
CS341: Project in Mining 
Massive Datasets

Michele Catasta, Jure Leskovec, Jeffrey Ullman



Agenda

● Intro by Michele

● Logistics & Class Overview

● Intro to Google Cloud 



Projects in Spring 2019

● Discovering Driver Signatures in Automotive Data (x 2)
● Subgraph Pattern Matching on Graphs with Deep 

Representations
● RecSys Challenge 2019
● Recommender System for Publisher of Technical News
● Diagnosing TMJ Arthritis
● Anomaly Detection of Computer Health
● Wildlife detection
● Longitudinal analysis of the Web Graph



Class Logistics
● Please register on Piazza if you haven’t: https://piazza.com/stanford/spring2019/cs341

● Onboard: 4/3, we will meet every Wed on April, then on a per-need basis

● Checkpoint presentations: Checkpoint 1 on 4/24, Checkpoint 2 on 5/15

● Checkpoint reports: Checkpoint 1 on 4/28, Checkpoint 2 on 5/19

○ 1. What problem are you working on?
○ 2. What data are you using?
○ 3. What methods for solution have you tried?
○ 4. What are your results so far?
○ 5. What are your plans to complete the project?

● Final Presentation: 6/5 (Wed), more info to be given by then

● Final Report: 6/9

https://piazza.com/stanford/spring2019/cs341


Expectations / Advice

● Self-motivation, how much you learn from the course totally depends on you

● Good to set up a regular meeting with mentors every week to keep track of 

progress

● Don’t wait for mentors to tell you what to do

● Please use Office Hours as much as possible! See scheduling information at 

http://cs341.stanford.edu/
○ Possible issues: build bugs, cloud setup, interpersonal issues, need ideas, etc.

● Use Piazza as a StackOverflow for TAs/mentors

http://cs341.stanford.edu/


Advice on conducting research
◼

◼

▪



Advice on conducting research
◼
◼

▪

◼



How to prepare for a meeting

◼

▪
▪

▪
▪
▪



How to prepare for a meeting

◼

▪
▪

▪
◼

▪



Grading
◼

▪
▪
▪
▪



Google Cloud Platform
CS341



● Founded a company in 2014 (Denizen)

● Product Manager for a distributed systems company (Mesosphere)

● Research Fellow for Microsoft Research. Research topics: deep 
reinforcement Learning, curriculum learning, HCI

● Experienced with production deployment of distributed systems, e.g. 
Docker, Kubernetes, Mesos, Spark, Cassandra, Kafka, Akka etc.

● Come to me for help setting up data pipelines and infrastructure!

Abhay Agarwal (MS Design ‘19)



Agenda
● Account/Billing/Alerts

● Launching VMs

● Clusters

● Containers

● Tips



What is Google Cloud Platform?
Google’s cloud computing service (using same infrastructure used by Google for 
products like search). Relevant for this class:

Full list of products: https://cloud.google.com/products/

Compute Engine Virtual Machines

Storage Services Relational and NoSQL cloud storage

Data Services Hadoop/Spark clusters, cloud ML service, APIs 
for natural language, vision, speech

https://cloud.google.com/products/


Setup: Create a project
1. Visit https://console.cloud.google.com 
2. Click on “Create a Project” and complete the flow. Billing should be set up 

automatically to use the EDU credits
3. Go to “IAM” from main menu, add rest of team members (using Google 

accounts, NOT stanford.edu account)
4. Go to Piazza for info about adding your Google Cloud credits (1 per team!)

https://console.cloud.google.com


Setup: Create Billing Alerts
1. Very important! You do not want to 

accidentally spend all of your money.
2. Go to Billing and select your project.
3. Set up many alerts based on monthly spend, 

percentage spend, etc.



Interacting with Google Cloud Platform
Broadly you can interact with GCP in three ways:

1. Graphical UI (https://console.cloud.google.com/): Useful to create VMs, set up 
clusters, provision resources, manage teams etc

2. Command line (gcloud sdk tools): Useful for using the resources once 
provisioned. E.g. ssh into instances, submit jobs, copy files etc

3. Cloud Shell (recommended): Same as command line, but web-based and 
pre-installed with SDK and tools, and a persistent home directory (!). More 
info here: https://cloud.google.com/shell/docs/quickstart 

https://console.cloud.google.com/
https://cloud.google.com/shell/docs/quickstart


Setup: Command line tools
1. Make sure you have Python 2.7.9 or higher

2. Download SDK: https://cloud.google.com/sdk/docs/

3. Install: run ./install.sh and follow the installation steps

4. Authorize using your credentials: Run ./bin/gcloud init

5. Test: gcloud components list, gcloud auth list

https://cloud.google.com/sdk/docs/


Setup: Command line tools



Configure and use a VM
1. Visit https://console.cloud.google.com/compute/instances. 
2. Click on the “Create Instance” button.
3. Configure instance name, zone, machine type, network traffic, etc.
4. Congrats, your VM has been created! Use “View gcloud command” and copy 

the message in the pop-up dialog to your bash shell.
(something like: gcloud compute --project "yourProjectID" ssh --zone "yourInstanceZone" "yourInstanceName")

https://console.cloud.google.com/compute/instances


Configure and use a VM (Cont’d)
5. Stop your machine when not in use to avoid unexpected charges.

6. For more details, see https://cloud.google.com/compute/docs/quickstart-linux. 

FAQ: My bash shell is complaining gcloud command not found. :(
Reload your bash_profile using the “source” command, OR simply 
restart your bash shell.

https://cloud.google.com/compute/docs/quickstart-linux


Attach a Disk to Your VM
1. Create your blank disk. 

(1) VM instances -> click on your instance -> “Edit” button at the top -> 
additional disks -> “Add item” button.
(2) Select “Name” dropdown -> Create disk -> Source type: select “blank disk” 
-> configure whatever nickname and size to your disk.

2. Format and mount your disk
3. Every time you reboot, you need to mount your disk again:

sudo mount -o discard,defaults /dev/[DEVICE_ID] /mnt/disks/[MNT_DIR]

4. For more details, see 
https://cloud.google.com/compute/docs/disks/add-persistent-disk

https://cloud.google.com/compute/docs/disks/add-persistent-disk


Create a Cluster
1. Two ways to create a cluster:

Use command line (easier): gcloud dataproc clusters create <cluster-name> 
OR Use GUI: visit https://console.cloud.google.com/dataproc/clusters.

2. View your clusters: https://console.cloud.google.com/dataproc/clusters. 
Clusters:

Instances: 1 master node and 2 worker nodes have been created

https://console.cloud.google.com/dataproc/clusters
https://console.cloud.google.com/dataproc/clusters


Submit a Job
1. Create your job. 

Simple example: add one to every element in an array.
import pyspark
sc = pyspark.SparkContext()
original_array_rdd = sc.parallelize([3,2,5,1,4])
new_array_rdd = original_array_rdd.map(lambda x: x+1)
new_array = sorted(new_array_rdd.collect())
print new_array

2. Submit your job: 
gcloud dataproc jobs submit pyspark --cluster 
<my-dataproc-cluster> my-first-job.py

3. View your jobs: https://console.cloud.google.com/dataproc/jobs. 

https://console.cloud.google.com/dataproc/jobs


Storage Solutions for Clusters
1. You can choose to use 

(1) cloud storage
(2) share a persistent disk among your cluster
(3) Other solutions depending on your needs
This page offers detailed explanation 
https://cloud.google.com/solutions/filers-on-compute-engine#cloud-storage.

2. To set up cloud storage, see tutorial on 
https://cloud.google.com/compute/docs/disks/gcs-buckets. 

3. To share a persistent disk among all machines in your cluster, see tutorial on
https://cloud.google.com/compute/docs/disks/add-persistent-disk#use_multi_inst
ances. 

https://cloud.google.com/solutions/filers-on-compute-engine#cloud-storage
https://cloud.google.com/compute/docs/disks/gcs-buckets
https://cloud.google.com/compute/docs/disks/add-persistent-disk#use_multi_instances
https://cloud.google.com/compute/docs/disks/add-persistent-disk#use_multi_instances


Google Kubernetes Engine (GKE)
1. Containers are lightweight, isolated VM-like objects for running code in a 

consistent, repeatable environment (e.g. packaging your code with needed 
libraries)

2. Visit https://cloud.google.com/kubernetes-engine/
3. Create a cluster
4. Launch a distributed application
5. Congrats, you are running a distributed system with isolation, scalability, 

repeatability.

https://cloud.google.com/kubernetes-engine/


Create a Cluster & Deploy your app
1. Use command line: gcloud container clusters create [CLUSTER_NAME]
2. Deploy an application: kubectl run hello-server --image [my-app]
3. Your application can run code, expose a web UI, scrape from the web, add 

data to a table, etc. If your process dies, it is restarted automatically.
4. Find more info in the quickstart guide: 

https://cloud.google.com/kubernetes-engine/docs/quickstart

https://cloud.google.com/kubernetes-engine/docs/quickstart


Other services that might be useful
● Natural Language: https://cloud.google.com/natural-language/

● BigQuery: https://cloud.google.com/bigquery

● DataPrep: https://cloud.google.com/dataprep/

● DataProc: https://cloud.google.com/dataproc/

● Cloud ML Engine: https://cloud.google.com/ml-engine/ 

https://cloud.google.com/natural-language/
https://cloud.google.com/bigquery
https://cloud.google.com/dataprep/
https://cloud.google.com/dataproc/
https://cloud.google.com/ml-engine/


Suggested Developer Patterns
● Create a Continuous Integration Pipeline: create a git repo with your code, 

add a build manifest that compiles/packages/tests your code, add a dockerfile 
that runs the build tool, and create a build trigger to auto-build a container for 
every code push. https://docs.docker.com/docker-hub/builds/

● Delete your dataproc clusters automatically after your jobs complete! Saves 
tons of money. Create a bash script for your job: 
https://cloud.google.com/dataproc/docs/guides/manage-cluster#delete_a_clus
ter

● Create versioned models and host them in your data store! 

https://docs.docker.com/docker-hub/builds/
https://cloud.google.com/dataproc/docs/guides/manage-cluster#delete_a_cluster
https://cloud.google.com/dataproc/docs/guides/manage-cluster#delete_a_cluster

