CS341: Project in Mining Massive Datasets

Advanced ML in Google Cloud

-

Abhay Agarwal (MS Design ‘19)

Agenda

e General Notes on Pipelining

e Some History

e Distributed Processing in Tensorflow
e Cloud ML Engine in Google Cloud

e Misc. features and TPUs

Background on ML pipelines

e \What is an ML pipeline?

f = engine.adobe.File("/Users/josh/Downloads/collaborate-better-go-faster.jpg”)
engine.adobe.app.load(f)

layer = engine.adobe.app.activeDocument.activelayer

» range(-50, 50, 10):
brightness = -1 # i

contrast = i

new_layer = layer.duplicate()

new_layer.adjustBrightnessContrast (brightness, contrast)

Background on ML pipelines

e \What is an ML pipeline?
e \Why do we need an ML pipeline?

Local machine is not fast enough to run the computations effectively
Require specialized hardware

Hard drive isn’t large enough to store data

Want to do stream rather than batch processing

Want to parallelize tasks using multiple machines

Want to collaborate on development without replicating dev state

Want to get several of these features “for free” without changing my workflow (too much)

... a bit of history of server pipelining

Here’s a very basic way to orchestrate
y y $ forSVRin123
your servers... > d

> ssh root@server0$SVR.example.com -p
3K >k k5K Xk >k >k Xk

> # DO SOMETHING
> done

What's wrong?

... a bit of history of scaling datacenters

Here are slightly less basic way &

to orchestrate your servers: “C\ C H E F
\ B , J

(X

<

puppet

<

Types of pipelines

Details for Job 8

Status: SUCCEEDED
Completed Stages: 4
» Event Timeline

~ DAG Visualization

Stage 112 Stage 113 Stage 114 Stage 115

SSH client SSH server

-, W=

An ocean of
user containers

s B & &

Kubernetes
Master

Neaks Norde L

HEE =l [

Il =N B

'\)'
Scheduled and packed
dynamically onto nodes |

ERVERLESS ARCHITECTURE

(5 |crown

A Note on GPU sharing

GPUs are very difficult to virtualize

for obvious reasons...
o CUDA (Nvidia GPU API) is essentially

written for single processes

o GPU memory-sharing limits processing
capabilities

o Time-sharing: interleave processes in
time domain (doesn’t add any

savings...)

Though, this will probably change

in our lifetime

* * ¥ *

*

CPU

Control (A | AW

‘AU AW

Low compute density
Complex control logic
Large caches (L1$/L2$, etc.)

Optimized for serial operations
* Fewer execution units (ALUs)
* Higher clock speeds

Shallow pipelines (<30 stages)

* Low Latency Tolerance
* Newer CPUs have more parallelism

* * %

* X ¥ %

High compute density
High Computations per Memory Access
Built for parallel operations

* Many parallel execution units (ALUs)
* Graphics is the best known case of parallelism

Deep pipelines (hundreds of stages)
High Throughput

High Latency Tolerance

Newer GPUs:

* Better flow control logic (becoming more CPU-like)
* Scatter/Gather Memory Access
* Don't have one-way pipelines anymore

Easy Mode: TensorFlow Cluster Primitive

e Create multiple tensorflow processes
e Communicate over sockets
e Can live on multiple servers (with tensorflow server daemon)

e Can live on same machine with different GPUs or with same CPUs

tf.train.ClusterSpec construction Available tasks
tf.train.ClusterSpec({"local": ["localhost:2222", "localhost:2223"]}) ./ /job:local/task:8
/job:local/task:1
tf.train.ClusterSpec({ °0 | /job:worker/task:0
"worker": [/job:worker/task:1
"worker@.example.com:2222", /job:worker/task:2
"worker1.example.com:2222", /job:ps/task:@
"worker2.example.com:2222" /job:ps/task:1
Il
"ps": [

"ps@.example.com:2222",
"ps1.example.com:2222"

Easy Mode: TensorFlow Cluster Primitive

tf.train.ClusterSpec construction

tf.train.ClusterSpec({"local": ["localhost:2222",

tf.train.ClusterSpec({
"worker": [

"worker@.example.com:2222",
"worker1.example.com:2222",
"worker2.example.com:2222"

ps": [
"ps@.example.com:2222",
"ps1.example.com:2222"

)

"localhost:2223"]})

Available tasks

/job:local/task:8
/job:local/task:1

/job:worker/task:0
/job:worker/task:1
/job:worker/task:2
/job:ps/task:0
/job:ps/task:1

So why might you want to do this?

with tf.device("/job:ps/task:0"):
weights_1 = tf.Variable(...)
biases_1 = tf.Variable(...)

with tf.device("/job:ps/task:1"):
weights_2 = tf.Variable(...)
biases_2 = tf.Variable(...)

with tf.device("/job:worker/task:7"):

input, labels = ...

layer_1 = tf.nn.relu(tf.matmul(input, weights_1)
+ biases_1)

logits = tf.nn.relu(tf.matmul(layer_1,
weights_2) + biases_2)

...

train_op = ...

with tf.Session("grpc://worker7.example.com:2222")
as sess:
for _ in range(10000) :
sess.run(train_op)

Easy Mode: TensorFlow Cluster Primitive

So why might you want to do this?

’ —_—
Parameter Server W = W - WAW

e Lots of data and lots of GPUs
e Data >> learning rate NS EEw®
w
e Certain algorithms benefit from this //Aw l I \\
kind of parallelism (e.g. A3C) R':;‘i':;s 88 88 O

e Gradients roughly commutative DD
=0 8 8

Shards

Easy Mode: TensorFlow Cluster Primitive

Merging gradients
Parameter Server W = W - JAw

L., PR
w/ /Aw

ws (00 00 00

Replicas DD C][:] DD

-

Data
Shards

Easy Mode: TensorFlow Cluster Primitive

e Takeaways:

o Tensorflow can abstract out between-process or between-machine communication

o Potential massive time savings for compute-intensive network training

e Future

o Potential for containerization (e.g. Kubernetes-style)

o Potential for high-level software abstraction (e.g. Spark-style)

Cloud ML

) Google Cloud Platform Exccute

e Simple API for testing and rmcm | W

Notebook
Cloud Data Lab

: 1
e Local development environment © e | L g P

Compute Engine Cloud ML Engine

Worker-0
Compute Engine
o Single node mode Worker 5
d
e Master-0 n
Compute Engine |

deploying tensorflow/python code

z
ag
83

Compute Engine

o Distributed mode WorkerN

Compute Engine

e Cloud deployment functionalities t = - Fowuo

o Online prediction (i.e. serverless
event-driven)

o Batch prediction

Cloud ML - local testing

Specify env vars:

MODEL_DIR=output
TRAIN_DATA=S$(pwd)/data/adult.data.csv
EVAL_DATA=S$(pwd) /data/adult.test.csv

Build and train your model locally:

gcloud ml-engine local train \
--module-name trainer.task \
--package-path trainer/ \
--job-dir $MODEL_DIR \
==\
--train-files STRAIN_DATA \
--eval-files SEVAL_DATA \
--train-steps 1000 \
--eval-steps 100

Inspect results in Tensorboard:
tensorboard --logdir=$MODEL_DIR

Q_ Filter tags (regular expressions supported)

accuracy

accuracy

6 o 2.00

1.00

0.00

-1.00

9992 999.6 1.000k 1.000k 1.001k

[£]

I Name Smoothed Value Step T

O eval_census-eval 0.8328 0.8328 1.000k

Cloud ML - deploy remotely

Create a cloud storage bucket and upload your data:
gsutil mb -1 SREGION gs://SBUCKET_NAME

Now point your environment vars to the new data:

TRAIN_DATA=gs://SBUCKET_NAME/data/adult.data.csv
EVAL_DATA=gs://SBUCKET_NAME/data/adult.test.csv
TEST_JSON=gs://SBUCKET_NAME/data/test.json
OUTPUT_PATH=gs: //SBUCKET_NAME /SJOB_NAME

And run a (slightly modified) command:

gcloud ml-engine jobs submit training SJOB_NAME \
--job-dir SOUTPUT_PATH \
--runtime-version 1.4 \
--module-name trainer.task \
--package-path trainer/ \
--region SREGION \
==\
--train-files STRAIN_DATA \
--eval-files SEVAL_DATA \
--train-steps 1000 \
--eval-steps 100 \
--verbosity DEBUG

=

[Cg

Cloud ML - train remotely

e® CS341-Demo v

Job

Filter jobs

D

(census_single_1

Google Cloud Platform

11, CREATE METRIC

Filter by label or text search

Cloud ML Job, census_single_1

o* CS341-Demo »

A, CREATE EXPORT [

~ Alllogs ~ Anyloglevel ~ (@ Lasthour ¥ Jump to now

Showing logs from the last hour ending at 7:52 AM (PDT)

v

-

2018-05-23
2018-05-23
2018-05-23
2018-05-23

2018-05-23

07:51:19.088

07:51:19.333

07:51:19.539

07:51:19.557

07:51:21.830

No older entries found matching current filter in the last hour.

service Validating job requirements...

service Job creation request has been successfully validated.
Waiting for job to be provisioned.

service Job census_single_1 is queued.

Waiting for TensorFlow to start.

Load newer logs

Load older logs

Type

Training

Creation time v

May 23,2018, 7:51:19 AM

Elapsed time

54 sec

Logs

View logs

View Options ~

\

Cloud ML - deploy model

= Google Cloud Platform 8 CS341-Demo v Q b:)
E= Storage & Bucket details / EDITBUCKET (3 REFRESH BUCKET
@ Browser

cs341-demo-mlengine

< Transfer Objects Overview

= Transfer Appliance

& Setti Upload files Upload folder Create folder ~ Delete
ettings

Q, Filter by prefix..

Buckets / cs341-demo-mlengine / census_single_1 / export / census / 1527087194

Name Size Type Storage class Last modified Share publicly Encryption
5] saved_model.pb 482.6 KB = Regional 5/23/18,7:53 AM Google-managed key
[variables/ — Folder - - -

MODEL_NAME=census

MODEL _BINARIES=gs://SBUCKET_NAME/census_single_1/export/census/1527087194/
gcloud ml-engine versions create v1 \

--model $MODEL_NAME \

--origin SMODEL_BINARIES \
--runtime-version 1.4

Cloud ML - productize model

;| test.json — census UN

test.json

{"age": 25, "workclass": " Private", "education": " 11th", "education_num": 7, "marital_status": "
Never-married", "occupation": " Machine-op-inspct", "relationship": " Own-child", "race": "

Black", "gender": " Male", "capital_gain": 0, "capital_loss": @, "hours_per_week": 40, "
native_country": " United-States"}

gcloud ml-engine predict \

--model SMODEL_NAME \

--version v1 \

--json-instances \
./test.json

Creating version (this might take a few minutes
» estimator gcloud ml-engine predict \

—-model $MODEL_NAME \

--version v1 \

—-json-instances \

../test.json

CLASS_IDS CLASSES LOGISTIC LOGITS PROBABILITIES

[o] [u'e'] [0.06335537880659103] [-2.6935441493988037] [0.93664461374
28284, 0.06335537135601044]
-+ estimator

Cloud ML - further features

e Distributed mode (runs multiple parallel workers)
e Hyperparameter Tuning (trains multiple concurrent models and
selects best)

e Easy to connect GPUs and TPUs

Cloud ML - Using TPUs

e Disclaimer: | have not used TPUs in my work
e Whatisa TPU?

" 00999 |l

el e g
90, Wi |
S T s -

- YT - B=

M =

Cloud ML - Using TPUs

e Disclaimer: | have not used TPUs in my work
e Whatisa TPU?

e Results are mixed

o Hosted GPUs are more predictable and not necessarily slower
o TPUs are more capable for inference but not necessarily training
o Fine tuning/optimizing DL training is key

e https://cloud.google.com/ml-engine/docs/tensorflow/using-tpus

https://cloud.google.com/ml-engine/docs/tensorflow/using-tpus

