CS341: Project in Mining Massive Datasets

Michele Catasta, Jure Leskovec, Jeffrey Ullman

Agenda

- Intro by Michele
- Logistics & Class Overview
- Intro to Google Cloud

Projects in Spring 2019

- Discovering Driver Signatures in Automotive Data (x 2)
- Subgraph Pattern Matching on Graphs with Deep Representations
- RecSys Challenge 2019
- Recommender System for Publisher of Technical News
- Diagnosing TMJ Arthritis
- Anomaly Detection of Computer Health
- Wildlife detection
- Longitudinal analysis of the Web Graph

Class Logistics

- Please register on Piazza if you haven't: https://piazza.com/stanford/spring2019/cs341
- Onboard: 4/3, we will meet every Wed on April, then on a per-need basis
- Checkpoint presentations: Checkpoint 1 on 4/24, Checkpoint 2 on 5/15
- Checkpoint reports: Checkpoint 1 on 4/28, Checkpoint 2 on 5/19
 - 1. What problem are you working on?
 - 2. What data are you using?
 - 3. What methods for solution have you tried?
 - 4. What are your results so far?
 - 5. What are your plans to complete the project?
- Final Presentation: 6/5 (Wed), more info to be given by then
- Final Report: 6/9

Expectations / Advice

- Self-motivation, how much you learn from the course totally depends on you
- Good to set up a regular meeting with mentors every week to keep track of progress
- Don't wait for mentors to tell you what to do
- Please use Office Hours as much as possible! See scheduling information at http://cs341.stanford.edu/
 - o Possible issues: build bugs, cloud setup, interpersonal issues, need ideas, etc.
- Use Piazza as a StackOverflow for TAs/mentors

Advice on conducting research

- Make sure you put in the time required (or more :-), work hard, consistently, independently, but also as a team player!
- Don't be afraid to be innovative and creative in your thoughts
 - Don't be afraid to modify/shift the project direction

Advice on conducting research

- Do supplemental reading
- Don't be afraid to make a mistake or take a risk
 - Some of the best innovations occur from people taking risks, making errors, and learning from them
- Take your work seriously!

How to prepare for a meeting

How to prepare for a research meeting:

- Update on your progress (max 10 minutes)
 - Prepare a printout or slides with your past progress
 - Send these out before your meeting
 - Cover the essential results and findings. Be precise!
 - Results of failed experiments are especially useful
 - Don't try to cover every little thing you did, just focus on important results

How to prepare for a meeting

How to prepare for a research meeting:

- Prepare questions/ideas for further directions
 - Bring a written list of questions or issues to each meeting
 - Mentors cannot fully answer questions that are not asked!
 - Think about what you plan to do next
- Take notes!
 - Keep precise research progress and meeting notes

Grading

- The grade for the course is composed of the following parts
 - Checkpoint 1 presentation: 10%
 - Checkpoint 2 presentation: 20%
 - Final project presentation: 20%
 - Final project writeup: **50**%

Google Cloud Platform

CS341

- Founded a company in 2014 (Denizen)
- Product Manager for a distributed systems company (Mesosphere)
- Research Fellow for Microsoft Research. Research topics: deep reinforcement Learning, curriculum learning, HCI
- Experienced with production deployment of distributed systems, e.g.
 Docker, Kubernetes, Mesos, Spark, Cassandra, Kafka, Akka etc.
- Come to me for help setting up data pipelines and infrastructure!

Agenda

- Account/Billing/Alerts
- Launching VMs
- Clusters
- Containers
- Tips

What is Google Cloud Platform?

Google's cloud computing service (using same infrastructure used by Google for products like search). Relevant for this class:

Compute Engine	Virtual Machines
Storage Services	Relational and NoSQL cloud storage
Data Services	Hadoop/Spark clusters, cloud ML service, APIs for natural language, vision, speech

Full list of products: https://cloud.google.com/products/

Setup: Create a project

- 1. Visit https://console.cloud.google.com
- Click on "Create a Project" and complete the flow. Billing should be set up automatically to use the EDU credits
- 3. Go to "IAM" from main menu, add rest of team members (using Google accounts, **NOT** stanford.edu account)
- 4. Go to Piazza for info about adding your Google Cloud credits (1 per team!)

Setup: Create Billing Alerts

- Very important! You do not want to accidentally spend all of your money.
- 2. Go to Billing and select your project.
- Set up many alerts based on monthly spend, percentage spend, etc.

Create budget

Set budget

Your budget can be a specified amount or based on previous spend. Budget spend resets the first day of each month to \$0.00.

Budget name

Project or billing account

Select a project or billing account for your budget to track

CS 341: Project in Mining Massive Da... ▼

Include credit as a budget expense

Budget amount

Set a budget by entering a specified amount or by selecting last month's spend

Specified amount	~	\$

Set budget alerts

Send email alerts to billing admins after spend exceeds a percent of the budget or a specified amount. Alerts are based on estimated expenses, so actual expenses may be greater.

Percent of budget		Amount	
50	%	\$	×
90	%	\$	×
100	%	\$	×

Interacting with Google Cloud Platform

Broadly you can interact with GCP in three ways:

- 1. Graphical UI (https://console.cloud.google.com/): Useful to create VMs, set up clusters, provision resources, manage teams etc
- 2. Command line (gcloud sdk tools): Useful for using the resources once provisioned. E.g. ssh into instances, submit jobs, copy files etc
- 3. Cloud Shell (**recommended**): Same as command line, but web-based and pre-installed with SDK and tools, and a persistent home directory (!). More info here: https://cloud.google.com/shell/docs/quickstart

Setup: Command line tools

- 1. Make sure you have Python 2.7.9 or higher
- Download SDK: https://cloud.google.com/sdk/docs/
- 3. Install: run ./install.sh and follow the installation steps
- 4. Authorize using your credentials: Run ./bin/gcloud init
- 5. Test: gcloud components list, gcloud auth list

Setup: Command line tools

	d SDK version is: 149.0.0 Dle version is: 149.0.0		
Country & INC. Parallel Service Service (new York	Setup: Con	nmand line too)ls
	Components		
Status xogle Cloud	Name 1. Make sure ye	nu have Py ih on 2.7.9	or hizber
Not Installed Installed	Cloud Datastore Emulator	docker-credential-gcr	1047.7 MiB 1

Configure and use a VM

- 1. Visit https://console.cloud.google.com/compute/instances.
- Click on the "Create Instance" button.
- 3. Configure instance name, zone, machine type, network traffic, etc.
- 4. Congrats, your VM has been created! Use "View gcloud command" and copy the message in the pop-up dialog to your bash shell.

(something like: gcloud compute --project "yourProjectID" ssh --zone "yourInstanceZone" "yourInstanceName")

Configure and use a VM (Cont'd)

- 5. Stop your machine when not in use to avoid unexpected charges.
- 6. For more details, see https://cloud.google.com/compute/docs/quickstart-linux.

FAQ: My bash shell is complaining gcloud command not found. :(Reload your bash_profile using the "source" command, OR simply restart your bash shell.

Attach a Disk to Your VM

- 1. Create your blank disk.
 - (1) VM instances -> click on your instance -> "Edit" button at the top -> additional disks -> "Add item" button.
 - (2) Select "Name" dropdown -> Create disk -> Source type: select "blank disk" -> configure whatever nickname and size to your disk.
- 2. Format and mount your disk
- 3. Every time you reboot, you need to mount your disk again: sudo mount -o discard, defaults /dev/[DEVICE_ID] /mnt/disks/[MNT_DIR]
- 4. For more details, see https://cloud.google.com/compute/docs/disks/add-persistent-disk

Create a Cluster

- 1. Two ways to create a cluster:
 - Use command line (easier): gcloud dataproc clusters create <cluster-name> OR Use GUI: visit https://console.cloud.google.com/dataproc/clusters.
- 2. View your clusters: https://console.cloud.google.com/dataproc/clusters.

Clusters:

Instances: 1 master node and 2 worker nodes have been created

Name ^	Zone	Recommendation	Internal IP	External IP	Conne	ct	
cluster-1-m	us-central1-a		10.128.0.2	104.198.52.60	SSH	•	:
cluster-1-w-0	us-central1-a		10.128.0.4	35.184.84.218	SSH	•	:
cluster-1-w-1	us-central1-a		10.128.0.3	104.154.182.220	SSH	•	:

Submit a Job

1. Create your job.

Simple example: add one to every element in an array.

```
import pyspark
sc = pyspark.SparkContext()
original_array_rdd = sc.parallelize([3,2,5,1,4])
new_array_rdd = original_array_rdd.map(lambda x: x+1)
new_array = sorted(new_array_rdd.collect())
print new_array
```

2. Submit your job:

```
gcloud dataproc jobs submit pyspark --cluster
<my-dataproc-cluster> my-first-job.py
```

3. View your jobs: https://console.cloud.google.com/dataproc/jobs.

Storage Solutions for Clusters

- 1. You can choose to use
 - (1) cloud storage
 - (2) share a persistent disk among your cluster
 - (3) Other solutions depending on your needs
 - This page offers detailed explanation
 - https://cloud.google.com/solutions/filers-on-compute-engine#cloud-storage.
- 2. To set up **cloud storage**, see tutorial on https://cloud.google.com/compute/docs/disks/gcs-buckets.
- To share a persistent disk among all machines in your cluster, see tutorial on https://cloud.google.com/compute/docs/disks/add-persistent-disk#use_multi_inst_ances.

Google Kubernetes Engine (GKE)

- Containers are lightweight, isolated VM-like objects for running code in a consistent, repeatable environment (e.g. packaging your code with needed libraries)
- 2. Visit https://cloud.google.com/kubernetes-engine/
- 3. Create a cluster
- 4. Launch a distributed application
- Congrats, you are running a distributed system with isolation, scalability, repeatability.

Create a Cluster & Deploy your app

- Use command line: gcloud container clusters create [CLUSTER_NAME]
- 2. Deploy an application: kubectl run hello-server --image [my-app]
- 3. Your application can run code, expose a web UI, scrape from the web, add data to a table, etc. If your process dies, it is restarted automatically.
- 4. Find more info in the quickstart guide: https://cloud.google.com/kubernetes-engine/docs/guickstart

Other services that might be useful

- Natural Language: https://cloud.google.com/natural-language/
- BigQuery: https://cloud.google.com/bigquery
- DataPrep: https://cloud.google.com/dataprep/
- DataProc: https://cloud.google.com/dataproc/
- Cloud ML Engine: https://cloud.google.com/ml-engine/

Suggested Developer Patterns

- Create a Continuous Integration Pipeline: create a git repo with your code, add a build manifest that compiles/packages/tests your code, add a dockerfile that runs the build tool, and create a build trigger to auto-build a container for every code push. https://docs.docker.com/docker-hub/builds/
- Delete your dataproc clusters automatically after your jobs complete! Saves tons of money. Create a bash script for your job: https://cloud.google.com/dataproc/docs/guides/manage-cluster#delete_a_cluster
 ter
- Create versioned models and host them in your data store!