Parallel Programming
with Apache Spark

Matei Zaharia

CS 341, Spring 2017
What is Apache Spark?

Open source computing engine for clusters
» Generalizes MapReduce

Rich set of APIs & libraries
» APIs in Scala, Java, Python, R
» SQL, machine learning, graphs
Project History

Started as research project at Berkeley in 2009
Open sourced in 2010
Joined Apache foundation in 2013
1000+ contributors to date
Spark Community

1000+ companies, clusters up to 8000 nodes
Community Growth

Developers Contributing

<table>
<thead>
<tr>
<th>Year</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>350</td>
<td>600</td>
<td>1100</td>
</tr>
</tbody>
</table>

Spark Meetup Members

<table>
<thead>
<tr>
<th>Year</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20K</td>
<td>66K</td>
<td>230K</td>
</tr>
</tbody>
</table>
This Talk

Introduction to Spark

Tour of Spark operations

Job execution

Higher-level libraries
Key Idea

Write apps in terms of transformations on distributed datasets

Resilient distributed datasets (RDDs)
- Collections of objects spread across a cluster
- Built through parallel transformations (map, filter, etc)
- Automatically rebuilt on failure
- Controllable persistence (e.g. caching in RAM)
Operations

Transformations (e.g. map, filter, groupBy)
 » Lazy operations to build RDDs from other RDDs

Actions (e.g. count, collect, save)
 » Return a result or write it to storage
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t") [2])
messages.cache()

messages.filter(lambda s: "foo" in s).count()
messages.filter(lambda s: "bar" in s).count()

Result: full-text search of Wikipedia in 0.5 sec (vs 20 s for on-disk data)
Fault Recovery

RDDs track *lineage* information that can be used to efficiently recompute lost data.

Ex: 

```python
msgs = textFile.filter(lambda s: s.startswith("ERROR"))
 .map(lambda s: s.split("\t")[2])
```

Diagram:

1. **HDFS File**
   - Filter: `func = _.contains(...)`

2. **Filtered RDD**
   - Map: `func = _.split(...)`

3. **Mapped RDD**
Behavior with Less RAM

Execution time (s)

% of working set in cache

Cache disabled  69
25%  58
50%  41
75%  30
Fully cached  12
Iterative Algorithms

K-means Clustering

- Spark: 4.1 sec
- Hadoop MR: 121 sec

Logistic Regression

- Spark: 0.96 sec
- Hadoop MR: 80 sec
Spark in Scala and Java

// Scala:
val lines = sc.textFile(...) 
lines.filter(x => x.contains("ERROR")).count()

// Java:
JavaRDD<String> lines = sc.textFile(...);
lines.filter(s -> s.contains("error")).count();
Installing Spark

Spark runs on your laptop: download it from spark.apache.org

Cloud services:
» Google Cloud DataProc
» Databricks Community Edition
This Talk

Introduction to Spark

Tour of Spark operations

Job execution

Higher-level libraries
Learning Spark

Easiest way: the shell (spark-shell or pyspark)
  » Special Scala/Python interpreters for cluster use

Runs in local mode on all cores by default, but can connect to clusters too (see docs)
First Stop: SparkContext

Main entry point to Spark functionality

Available in shell as variable `sc`

In standalone apps, you create your own
Creating RDDs

# Turn a Python collection into an RDD
sc.parallelize([1, 2, 3])

# Load text file from local FS, HDFS, or S3
sc.textFile("file.txt")
sc.textFile("directory/*.txt")
sc.textFile("hdfs://namenode:9000/path/file")

# Use existing Hadoop InputFormat (Java/Scala only)
sc.hadoopFile(keyClass, valClass, inputFmt, conf)
Basic Transformations

```python
ums = sc.parallelize([1, 2, 3])

Pass each element through a function
squares = nums.map(lambda x: x*x) # {1, 4, 9}

Keep elements passing a predicate
even = squares.filter(lambda x: x % 2 == 0) # {4}

Map each element to zero or more others
nums.flatMap(lambda x: range(x))
 # => {0, 0, 1, 0, 1, 2}
```

Range object (sequence of numbers 0, 1, ..., x-1)
Basic Actions

```python
definitions = [
 # Retrieve RDD contents as a local collection
 nums.collect() # => [1, 2, 3]

 # Return first K elements
 nums.take(2) # => [1, 2]

 # Count number of elements
 nums.count() # => 3

 # Merge elements with an associative function
 nums.reduce(lambda x, y: x + y) # => 6

 # Write elements to a text file
 nums.saveAsTextFile("hdfs://file.txt")
]```
Working with Key-Value Pairs

Spark’s “distributed reduce” transformations operate on RDDs of key-value pairs

Python:
```python
pair = (a, b)
pair[0] # => a
pair[1] # => b
```

Scala:
```scala
val pair = (a, b)
pair._1 // => a
pair._2 // => b
```

Java:
```java
Tuple2 pair = new Tuple2(a, b);
pair._1 // => a
pair._2 // => b
```
Some Key-Value Operations

```
pets = sc.parallelize(
    [(
        "cat",
        1),
    (
        "dog",
        1),
    (
        "cat",
        2)
    ])

pets.reduceByKey(
    lambda x, y: x + y)
# => {(cat, 3), (dog, 1)}

pets.groupByKey() # => {(cat, [1, 2]), (dog, [1])}

pets.sortByKey() # => {(cat, 1), (cat, 2), (dog, 1)}

reduceByKey also aggregates on the map side
```
Example: Word Count

```python
lines = sc.textFile("hamlet.txt")

counts = lines.flatMap(lambda line: line.split(" "))
    .map(lambda word: (word, 1))
    .reduceByKey(lambda x, y: x + y)
```

Example: Word Count

```
"to be or"
  "to"
  "be"
  "or"

"not to be"
  "not"
  "to"
  "be"
```
Other Key-Value Operations

visits = sc.parallelize([(“index.html”, “1.2.3.4”), (“about.html”, “3.4.5.6”), (“index.html”, “1.3.3.1”)]

pageNames = sc.parallelize([(“index.html”, “Home”), (“about.html”, “About”)]

visits.join(pageNames)
(“index.html”, (“1.2.3.4”, “Home”))
(“index.html”, (“1.3.3.1”, “Home”))
(“about.html”, (“3.4.5.6”, “About”))

visits.cogroup(pageNames)
(“index.html”, ([“1.2.3.4”, “1.3.3.1”], [“Home”]))
(“about.html”, ([“3.4.5.6”], [“About”]))
Setting the Level of Parallelism

All the pair RDD operations take an optional second parameter for number of tasks

```
words.reduceByKey(lambda x, y: x + y, 5)

words.groupByKey(5)

visits.join(pageViews, 5)
```
Using Local Variables

Any external variables you use in a closure will automatically be shipped to the cluster:

```python
query = sys.stdin.readline()
pages.filter(lambda x: query in x).count()
```

Some caveats:
- Each task gets a new copy (updates aren’t sent back)
- Variable must be Serializable / Pickle-able
- Don’t use fields of an outer object (ships all of it!)
Other RDD Operators

<table>
<thead>
<tr>
<th><code>map</code></th>
<th><code>reduce</code></th>
<th><code>sample</code></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>filter</code></td>
<td><code>count</code></td>
<td><code>take</code></td>
</tr>
<tr>
<td><code>groupBy</code></td>
<td><code>fold</code></td>
<td><code>first</code></td>
</tr>
<tr>
<td><code>sort</code></td>
<td><code>reduceByKey</code></td>
<td><code>partitionBy</code></td>
</tr>
<tr>
<td><code>union</code></td>
<td><code>groupByKey</code></td>
<td><code>mapWith</code></td>
</tr>
<tr>
<td><code>join</code></td>
<td><code>cogroup</code></td>
<td><code>pipe</code></td>
</tr>
<tr>
<td><code>leftOuterJoin</code></td>
<td><code>cross</code></td>
<td><code>save</code></td>
</tr>
<tr>
<td><code>rightOuterJoin</code></td>
<td><code>zip</code></td>
<td><code>...</code></td>
</tr>
</tbody>
</table>

More details: spark.apache.org/docs/latest
This Talk

Introduction to Spark

Tour of Spark operations

Job execution

Higher-level libraries
Components

Spark runs as a library in your driver program

Runs tasks locally or on cluster
 » Standalone, Mesos or YARN

Accesses storage via data source plugins
 » Can use S3, HDFS, GCE, …
Job Scheduler

General task graphs

Automatically pipelines functions

Data locality aware

Partitioning aware to avoid shuffles

A: map

B: groupBy

C: join

D: filter

E: RDD

F: RDD

= RDD = cached partition
Debugging

Spark UI available at http://<master-node>:4040

![Spark UI Screenshot]

| Active Jobs (1) | | | | | | |
|---|---|---|---|---|---|
| Job Id | Description | Submitted | Duration | Stages: Succeeded/Total | Tasks (for all stages): Succeeded/Total |
| 2 | show at <console>:24 | 2015/09/29 14:01:20 | 5 s | 0/1 | 0/1 |

| Completed Jobs (1) | | | | | | |
|---|---|---|---|---|---|
| Job Id | Description | Submitted | Duration | Stages: Succeeded/Total | Tasks (for all stages): Succeeded/Total |
| 0 | show at <console>:24 | 2015/09/29 14:01:07 | 0.3 s | 1/1 | 1/1 |
This Talk

Introduction to Spark

Tour of Spark operations

Job execution

Higher-level libraries
Libraries Built on Spark

- Spark SQL+ DataFrames: structured data
- Spark Streaming: real-time
- MLlib: machine learning
- GraphX: graph

Spark Core
Spark SQL & DataFrames

APIs for *structured data* (table-like data)
 » SQL
 » DataFrames: dynamically typed
 » Datasets: statically typed

Similar optimizations to relational databases
DataFrame API

Domain-specific API similar to Pandas and R
» DataFrames are tables with named columns

users = spark.sql("select * from users")

ca_users = users[users["state"] == "CA"]

ca_users.count()

ca_users.groupBy("name").avg("age")

cauUsers.map(lambda row: row.name.upper())

Expression AST
Execution Steps

SQL → Data Frame → Dataset → Logical Plan → Optimizer → Physical Plan → Code Generator → RDDs

Data Source API

Catalog

supporting technologies: HDFS, Cassandra, HBase, PostgreSQL, Hive, Elasticsearch
Performance

![Bar chart showing performance comparison between RDD Python and RDD Scala for time taken in aggregation benchmark (s).]
Performance

- DataFrame SQL
- DataFrame R
- DataFrame Python
- DataFrame Scala
- RDD Python
- RDD Scala

Time for aggregation benchmark (s)
MLlib

High-level pipeline API similar to SciKit-Learn

Acts on DataFrames

Grid search and cross validation for tuning

tokenizer = Tokenizer()
tf = HashingTF(numFeatures=1000)
lr = LogisticRegression()

pipe = Pipeline(
 [tokenizer, tf, lr])
model = pipe.fit(df)
MLlib Algorithms

Generalized linear models
Alternating least squares
Decision trees
Random forests, GBTs
Naïve Bayes
PCA, SVD
AUC, ROC, f-measure

K-means
Latent Dirichlet allocation
Power iteration clustering
Gaussian mixtures
FP-growth
Word2Vec
Streaming k-means
Spark Streaming
Spark Streaming

Represents streams as a series of RDDs over time

```
val spammers = sc.sequenceFile("hdfs://spammers.seq")

sc.twitterStream(...)  
  .filter(t => t.text.contains("Stanford"))  
  .transform(tweets => tweets.map(t => (t.user, t)).join(spammers))  
  .print()
```
Combining Libraries

Load data using Spark SQL
points = spark.sql("select latitude, longitude from tweets")

Train a machine learning model
model = KMeans.train(points, 10)

Apply it to a stream
sc.twitterStream(...) .map(lambda t: (model.predict(t.location), 1)) .reduceByWindow("5s", lambda a, b: a + b)
Conclusion

Spark offers a wide range of high-level APIs for parallel data processing

Can run on your laptop or a cloud service

Online tutorials:
» spark.apache.org/docs/latest
» Databricks Community Edition