
FEAT-4-win-30 0.615 0.984 0.757 0.977
FEAT-4-win-60 0.684 0.936 0.778 0.976
FEAT-33-win-1 0.699 0.957 0.808 0.968

FEAT-33-win-15 0.696 0.954 0.805 0.967
FEAT-33-win-30 0.761 0.955 0.847 0.970
FEAT-33-win-60 0.758 0.967 0.850 0.976

5.2. Real-life Server Log Dataset
Anomaly Detection: From Table 3, in term of F1 score,

LSTM-based methods achieved 40% better than conven-
tional approaches such as decision tree. Also, incorporating
more history data, and weakly correlated features could im-
prove the model performance. As shown in Table. 4, when
only using network related data for training and testing,
the model cannot distinguish the abnormal network traffic
due to the network attack with the normal network traffic
that sends and gets large files, introducing the false positive
in the result. By expanding the training features with the
weakly correlated features of net statistics and CPU usage,
the model can correctly classify the normal network traffic
with high network package bytes received and sent. Over-
all, adding more features boasts the F1 score for 7% on the
vanilla LSTM model. In the Fig. 7, we shows the example
of anomaly detection by sBiLSAN model over the real net-
work traffic dataset in certain time interval. Note that the
the blue line shows the real network activities. The yellow
regions are real anomalies marking that the network attacks
happened. The red line indicates the output logits from the
sBiLSAN model. Data which is greater than the above a
threshold (0.5) is classified as anomalies.

The proposed sBiLSAN produces the best performance
in term of F1 score, which outperforms other state-of-art
algorithms. The self-attention layer in sBiLSAN implies the
existence of the long-range dependency of the history data.
Specifically, the self-attention layer can reveal the duration
of the current state, which is especially helpful to detect
the current state and find anomaly. In Fig. 9, we report the
effects of different window size on network performance
over the real network traffic dataset. For a fair comparison,
we utilize the sBiLSAN network structure as the baseline.

It can be observed that the result improves as we increase
the window size. It indicates that more feature information
can further improve model performance. To visualize the
convergence of each model, we calculated the binary cross-
entropy loss over the training process for validation. Fig. 8
shows the binary cross-entropy loss versus the number of
epochs for the six models.

Anomaly Prediction: We visualize some quantitative
results in Fig. 11. The stacked Bidirectional LSTM with-
out self-attention network outperforms that with the self-
attention network, which suggests that features extracted
from 60 seconds may not provide enough information to
predict future states of 10 seconds. It is noted that the
stacked Bidirectional LSTM network is robust in anomaly
detection and prediction tasks. As shown in Fig. 10, the
ground truth anomaly traffic, and normal events are labeled
as yellow and red, respectively. Also, the blue peaks uncov-
ered by the yellow region are the normal traffic since they
can be differentiated from abnormal traffic with respect to
CPU usage and tcp info. It can clearly be observed that in
term of the window size of 10, some points of “normal”
behavior are mistakenly predicted as abnormal. When the
window size increase, all of the future net traffic states can
be correctly classified.

6. Conclusion
In this work, we create a real-world network traffic

dataset with detailed annotations. Also, we propose a
stacked Bidirection self-attention LSTM network (sBiL-
SAN) for network anomaly detection and prediction tasks.
The proposed model learns and encodes entire log messages
such as timestamp, tcp stats, and packet values. Besides,
we investigate how to incorporate attention mechanism to
improve the network performance further. The experiment
results demonstrate that sBiLSAN can achieve state-of-the-
art network performance and outperform existing works
(LSTM, etc.) on a wide range of anomaly detection and
prediction tasks.

Future work includes exploring more novel applications
of the proposed method, such as multi-domains in com-
puter systems. Also, we will investigate how to incorpo-
rate a robust algorithm to further improve the performance
of anomaly detection and prediction on a large-scale testing
set.

References
[1] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine

translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

[2] L. Bontemps, J. McDermott, N.-A. Le-Khac, et al. Collective
anomaly detection based on long short-term memory recur-
rent neural networks. In International Conference on Future

9

Data and Security Engineering, pages 141–152. Springer,
2016.

[3] M. Du, F. Li, G. Zheng, and V. Srikumar. Deeplog: Anomaly
detection and diagnosis from system logs through deep
learning. In Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security, pages
1285–1298. ACM, 2017.

[4] A. Graves, A.-r. Mohamed, and G. Hinton. Speech recogni-
tion with deep recurrent neural networks. In 2013 IEEE in-
ternational conference on acoustics, speech and signal pro-
cessing, pages 6645–6649. IEEE, 2013.

[5] P. Hayton, S. Utete, D. King, S. King, P. Anuzis, and
L. Tarassenko. Static and dynamic novelty detection meth-
ods for jet engine health monitoring. Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 365(1851):493–514, 2006.

[6] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[7] M. Hu, Y. Peng, Z. Huang, X. Qiu, F. Wei, and M. Zhou.
Reinforced mnemonic reader for machine reading compre-
hension. arXiv preprint arXiv:1705.02798, 2017.

[8] Z. Huang, W. Xu, and K. Yu. Bidirectional lstm-crf mod-
els for sequence tagging. arXiv preprint arXiv:1508.01991,
2015.

[9] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature,
521(7553):436, 2015.

[10] Logpai. A log analysis toolkit for automated anomaly de-
tection. https://github.com/logpai/loglizer,
2016.

[11] J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li. Mining invariants
from console logs for system problem detection.

[12] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal. Long short
term memory networks for anomaly detection in time series.
In Proceedings, page 89. Presses universitaires de Louvain,
2015.

[13] M. Nicolau, J. McDermott, et al. Learning neural represen-
tations for network anomaly detection. IEEE transactions on
cybernetics, (99):1–14, 2018.

[14] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and
A. Thomas. Malware classification with recurrent networks.
In 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 1916–1920. IEEE,
2015.

[15] B. J. Radford, L. M. Apolonio, A. J. Trias, and J. A. Simp-
son. Network traffic anomaly detection using recurrent neu-
ral networks. arXiv preprint arXiv:1803.10769, 2018.

[16] S. Roy, A. C. König, I. Dvorkin, and M. Kumar. Perfaugur:
Robust diagnostics for performance anomalies in cloud ser-
vices. In 2015 IEEE 31st International Conference on Data
Engineering, pages 1167–1178. IEEE, 2015.

[17] H. Sak, A. Senior, and F. Beaufays. Long short-term memory
based recurrent neural network architectures for large vocab-
ulary speech recognition. arXiv preprint arXiv:1402.1128,
2014.

[18] M. Schuster and K. K. Paliwal. Bidirectional recurrent
neural networks. IEEE Transactions on Signal Processing,
45(11):2673–2681, 1997.

[19] T. Shen, T. Zhou, G. Long, J. Jiang, S. Pan, and C. Zhang.
Disan: Directional self-attention network for rnn/cnn-free
language understanding. In Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

[20] T. Shen, T. Zhou, G. Long, J. Jiang, and C. Zhang. Bi-
directional block self-attention for fast and memory-efficient
sequence modeling. In International Conference on Learn-
ing Representations (ICLR), 2018.

[21] J. A. Stankovic. Research directions for the internet of
things. IEEE Internet of Things Journal, 1(1):3–9, 2014.

[22] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence
learning with neural networks. In Advances in neural infor-
mation processing systems, pages 3104–3112, 2014.

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all
you need. In Advances in neural information processing sys-
tems, pages 5998–6008, 2017.

[24] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan. De-
tecting large-scale system problems by mining console logs.
In Proceedings of the ACM SIGOPS 22nd symposium on Op-
erating systems principles, pages 117–132. ACM, 2009.

[25] T.-F. Yen, A. Oprea, K. Onarlioglu, T. Leetham, W. Robert-
son, A. Juels, and E. Kirda. Beehive: Large-scale log anal-
ysis for detecting suspicious activity in enterprise networks.
In Proceedings of the 29th Annual Computer Security Appli-
cations Conference, pages 199–208. ACM, 2013.

[26] C. You, Q. Yang, L. Gjesteby, G. Li, S. Ju, Z. Zhang, Z. Zhao,
Y. Zhang, W. Cong, G. Wang, et al. Structurally-sensitive
multi-scale deep neural network for low-dose ct denoising.
IEEE Access, 6:41839–41855, 2018.

[27] C. You, Y. Zhang, X. Zhang, G. Li, S. Ju, Z. Zhao, Z. Zhang,
W. Cong, P. K. Saha, and G. Wang. Ct super-resolution gan
constrained by the identical, residual, and cycle learning en-
semble (gan-circle). arXiv preprint arXiv:1808.04256, 2018.

[28] T. Young, D. Hazarika, S. Poria, and E. Cambria. Re-
cent trends in deep learning based natural language process-
ing. ieee Computational intelligenCe magazine, 13(3):55–
75, 2018.

[29] X. Yu, P. Joshi, J. Xu, G. Jin, H. Zhang, and G. Jiang. Cloud-
seer: Workflow monitoring of cloud infrastructures via inter-
leaved logs. In ACM SIGPLAN Notices, volume 51, pages
489–502. ACM, 2016.

[30] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupa-
thy. Sherlog: error diagnosis by connecting clues from run-
time logs. In ACM SIGARCH computer architecture news,
volume 38, pages 143–154. ACM, 2010.

[31] K. Zhang, J. Xu, M. R. Min, G. Jiang, K. Pelechrinis, and
H. Zhang. Automated it system failure prediction: A deep
learning approach. In 2016 IEEE International Conference
on Big Data (Big Data), pages 1291–1300. IEEE, 2016.

[32] X. Zhao, K. Rodrigues, Y. Luo, D. Yuan, and M. Stumm.
Non-intrusive performance profiling for entire software
stacks based on the flow reconstruction principle. In 12th
USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 16), pages 603–618, 2016.

[33] P. Zhou, Z. Qi, S. Zheng, J. Xu, H. Bao, and B. Xu.
Text classification improved by integrating bidirectional

10

https://github.com/logpai/loglizer

	Bookmarks

