
Advanced ML in Google Cloud

Abhay Agarwal (MS Design ‘19)

CS341: Project in Mining Massive Datasets

Agenda
● General Notes on Pipelining

● Some History

● Distributed Processing in Tensorflow

● Cloud ML Engine in Google Cloud

● Misc. features and TPUs

Background on ML pipelines
● What is an ML pipeline?

Background on ML pipelines
● What is an ML pipeline?

● Why do we need an ML pipeline?

Local machine is not fast enough to run the computations effectively

Require specialized hardware

Hard drive isn’t large enough to store data

Want to do stream rather than batch processing

Want to parallelize tasks using multiple machines

Want to collaborate on development without replicating dev state

Want to get several of these features “for free” without changing my workflow (too much)

… a bit of history of server pipelining

Here’s a very basic way to orchestrate
your servers…

What’s wrong?

$ for SVR in 1 2 3
> do
> ssh root@server0$SVR.example.com -p

> # DO SOMETHING
> done

… a bit of history of scaling datacenters

Here are slightly less basic way
to orchestrate your servers:

Types of pipelines

A Note on GPU sharing
● GPUs are very difficult to virtualize

for obvious reasons…
○ CUDA (Nvidia GPU API) is essentially

written for single processes

○ GPU memory-sharing limits processing

capabilities

○ Time-sharing: interleave processes in

time domain (doesn’t add any

savings…)

● Though, this will probably change

in our lifetime

Easy Mode: TensorFlow Cluster Primitive
● Create multiple tensorflow processes

● Communicate over sockets

● Can live on multiple servers (with tensorflow server daemon)

● Can live on same machine with different GPUs or with same CPUs

Easy Mode: TensorFlow Cluster Primitive
with tf.device("/job:ps/task:0"):
 weights_1 = tf.Variable(...)
 biases_1 = tf.Variable(...)

with tf.device("/job:ps/task:1"):
 weights_2 = tf.Variable(...)
 biases_2 = tf.Variable(...)

with tf.device("/job:worker/task:7"):
 input, labels = ...
 layer_1 = tf.nn.relu(tf.matmul(input, weights_1)
+ biases_1)
 logits = tf.nn.relu(tf.matmul(layer_1,
weights_2) + biases_2)
 # ...
 train_op = ...

with tf.Session("grpc://worker7.example.com:2222")
as sess:
 for _ in range(10000):
 sess.run(train_op)

So why might you want to do this?

Easy Mode: TensorFlow Cluster Primitive

So why might you want to do this?

● Lots of data and lots of GPUs

● Data >> learning rate

● Certain algorithms benefit from this

kind of parallelism (e.g. A3C)

● Gradients roughly commutative

Easy Mode: TensorFlow Cluster Primitive

Merging gradients

● Synchronous: Gradient Averaging

● Asynchronous: Gradient aggregation

Easy Mode: TensorFlow Cluster Primitive

● Takeaways:
○ Tensorflow can abstract out between-process or between-machine communication

○ Potential massive time savings for compute-intensive network training

● Future
○ Potential for containerization (e.g. Kubernetes-style)

○ Potential for high-level software abstraction (e.g. Spark-style)

Cloud ML

● Simple API for testing and

deploying tensorflow/python code

● Local development environment
○ Single node mode

○ Distributed mode

● Cloud deployment functionalities
○ Online prediction (i.e. serverless

event-driven)

○ Batch prediction

Cloud ML - local testing
Specify env vars:

Build and train your model locally:

Inspect results in Tensorboard:

gcloud ml-engine models list

gcloud ml-engine local train \
 --module-name trainer.task \
 --package-path trainer/ \
 --job-dir $MODEL_DIR \
 -- \
 --train-files $TRAIN_DATA \
 --eval-files $EVAL_DATA \
 --train-steps 1000 \
 --eval-steps 100

tensorboard --logdir=$MODEL_DIR

MODEL_DIR=output
TRAIN_DATA=$(pwd)/data/adult.data.csv
EVAL_DATA=$(pwd)/data/adult.test.csv

Cloud ML - deploy remotely
Create a cloud storage bucket and upload your data:

Now point your environment vars to the new data:

And run a (slightly modified) command:

gcloud ml-engine models list

gsutil mb -l $REGION gs://$BUCKET_NAME

TRAIN_DATA=gs://$BUCKET_NAME/data/adult.data.csv
EVAL_DATA=gs://$BUCKET_NAME/data/adult.test.csv
TEST_JSON=gs://$BUCKET_NAME/data/test.json
OUTPUT_PATH=gs://$BUCKET_NAME/$JOB_NAME

gcloud ml-engine jobs submit training $JOB_NAME \
 --job-dir $OUTPUT_PATH \
 --runtime-version 1.4 \
 --module-name trainer.task \
 --package-path trainer/ \
 --region $REGION \
 -- \
 --train-files $TRAIN_DATA \
 --eval-files $EVAL_DATA \
 --train-steps 1000 \
 --eval-steps 100 \
 --verbosity DEBUG

Cloud ML - train remotely

gcloud ml-engine models list

Cloud ML - deploy model

gcloud ml-engine models list

MODEL_NAME=census
MODEL_BINARIES=gs://$BUCKET_NAME/census_single_1/export/census/1527087194/
gcloud ml-engine versions create v1 \
--model $MODEL_NAME \
--origin $MODEL_BINARIES \
--runtime-version 1.4

Cloud ML - productize model

gcloud ml-engine models list

gcloud ml-engine predict \
--model $MODEL_NAME \
--version v1 \
--json-instances \
../test.json

Cloud ML - further features

● Distributed mode (runs multiple parallel workers)

● Hyperparameter Tuning (trains multiple concurrent models and

selects best)

● Easy to connect GPUs and TPUs

gcloud ml-engine models list

Cloud ML - Using TPUs

● Disclaimer: I have not used TPUs in my work

● What is a TPU?

Cloud ML - Using TPUs

● Disclaimer: I have not used TPUs in my work

● What is a TPU?

● Results are mixed
○ Hosted GPUs are more predictable and not necessarily slower

○ TPUs are more capable for inference but not necessarily training

○ Fine tuning/optimizing DL training is key

● https://cloud.google.com/ml-engine/docs/tensorflow/using-tpus

https://cloud.google.com/ml-engine/docs/tensorflow/using-tpus

