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ABSTRACT
The problem of enforcing correct usage of array and pointer
references in C and C++ programs remains unsolved. The
approach proposed by Jones and Kelly (extended by Ruwase
and Lam) is the only one we know of that does not require
significant manual changes to programs, but it has extremely
high overheads of 5x-6x and 11x–12x in the two versions. In
this paper, we describe a collection of techniques that dra-
matically reduce the overhead of this approach, by exploit-
ing a fine-grain partitioning of memory called Automatic
Pool Allocation. Together, these techniques bring the aver-
age overhead checks down to only 12% for a set of bench-
marks (but 69% for one case). We show that the memory
partitioning is key to bringing down this overhead. We also
show that our technique successfully detects all buffer over-
run violations in a test suite modeling reported violations in
some important real-world programs.

Categories and Subject Descriptors
D.3 [Software]: Programming Languages; D.2.5 [Software]:
Software Engineering—Testing and Debugging

General Terms
Reliability, Security, Languages

Keywords
compilers, array bounds checking, programming languages,
region management, automatic pool allocation.

1. INTRODUCTION
This paper addresses the problem of enforcing correct us-

age of array and pointer references in C and C++ programs.
This remains an unsolved problem despite a long history of
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work on detecting array bounds violations or buffer over-
runs, because the best existing solutions to date are either
far too expensive for use in deployed production code or
raise serious practical difficulties for use in real-world devel-
opment situations.

The fundamental difficulty of bounds checking in C and
C++ is the need to track, at run-time, the intended tar-
get object of each pointer value (called the intended referent
by Jones and Kelly [10]). Unlike safe languages like Java,
pointer arithmetic in C and C++ allows a pointer to be com-
puted into the middle of an array or string object and used
later to further index into the object. Because such interme-
diate pointers can be saved into arbitrary data structures in
memory and passed via function calls, checking the later in-
dexing operations requires tracking the intended referent of
the pointer through in-memory data structures and function
calls. The compiler must transform the program to perform
this tracking, and this has proved a very difficult problem.

More specifically, there are three broad classes of solu-
tions:

• Use an expanded pointer representation (“fat point-
ers”) to record information about the intended referent
with each pointer : This approach allows efficient look-
up of the pointer but the non-standard pointer rep-
resentation is incompatible with external, unchecked
code, e.g. precompiled libraries. The difficulties of
solving this problem in existing legacy code makes this
approach largely impractical by itself. The challenges
involved are described in more detail in Section 6.

• Store the metadata separately from the pointer but use
a map (e.g., a hash table) from pointers to metadata:
This reduces but does not eliminate the compatibility
problems of fat pointers, because checked pointers pos-
sibly modified by an external library must have their
metadata updated at a library call. Furthermore, this
adds a potentially high cost for searching the maps for
the referent on loads and stores through pointers.

• Store only the address ranges of live objects and en-
sure that intermediate pointer arithmetic never crosses
out of the original object into another valid object [10]:
This approach, attributed to Jones and Kelly, stores
the address ranges in a global table (organized as a
splay tree) and looks up the table (or the splay tree)
for the intended referent before every pointer arith-
metic operation. This eliminates the incompatibilities



caused by associating metadata with pointers them-
selves, but current solutions based on this approach
have even higher overhead than the previous two ap-
proaches. Jones and Kelly [10] report overheads of
5x-6x for most programs. Ruwase and Lam [17] ex-
tend the Jones and Kelly approach to support a larger
class of C programs, but report slowdowns of a factor
of 11x–12x if enforcing bounds for all objects, and of
1.6x–2x for several significant programs even if only en-
forcing bounds for strings. These overheads are far too
high for use in “production code” (i.e., finished code
deployed to end-users), which is important if bounds
checks are to be used as a security mechanism (not
just for debugging). For brevity, we refer to these two
approaches as JK and JKRL in this paper.

Note that compile-time checking of array bounds viola-
tions via static analysis is not sufficient by itself because it
is usually only successful at proving correctness of a frac-
tion (usually small) of array and pointer references [2, 6, 7,
8, 19]. Therefore, such static checking techniques are pri-
marily useful to reduce the number of run-time checks.

An acceptable solution for production code would be one
that has no compatibility problems (like the Jones-Kelly ap-
proach and its extension), but has overhead low enough for
production use. A state-of-the-art static checking algorithm
can and should be used to reduce the overhead but we view
that as reducing overhead by some constant fraction, for
any of the run-time techniques. The discussion above shows
that none of the three current run-time checking approaches
come close to providing such an acceptable solution, with or
without static checking.

In this paper, we describe a method that dramatically
reduces the run-time overhead of Jones and Kelly’s “refer-
ent table” method with the Ruwase-Lam extension, to the
point that we believe it can be used in production code (and
static checking and other static optimizations could reduce
the overhead even further). We propose two key improve-
ments to the approach:

1. We exploit a compile-time transformation called Au-
tomatic Pool Allocation to greatly reduce the cost of
the referent lookups by partitioning the global splay
tree into many small trees, while ensuring that the
tree to search is known at compile-time. The transfor-
mation also safely eliminates many scalar objects from
the splay trees, making the trees even smaller.

2. We exploit a common feature of modern operating sys-
tems to eliminate explicit run-time checks on loads and
stores (which are a major source of additional over-
head in the Ruwase-Lam extension). This technique
also eliminates a practical complication of Jones and
Kelly, namely, the need for one byte of padding on ob-
jects and on function parameters, which compromises
compatibility with external libraries.

We also describe a few compile-time optimizations (some
novel and some obvious) that reduce the sizes of the splay
trees, sometimes greatly, or reduce the number of referent
lookups. As discussed in Section 3.4, our approach preserves
compatibility with external libraries (the main benefits of
the JK and JKRL methods) and detects all errors detected
by those methods except for references that use pointers cast
from integers.

Automatic Pool Allocation uses a pointer analysis to cre-
ate fine-grain, often short-lived, logical partitions (“pools”)
of memory objects [13]. By maintaining a separate splay
tree for each pool, we greatly reduce the typical size of
the trees at each query, and hence the expected cost of
the tree lookup. Furthermore, unlike some arbitrary parti-
tioning of memory objects, the properties of pool allocation
provide three additional benefits. First, the target pool for
each pointer variable or pointer field is unique and known
at compile-time, and therefore does not have to be found
(tracked or searched for) at run-time. Second, because pool
allocation often creates type-homogeneous pools, it is pos-
sible at run-time to check whether a particular allocation
is a single element and avoid entering those objects in the
search trees. Finally, we believe that segregating objects
by data structure has a tendency to separate frequently
searched data from other data, making search trees more
efficient (we have not evaluated this hypothesis but it would
be interesting to do so).

We evaluate the net overhead of our approach for a col-
lection of benchmarks and three operating system daemons.
Our technique works “out-of-the-box” for all these pro-
grams, with no manual changes. We find that the average
overhead is only about 12% across the benchmarks (and neg-
ligible for the daemons), although it is 69% in one case. We
also used the Zitser’s [23] suite of programs modeling buffer
overrun violations reported in several widely used programs
— 4 in sendmail, 3 in wu-ftpd, and 4 in bind — and found
that our technique successfully detects all these violations.
Overall, we believe we have achieved the twin goals that are
needed for practical use of array bounds checking in produc-
tion runs, even for legacy applications: overhead typically
low enough for production use, and a fully automatic tech-
nique requiring no manual changes.

The next section provides a brief summary of Automatic
Pool Allocation and the pointer analysis on which it is
based. Section 3 briefly describes the Jones-Kelly algorithm
with the Ruwase-Lam extension, and then describes how we
maintain and query the referent object maps on a per-pool
basis. It also describes three optimizations to reduce the
number or cost of referent object queries. Section 5 describes
our experimental evaluation and results. Section 6 compares
our work with previous work on array bounds checking, and
Section 7 concludes with a summary and a brief discussion
of possible future work.

2. BACKGROUND: AUTOMATIC POOL AL-
LOCATION

Automatic Pool Allocation [13] is a fully automatic compile-
time transformation that partitions memory into pools cor-
responding to a compile-time partitioning of objects com-
puted by a pointer analysis. It tries to create pools that are
as fine-grained and short-lived as possible. It merges all the
target objects of a pointer into a single pool, thus ensuring
that there is a unique pool corresponding to each pointer.

We assume that the results of the pointer analysis are
represented as a points-to graph. Each node in this graph
represents a set of memory objects created at run-time, and
two distinct nodes represent disjoint sets of objects. We
associate additional attributes with each node; the ones rel-
evant to this work are a type, τ , a flag A indicating whether
any of the objects at the node are ever indexed as an array,



and an array of fields, F , one for each possible field of the
type τ . τ is either a (program-defined) scalar, array, record
or function type, or ⊥ representing an unknown type. ⊥ is
used when the objects represented by a node are of multi-
ple incompatible types, which most often happens because
a pointer value is actually used as two different types (cast
operations are ignored), but can also happen due to impre-
cision in pointer analysis. Scalar types and ⊥ have a single
field, record types have a field for each element of the record,
array types are treated as their element type (i.e. array in-
dexing is ignored), and functions do not have fields.

We also assume that the compiler has computed a call
graph for the program. In our work, we use the call graph
implicitly provided by the pointer analysis, via the targets
of each function pointer variable.

Given a program containing explicit malloc and free op-
erations and a points-to graph for the program, Automatic
Pool Allocation transforms the program to segregate heap
objects into distinct pools. Pools are represented in the code
by pool descriptor variables. Calls to malloc and free are
rewritten to call new functions poolalloc and poolfree,
passing in the appropriate pool descriptor. By default, pool
allocation creates a distinct pool for each points-to graph
node representing heap objects in the program; this choice
is necessary for the current work as explained later. For a
points-to graph node with τ 6= ⊥, the pool created will only
hold objects of type τ (or arrays thereof), i.e., the pools will
be type homogeneous with a known type.

In order to minimize the lifetime of pool instances at run-
time, pool allocation examines each function and identifies
points-to graph nodes whose lifetime is contained within the
function, i.e., the objects are not reachable via pointers af-
ter the function returns. This is a simple escape analysis
on the points-to graph. The pool descriptor for such a node
is created on function entry and destroyed on function exit
so that a new pool instance is created every time the func-
tion is called. For other nodes, the pool descriptor must
outlive the current function so pool allocation adds new ar-
guments to the function to pass in the pool descriptor from
the caller. Finally, pool allocation rewrites each function call
to pass any pool descriptors needed by any of the potential
callees. Ensuring backwards-compatibility of the pool allo-
cation transformation in the presence of external libraries is
discussed later in Section 3.4.

We have shown previously that Automatic Pool Allo-
cation can significantly improve memory hierarchy perfor-
mance for a wide range of programs and does not noticeably
hurt performance in other cases [13]. It’s compilation times
are quite low (less than 3 seconds for programs up to 200K
lines of code), and are a small fraction of the time taken by
GCC to compile the same programs.

3. RUNTIME CHECKING WITH EFFICIENT
REFERENT LOOKUP

3.1 The Jones-Kelly Algorithm and Ruwase-
Lam Extension

Jones and Kelly rely on, and strictly enforce, three prop-
erties of ANSI C in their approach: (1) Every pointer value
at run-time is derived from the address of a unique object,
which may be a declared variable or memory returned by
a single heap allocation, and must only be used to access

that object. Jones and Kelly refer to this as the intended
referent of a pointer. (2) Any arithmetic on a pointer value
must ensure that the source and result pointers point into
the same object, or at most one byte past the end of the
object (the latter value may be used for comparisions, e.g.,
in loop termination, but not for loads and stores). (3) Be-
cause of the potential for type-converting pointer casts, it is
not feasible in general to distinguish distinct arrays within
a single allocated object defined above, e.g., two array fields
in a struct type, and the Jones-Kelly technique does not
attempt to do so.

Jones and Kelly maintain a table describing all allo-
cated objects in the program and update this table on
malloc/free operations and on function entry/exit. To
avoid recording the intended referent for each pointer (this
is the key to backwards compatibility), they check property
(2) strictly on every pointer arithmetic operation, which en-
sures that a computed pointer value always points within
the range of its intended referent. Therefore, the intended
referent can be found by searching the table of allocated
objects.

More specifically, they insert the following checks (ignor-
ing any later optimization) on each arithmetic operation in-
volving a pointer value:

JK1. check the source pointer is not the invalid value (-2);

JK2. find the referent object for the source pointer value
using the table;

JK3. check that the result pointer value is within the bounds
of this referent object plus the extra byte. If the result
pointer exceeds the bounds, the result -2 is returned
to mark the pointer value as invalid.

JK4. Finally, on any load or store, perform checks [JK1-JK3]
but JK3 checks the source pointer itself.

Assuming any dereference of the invalid value (-2) is dis-
allowed by the operating system, the last run-time check
(JK4) before loads and stores is strictly not necessary for
bounds checking. It is, however, a useful check to detect
some (but not all) dereferences of pointers to freed memory
and pointer cast errors. The most expensive part of these
checks is step (JK2), finding the referent object by search-
ing the table. They use a data structure called a splay tree
to record the valid object ranges (which must be disjoint).
Given a pointer value, they search this tree to find an object
whose range contains that value.

If no valid range is found for a given pointer value, the
pointer must have been derived from an object allocated by
some uninstrumented part of the program, e.g., an exter-
nal library, or by pointer arithmetic in such a part of the
program (since no legal pointer can ever be used to com-
pute an illegal one). Such pointers values cannot be checked
and therefore step (JK3) is skipped, i.e., any array bound
violations may not be detected.

One complication in their work is that, because a com-
puted pointer may point to the byte after the end of its
referent object, the compiler must insert padding of one-
byte (or more) between any two objects to distinguish a
pointer to the “extra” byte of the first object from a pointer
to the second object. They modify the compiler and the
malloc library to add this extra byte on all allocated ob-
jects. Objects can also be passed as function parameters,



however, and inserting padding between two adjacent pa-
rameters could cause the memory layout of parameters to
differ in checked and unchecked code. To avoid this potential
incompatibility, they do not pad parameters to any function
call if the call may invoke an unchecked function and do not
pad formal parameters in any function that may be called
from unchecked code. In the presence of indirect calls via
function pointers, the compiler must be conservative about
identifying such functions.

A more serious difficulty observed by Ruwase and Lam is
that rule (2) above is violated by many C programs (60% of
the programs in their experiments), and hence is too strict
for practical use. The key problem is that some programs
may compute illegal intermediate values via pointer arith-
metic but never use them. For example, in the sequence
{q = p+12; r = q-8; N = *r;}, the value q may be out-
of-bounds while r is within bounds for the same object as
∗p. Jones and Kelly would reject such a program at q =

p+12 because the correct referent cannot be identified later
(q may point into an arbitrary neighboring object).

Ruwase and Lam extend the JK algorithm essentially by
tracking the intended referent of pointers explicitly but only
in the case where a pointer moves out of bounds of its in-
tended referent. For every such out-of-bounds pointer, they
allocate an object called the OOB (Out-Of-Bounds) object
to hold some metadata for the pointer. The pointer itself is
modified to point to the OOB object, and the addresses of
live OOB objects are also entered into a hash table. This
hash table is checked only before accessing the OOB object
to ensure it is a valid OOB object address. The OOB ob-
ject includes the actual pointer value itself plus the address
of the intended referent (saved when the pointer first goes
out of bounds). All further arithmetic on the pointer is per-
formed on the value in the OOB object. If the pointer value
comes back within bounds, the original pointer is restored
to its current value and the OOB object is deallocated.

The extra operations required in the Ruwase-Lam exten-
sion are: (1) to allocate and initialize an OOB object when
a pointer first goes out-of-bounds; (2) on any pointer arith-
metic operation, if the pointer value does not have a valid
referent and cannot be identified as an unchecked object,
search the OOB hash table to see if it points to an OOB
object, and if so, perform the operation on the value in the
OOB object; (3) When an object is deallocated (implicitly
at the end of a program scope or explicitly via free oper-
ation), scan the OOB object hash table to deallocate any
OOB objects corresponding to the referent object that is
being deallocated.

The first two operations add extra overhead only for out-
of-bounds pointers (which would have caused the program
to halt with a run-time error in the JK scheme). The third
operation is required even in the case of strictly correct pro-
gram behavior allowed by J-K. Perhaps more importantly,
step JK4 of Jones-Kelley, is now necessary for bounds check-
ing since dereferencing OOB objects is disallowed. In par-
ticular, if we wish to combine this approach with other tech-
niques for detecting all dereferences to freed memory ([20,
4]) or all pointer cast errors ([15, 5]), we would still need to
perform JK4 (or a variant which checks that OOB objects
are never dereferenced).

3.2 Our Approach
Our approach is based on the Jones-Kelley algorithm with

the RL extension, but with two key improvements that
greatly reduce the run-time overhead in practice and makes
the approach useful in production level systems. In fact, the
improvements are dramatic enough that we are even able to
use our system for checking all array operations (not just
strings), and still achieve much lower overheads than the JK
or RL approaches (even compared with the RL approach
applied only to strings). The two improvements are: (1)
Exploiting Automatic Pool Allocation [13] for much faster
searches for referent objects; and (2) An extra level of indi-
rection in the RL approach for OOB pointers that eliminates
the need for run-time checks on most loads and stores.

The Jones-Kelley approach, and in turn Ruwase-Lam ex-
tension, rely on one splay data structure for the entire heap.
Every memory object (except for a few stack objects whose
address is not taken) is entered in this big data structure.
This data structure is looked up for almost every access to
memory or pointer arithmetic operation. For a program
with large number of memory objects, the size of the data
structure could be very large, making the lookups quite ex-
pensive.

The main idea behind our first improvement is to exploit
the partitioning of memory created by Automatic Pool Al-
location to reduce the size of the splay tree data structures
used for each search operation. Instead of using one large
splay tree for the entire program, we maintain one splay tree
per pool. The size of each individual splay tree is likely to be
much smaller than the combined one. Since the complexity
of searching the splay tree for uniform accesses is amortized
O(log2n) (and better for non-uniform accesses), the lookup
for each pointer access is likely to be much faster than in
the JK or RL approaches.

A key property that makes this approach feasible is that
the pool descriptor for each pointer is known at compile-
time. Without this, we would have to maintain a run-
time mapping from pointers to pools, which would introduce
a significant extra cost as well as the same compatibility
problems as previous techniques that maintain metadata on
pointers.

3.2.1 Algorithm
The steps taken by the compiler in our approach are as

follows:

1. First, pool-allocate the program. Let Pools be the
map computed by the transformation giving the pool
descriptor for each pointer variable.

2. For every pointer arithmetic operation in the original
program, p = q + c, insert a run-time check to test
that p and q have the same referent. We use the func-
tion getreferent(PoolDescriptor *PD, void *p) to
look up the intended referent of a pointer, p. The pool
descriptor, PD, identifies which splay tree to lookup.
For the instruction p = q + c, we compute p, then
invoke getreferent(Pools[q], q), and finally check that
p has the same referent as q using the function call
boundscheck(Referrent *r, void *p).

3. The correct pool descriptor for a pointer q may not
be known either if the value q is obtained from an
integer-to-pointer cast or from unchecked code (e.g,
as a result of a call to an external function). The
latter case is discussed in Section 3.4, below. The two



f() {

A = malloc(...)

...

while(..) {

...

A[i] = ...

}

}

f() {

PoolDescriptor PD

A = poolalloc(&PD,...)

...

while(..) {

...

Atmp = getreferent(&PD, A);

boundscheck(Atmp, A+i);

}

}

Figure 1: Sample code before and after bounds checking instrumentation

cases can be distinguished via the flags on the target
points-to graph node: the former case results in a U

(Unknown) flag while the latter results in a missing C

(complete) flag, i.e., the node is marked incomplete.
In the former case, the pointer may actually point to
an object allocated in the main program, i.e., which
has a valid entry in the splay tree of some pool, but
we do not know which pool at compile-time. We do
not check pointer arithmetic on such pointers. This
is weaker than Jones-Kelly as it might allow bound
violations on such pointers to go undetected.

3.2.2 Handling Non-Heap Data
The original pool allocation transformation only created

pools to hold heap-allocated data. We would like to create
partitions of globals and stack objects as well, to avoid using
large, combined splay trees for those objects. The pointer
analysis underlying pool allocation includes points-to graph
nodes for all memory objects, including global and stack
objects. In our previous work on memory safety, we have
extended pool allocation so that it assigns pool descriptors
to all global and stack objects as well, without changing how
the objects are allocated. Pool allocation already created
pool descriptors for points-to graph nodes that include heap
objects as well as global or stack objects. We only had to
modify it to also create “dummy” pool descriptors for nodes
that included only global or stack objects. The transforma-
tion automatically ensures that the objects are created in
the appropriate function (e.g., in main if the node includes
any globals). We call these “dummy” pool descriptors be-
cause no heap allocation actually occurs using them: they
simply provide a logical handle to a compiler-chosen subset
of memory objects.

For the current work, we have to record each object in the
splay tree for the corresponding pool. We do this in main

for global objects and in the appropriate function for stack-
allocated variables (many local variables are promoted to
registers and do not need to be stack-allocated or recorded).
The bounds checks for operations on pointers to such pools
are unchanged.

3.3 Handling Out-Of-Bounds Pointers
The Ruwase-Lam extension to handle OOB pointers re-

quires expensive checks on all loads/stores in the program
(before any elimination of redundant checks). In this work,
we propose a novel approach to handle out of bounds val-
ues (in user-level programs) without requiring checks on any
individual loads or stores.

Whenever any pointer arithmetic computes an address
outside of the intended referent, we create a new OOB ob-
ject and enter it into a hash-table recording the OOB object

address (just like Ruwase-Lam). We use a separate OOB
hash-table per pool, for reasons described below. The key
difference is that, instead of returning the address of the
newly created OOB object and recording that in the out-of-
bounds pointer variable, we return an address from a part
of the address space of the program reserved for the ker-
nel (e.g., addresses greater than 0xbfffffff in standard Linux
implemenations on 32-bit machines). Any access to this ad-
dress by a user level programs will cause a hardware trap1.
Within each pool, we maintain a second hash table, map-
ping the returned value and the OOB object. Note that we
can reuse the high address space for different pools and so
we have a gigabyte of address space (on 32 bit linux systems)
for each pool for mapping the OOB objects.

A load/store using out of bounds values will immediately
result in a hardware trap and we can safely abort the pro-
gram. However all pointer arithmetic on such values needs
to be done on the actual out of bounds value. So on every
pointer arithmetic, we first check if the source pointer lies in
the high gigabyte. If it is, we lookup the OOB hash map of
the pool to get the corresponding OOB object. This OOB
object contains the actual out of bounds value. We perform
the pointer arithmetic on the actual out of bounds value.
If the result after arithmetic goes back in to the bounds of
the referent then we return that result. If the result after
arithmetic is still out of bounds, we create a new OOB ob-
ject and store the result in the new OOB. We then map this
new OOB to an unused value in the high gigabyte, store the
value along with the OOB object in the OOB hash map for
the pool and return the value. Note that just like Ruwase-
Lam, we need to change all pointer comparisons to take in
to account the new out of bound values.

Step 2 in our approach is now modified as follows:
For every pointer arithmetic operation in the original pro-
gram, p = q + c, we first check if q is a value in the high
gigabyte. This is an inexpensive check and involves one
comparison. There are two possibilities.

• Case 1: q is not in the high giga byte.
Here we do the bounds check as before but with one
key differnce. If the result p is out of bounds of the
referent of q, then instead of flagging it as an error, we
create a new OOB object to store the out of bounds
value just like Ruwase-Lam extension. Now we map
this OOB object to a value in the high address space
and assign this high address space value to p.

1If no such reserved range is available, e.g. we are doing
bounds-checking for kernel modules, then we will need to
insert checks on individual loads and stores just like the
Ruwase-Lam extension.



• Case 2: q is a value in the high address space.
We do the following new check (from the discussion
above): We first get the corresponding OOB object
for that address using the hash map in the pool. We
then retrieve the actual out of bounds value from the
OOB object and do the arithmetic. If the result is
within the bounds of the referent then we assign the
result to p and proceed. If the result is still outside
the bounds of the referent, then we create a new OOB
object just like in Case 1.

3.4 Compatibility and Error Detection with
External Libraries

Although Automatic Pool Allocation modifies function in-
terfaces and function calls to add pool descriptors, both that
transformation and our bounds checking algorithm can be
implemented to work correctly and fully automatically with
uninstrumented external code (e.g., external libraries), al-
though some out-of-bound accesses may not be detected.
First, to preserve compatibility, calls to external functions
are left unmodified. Second, in any points-to graph node
reachable from an external function (such nodes are marked
as “incomplete” by omitting a C (Complete) flag), the
poolfree for the corresponding pool must determine if it
is passed a pointer not within its memory blocks (this is a
fast search we call it poolcheck [5]), and simply pass the
pointer through to free. Third, if an internal function may
be called from external code, we must ensure that the exter-
nal code calls the original function, not the pool-allocated
version. This ensures backwards-compatibility but makes it
possible to miss bounds errors in the corresponding func-
tion. In most cases, we can directly transform the program
to pass in the original function and not the pool-allocated
version (this change can be made at compile-time if it passes
the function name but may have to be done at run-time if it
passes the function pointer in a scalar variable). In the gen-
eral case (which we have not encountered so far), the func-
tion pointer may be embedded inside another data structure.
Even for most such functions, the compiler can automati-
cally generate a “varargs” wrapper designed to distinguish
transformed internal calls from external calls. When this is
not possible, we must leave the callback function (and all
internal calls to it), completely unmodified.

Except in call-back functions, bounds checks can still
be performed within the available program for all heap-
allocated objects (internal or external). Like JK, we in-
tercept all direct calls to malloc and record the objects in
a separate global splay tree. For pointer arithmetic on a
pointer to an incomplete node, we check both the splay tree
of the recorded pool for that node and the global splay tree.
All heap objects must be in one of those trees, allowing us
to detect bounds violations on all such objects.

Internal global and stack objects will be recorded in the
splay tree for the pool and hence arithmetic on pointers to
them can be checked. We cannot check any static or stack
objects allocated in external code since we do not know the
size of the objects. The JK and JKRL techniques have the
same limitation.

3.5 Errors in Calling Standard Library Func-
tions and System Calls

More powerful error checking is possible for uses of rec-
ognized standard library functions and system calls. Many

bugs triggered inside such functions are due to incorrect us-
age of library interfaces and not bugs within the library it-
self. We can guard against these interface bugs by generat-
ing wrappers for each potentially unsafe library routine; the
wrappers first check the necessary preconditions on buffers
passed to the library call and then invoke the actual library
call. For example, for a library call like memcpy(void *s1,

const void *s2, size t n), we can generate a wrapper
that checks (1) n > 0, (2) the object pointed to by s2 has
atleast n more bytes starting from s2 and (2) the object
pointed to by s3 has atleast n more bytes starting from s3.
These checks can be done using the same getreferent and
boundscheck functions as before.

Note that the wrappers referred to here are not for com-
patibility between checked code and library code, and are
only needed if extra bug detection is desired. We have
written the wrappers for many of the standard C library
functions because our compiler does not yet generate them
automatically.

3.6 Optimizations
There are a number of ways to reduce the overheads of

our run-time checks further. We briefly describe three opti-
mizations that we have implemented. The first optimization
below is specific to our approach because it requires a key
property of pool allocation. The other two are orthogonal
to the approach for finding referents and can also be used
with the Jones-Kelly or Ruwase-Lam approaches.

First, we observe that a very large number of single-
element objects (which may be scalars or single-element ar-
rays) are entered into the splay trees in all three approaches.
Since a pointer to any such object can be cast and then in-
dexed as a pointer to an array (e.g., an array of bytes),
references to all such objects (even scalars) must be checked
for bounds violations. While many local scalars of integer
or floating point type are promoted to registers, many other
local and all global scalars may still stay memory-resident.
Entering all such scalars into the search trees is extremely
wasteful since few programs ever index into such scalars,
legally or illegally. We propose a technique to avoid entering
single-element objects into search trees while still detecting
bounds violations for such objects.

To achieve this goal, two challenges must be solved: (1) to
identify single-element object allocations, and (2) to detect
bounds violations even if such objects are not in the splay
trees. For the former, we observe that most pools even in
C and C++ programs are type-homogeneous [13], i.e., all
objects in the pool are of a single type or are arrays of that
type. For non-type-homogeneous pools, the pool element
type is simply a byte. Furthermore, all objects in such a
pool are aligned on a boundary that is an exact multiple of
the element size. The size of the element type is already
recorded in each pool at pool creation time. This means
that the run-time can detect allocations of scalars or single-
element arrays: these are objects whose size is exactly the
size of the pool element type. We simply do not enter such
objects into the splay tree in the pool.

For the latter problem, the specific issue is that a referent
look-up using a valid pool descriptor will not find the refer-
ent object in the splay tree. This can only happen for two
reasons: (i) the object was a one-element object, or (ii) the
object was an unchecked object or a non-existent object but
the pointer being dereferenced was assigned the same pool



during pool allocation. The latter can happen, for example,
with code of the form:

T* p = some_cond? malloc(..) : external_func(..);

Here, the pointer p is assigned a valid pool because of the
possible malloc, but if it points to an object returned by the
external function external func, the referent lookup will
not find a valid referent. The same situation arises if the
pointer p were assigned an illegal value, e.g., from an unini-
tialized pointer or by casting an integer. To distinguish the
first case from the second, we simply use the pool metadata
to check if the object is part of the pool. This check, which
we call a poolcheck, is a key runtime operation in our pre-
vious work on memory safety [5], and the pool run-time has
been optimized to make it very efficient. Combining these
techniques, we can successfully identify and omit single ele-
ment arrays from the splay trees, and yet detect when they
are indexed illegally.

The next two optimizations are far simpler and not spe-
cific to our approach. They both exploit the fact that it is
very common for a loop nest or recursion to access very few
arrays (often one or two) repeatedly. Since all accesses to
the same array have the same referrent, we can exploit this
locality by using a small lookup cache before each splay tree.
We use a two-element cache to record the last two distinct
referents accessed in each pool. When an access finds the
referent in the cache, it reduces overhead because it avoids
the cost of searching the splay tree to find the referrent (we
found this to be more expensive even if the search succeeeds
at the root), and also of rotating the root node when suc-
cessive references to the same pool access distinct arrays. It
increases the overhead on a cache miss, however, because all
cache elements must be compared before searching the splay
tree. We experimented with the cache size and found that
a two-element cache provided a good balance between these
tradeoffs, and improved performance very significantly over
no cache or a one-element cache.

The third optimization attempts to achieve the same effect
via a compile-time optimization, viz., loop-invariant code
motion (LICM) of the referent lookup. (We find that the
two-element cache is important even with this optimization
because LICM sometimes fails, e.g., with recursion, or if the
loop nest is spread across multiple functions, or the refer-
ent lookup does not dominate all loop exits. Implementing
this optimization is easy because the referent lookup is a
pure function: the same pointer argument always returns
the same referent object (or none). Therefore, the lookup is
loop-invariant if and only if the pointer is loop-invariant.

4. COMPILER IMPLEMENTATION
We have implemented our approach using the LLVM com-

piler infrastructure [12]. LLVM already includes the imple-
mentation of Automatic Pool Allocation, using a context-
sensitive pointer analysis called Data Structure Analysis
(DSA). We implemented the compiler instrumentation as an
additional pass after pool allocation. We also run a standard
set of scalar optimizations needed to clean up the output of
pool allocation [13]. Because DSA and pool allocation are
interprocedural passes, this entire sequence of passes is run
at link-time so that they can be applied to as complete a
program as possible, excluding libraries available only in bi-
nary form. Doing cross-module transformations at link-time
is standard in commercial compilers today because it pre-
serves the benefits of separate compilation.

Our implementation includes three optimizations described
earlier: leaving out single-element objects from the splay
tree in each pool, the two-element cache to reduce searches
of the splay tree, and moving loop-invariant referent lookups
out of loops. In previous work, we have also implemented an
aggressive interprocedural static array bounds checking al-
gorithm, which can optionally be used to eliminate a subset
of run-time checks [6].

We compile each application source file to the LLVM com-
piler IR with standard intra-module optimizations, link the
LLVM IR files into a single LLVM module, perform our anal-
yses and insert run-time checks, then translate LLVM back
to ANSI C and compile the resulting code using GCC 3.4.4
at -O3 level of optimization. The final code is linked with
any external (pre-compiled) libraries.

In terms of compilation time, DSA and Automatic Pool
Allocation are both very fast, requiring less than 3 seconds
combined for programs up to 130K lines of code that we have
tested. This time is in fact a small fraction of the time taken
by gcc or g++ at -O3 for the same programs) [13]. The ad-
ditional compiler techniques for bounds checking described
and implemented in this work add negligible additional com-
pile time.

5. EXPERIMENTS
We present an experimental evaluation of our bounds

checking technique, with the following goals:

• To measure the net overhead incurred by our approach.

• To isolate the effect of using multiple distinct splay
trees and the associated optimizations, which is our
key technical improvement over the Ruwase-Lam (and
so Jones-Kelley) approaches.

• To evaluate the effectiveness of our approach in de-
tecting known vulnerabilities. For this purpose, we
use Zitser’s suite of programs modeling vulnerabilities
found in real-world software [23].

It is also interesting to confirm the backwards-compatibility
of our approach. In our experience so far, we have re-
quired no changes to any of the programs we have evaluated,
i.e., our compiler works on these programs “out-of-the-box.”
This is similar to Jones-Kelly and Ruwase-Lam but signifi-
cantly better than other previous techniques that use meta-
data on pointers, applied to the same programs, discussed
in Section 5.3 below.

5.1 Overheads
We have evaluated the run-time overheads of our approach

using the Olden [3] suite of benchmarks, and the unix dae-
mons, ghttpd, bsd-fingerd, and wu-ftpd-2.6.2. We use the
Olden benchmarks because they are pointer-intensive pro-
grams that have been used in a few previous studies of
memory error detection tools [20, 15, 21]. We compare our
overheads with these and other reported overheads in Sec-
tion 5.3. The benchmarks and their characteristics are listed
in Table 2. The programs are compiled via LLVM and GCC,
as described in the previous section. For the benchmarks we
used a large input size to obtain reliable measurements. For
the daemon programs we ran the server and the client on
the same machine to avoid network overhead and measured
the response times for client requests.



The “LLVM (base)” column in the table represents exe-
cution time when the program is compiled to the LLVM IR
with all standard LLVM optimizations (including the stan-
dard optimizations used to clean up after pool allocation,
but not pool allocation itself), translated back to C code,
and the resultant code is compiled directly with GCC -03.
The “PA” column shows the time when we run the above
passes as well as the pool allocator but do not insert any
run-time checks. Notice that in a few cases, pool allocation
speeds up the program slightly but doesn’t significantly de-
grade the performance in any of these cases. We use the
LLVM(base) column as the baseline for our experiments
in calculating the net overhead of our bounds checking ap-
proach because we believe that gives the most meaningful
comparisons to previous techniques. Since Automatic Pool
Allocation can be used as a separate optimization, the PA
column could be used as a baseline instead of LLVM(base),
but the two are close enough for the benchmarks in the table
that we do not expect this choice to affect our conclusions.

The “BoundsCheck” column shows the execution times
with bounds checking. Here, we have turned on the three
optimizations that we have discussed in Section 3.6: caching
on top of the the splay tree, loop invariant code motion, and
not storing single-element objects in the splay tree. The
“Slowdown” ratio shows the net overhead of our approach
relative to the base LLVM. In almost half of the benchmarks,
we found that overheads are within 3%. Only two programs
(em3d, health) have overheads greater than 25%.

In order to isolate the benefits of smaller splay data struc-
tures, we conducted another experiment. The pool allocator
pass provides an option to force it to merge all the pools in
the program in to one single global pool. This pool uses the
same memory allocation algorithm as before but puts all
tracked objects into a single splay tree. This allowed us to
isolate the effect of using multiple splay trees instead of the
single splay tree used by JK and JKRL. Note that we can-
not use optimization 1 (leaving singleton objects out of the
splay tree) because after merging pools, type information for
the pool is lost and we cannot identify singleton object al-
locations. The other two optimizations – caching splay tree
results and LICM for referent lookups – are used, which
is again appropriate because they can also be used with
the previous approaches. Columns “PA with one pool” and
“PA with one pool + bounds checking” show the execution
times of this single-global-pool program without and with
our run-time checks, and the last column shows the ratio of
these. The benchmark health used up all system memory
and started thrashing. The main reason is because we could
not eliminate singleton objects from the splay tree, making
the single global splay tree much larger than the combined
splay trees in the original code. Comparing the last column
with the column labelled “Our Slowdown Ratio” shows that
in atleast three cases (health, mst, perimeter) the overheads
when using multiple search data structures is dramatically
better (more than 100%) than using a single datastructure
for the entire heap. The benefits are also significant in tsp
and bisort. The remaining programs show little difference
in overheads for the two cases.

5.2 Effectiveness in detecting known attacks
We used Zitser’s suite of programs modeling real-world

vulnerabilities [23] to evaluate the effectiveness of our ap-
proach in detecting buffer overrun violations in real software.

The suite consists of 14 model programs, each program con-
taining a real world vulnerability reported in bugtraq. 7 of
these vulnerabilties were in sendmail, 3 were in wu-ftpd,
and 4 were in bind. This suite has been used previously to
compare dynamic buffer overflow detection approaches [22].

The results of our experiments are reported in Figure 5.2.
We are able to detect all the vulnerabilities in all three pro-
grams out of the box. In each case, the illegal memory
reference was detected and the program was halted with
a run-time error. The four bugs in bind are not triggered
in the main program but in a library routine (e.g. due to
passing a negative argument to memcpy). These bugs are
automatically detected by our approach using the wrappers
described earlier because they are due to incorrect usage of
the library functions (and not bugs within the library).

5.3 Performance comparison with previous
approaches

Finally, we briefly compare the overheads observed in our
work with those reported by other work, to the extent pos-
sible. We can make direct comparisons in cases where there
are published results for Olden suite of benchmarks. When
such numbers are not available, only a rough comparison is
possible, and then only in cases where the differences are
obviously large. Note also that some previous techniques
including [20, 16] detect a wider range of bugs than we do
in the current work. Where possible, we try to compare the
overheads they incur due to bounds checking alone.

The two previous approaches with no compatibility prob-
lems, JK and JKRL, have both reported far higher over-
heads than ours, as noted in the Introduction. Jones and
Kelly say that in practice, most programs showed overheads
of 5x-6x. Ruwase and Lam report slowdowns up to a fac-
tor of 11x–12x if enforcing bounds for all objects, and up
to a factor of 1.6x–2x for several significant programs even
if only enforcing bounds for strings. Their overheads are
even higher than those of Jones and Kelly because of the
additional cost of checking all loads and stores and also of
checking for OOB objects that may have to be deallocated
as they go out of bounds. While two of our optimizations
(the two-element cache and LICM for loop-invariant refer-
ent lookups) might reduce these reported overheads, it seems
unlikely that they would come close to our reported over-
heads. Our overheads are dramatically lower than these pre-
vious techniques because of a combination of using multiple
splay trees (whose benefit was shown earlier), not requiring
checks on loads and stores, and the additional optimizations.

Xu. et al [20] have proposed to use metadata for pointer
variables that is held in a separate data structure that mir-
rors the program data in terms of connectivity. They use
the metadata to identify both spatial errors (array bounds,
uninitialized pointers) and temporal errors (dangling pointer
errors). Their average overheads for Olden benchmarks for
just the spatial errors are 1.63 while ours are far less at
1.12. Moreover, their approach incurs some difficulties with
backwards compatibility, as described in Section 6.

CCured [15] divides the pointers of the program into safe,
seq pointers (for arrays) and wild (potentially unsafe) point-
ers at compile-time. At run-time CCured checks that seq
pointers never go out of bounds and wild pointers do not
clobber the memory of other objects. While CCured check-
ing for WILD pointers is more extensive than ours, in the
case of Olden benchmarks, they did not encounter any wild



Benchmark LOC Base LLVM PA BoundsCheck Our slowdown PA with PA with one pool One-pool

ratio one pool + boundschecks ratio

bh 2053 9.146 9.156 9.138 1.00 9.175 10.062 1.10

bisort 707 12.982 12.454 12.443 0.96 12.425 14.172 1.14

em3d 557 6.753 6.785 11.388 1.69 6.803 11.419 1.68

health 725 14.305 13.822 19.902 1.39 13.618 - -

mst 617 12.952 12.017 15.137 1.17 12.203 28.925 2.37

perimeter 395 2.963 2.601 2.587 0.87 2.547 6.306 2.48

power 763 2.943 2.920 2.928 0.99 2.925 2.931 1.00

treeadd 385 17.704 17.729 17.310 0.98 17.706 21.063 1.19

tsp 561 7.086 6.989 7.219 1.02 6.978 8.897 1.27

AVG 1.12

Applications
fingerd 336 2.379 2.384 2.475 1.04 2.510 2.607 1.04

ghttpd 837 11.405 9.423 9.466 0.83 11.737 12.182 1.03

ftpd 23033 1.551 1.539 1.542 0.99 1.551 1.546 1.00

Figure 2: Benchmarks and Run-time Overheads. The One-Pool Ratio compared with Our Slowdown Ratio isolates the benefit
of partitioning the splay-tree.

Program No. of vulnerabilities No. of vulnerabilties No. of vulnerabilties
detected detected with std. lib. check

sendmail 7 7 7
bind 4 0 4

wu-ftpd 3 3 3

Figure 3: Effectiveness of our approach in detecting known attacks/vulnerabilities

pointers [15]. It is important to note, however, that CCured
uses garbage collection for dynamic memory management
and the overhead due to garbage collection is unknown. The
reported average overheads for Olden are 1.28, which is only
slightly higher than our observed overheads. However, they
needed to change 1287 lines of code in total to achieve these
results while our technique works out of the box.

Yong et al [21] describe a technique to identify many il-
legal write references and free operations via pointers, by
identifying a set of pointers that might be unsafe using a
pointer-analysis and tagging the memory corresponding to
the objects those pointers may point to. They use a shadow
memory with 1 tag bit per byte of memory, setting this tag
bit on allocations and clearing them on deallocations. They
check these tag bits on every write or free of a potentially
unsafe pointer, allowing them to detect a number of poten-
tial security attacks and some errors such as accesses to a
freed memory that has not been reallocated. They report
an average overhead of 1.37x for the Olden benchmarks (the
fraction of overhead due to array references is unknown).
Unlike our work and the previous papers described above,
they do not perform any checks on read operations and read
operations are far more frequent than writes.

6. RELATED WORK
We focus our comparisons on techniques for run-time

bounds checking, and any optimizations directly related to
those techniques. We do not discuss existing compile-time
techniques for bounds checking here (including our own), be-
cause these techniques are complementary and can be used
to eliminate some run-time checks in any of the approaches
discussed here.

There are a number of debugging tools like purify and
valgrind that use binary instrumentation to detect a wide
range of memory referencing errors. Using binary instru-

mentation allows these tools to add arbitrary metadata to
pointers without the compatibility problems of other ap-
proaches. These tools, however, incur very high run-time
overheads, e.g., often greater than a factor of 10x for purify
and valgrind. Also, in case of purify it does not catch
some pointer arithmetic violations if the arithmetic arith-
metic yields a pointer to a valid region [10].

A number of other approaches target debugging but work
at the source level. These include Loginov’s work on runtime
type checking [14], Kendall’s bcc [11], Steffens’ rtcc [18]. All
of these approaches focus on debugging and usually per-
formance is not a serious consideration. For instance, the
reported overheads for Loginov’s work are up to 900%.

Some tools including SafeC [1] and Cyclone [9] use an aug-
mented pointer representation that includes the object base
and size of the legal target object for every pointer value.
Such “fat pointers” require significant changes to programs
to allow the use of external libraries, typically introducing
wrappers around library calls to convert pointer representa-
tions. Furthermore, writing such wrappers may be imprac-
tical for indirect function calls, and for functions that access
global variables or other pointers in memory. Unlike the re-
maining techniques, below, however, fat pointers have the
major advantage that there is no cost to find the metadata
for each pointer value.

To reduce the compatibility problems caused by fat point-
ers, several recent systems store pointer metadata separately
from the pointer variables themselves, at the cost of signifi-
cantly greater overhead for finding the metadata associated
with each pointer. This approach was used by Patil and
Fisher [16], CCured [15], and Xu et al. [20]. Separating the
metadata eliminates the potential for program failures men-
tioned above, and reduces the need for wrappers on library
calls. This technique does not require wrappers for point-
ers passed to library functions or pointer values explicitly



returned by such functions. Wrappers are still needed for
checked pointers that may be modified indirectly as a side-
effect of a library call, because the metadata before the call
would be invalid if the call overwrites the pointer. Such
wrappers are likely to be needed less often but, if needed,
may be impractical to write for the same reasons as with
fat pointers, described above. The work of Xu et al. is also
more restrictive than ours because they restrict pointer casts
between structures of incompatible types. Finally, and most
important from a practical viewpoint, all these techniques
have significantly higher overhead than ours, as discussed in
more detail in Section 5.3.

As noted in the Introduction, the compatibility problems
of both fat pointers and pointers with separately stored
metadata occur because the metadata is associated with
the pointer itself, and not the object that is the target of
a pointer. The work of Jones and Kelly [10] and Ruwase
and Lam [17] associate metadata with objects instead of
pointers, which greatly reduces the compatibility problem.
However, the overheads of these two approaches are quite
high. As the comparison in Section 5.3 shows, our approach
is able to reduce these overheads greatly, sufficient (we be-
lieve) for the technique to be used in production code.

7. SUMMARY AND FUTURE WORK
We have described a collection of techniques that dramat-

ically reduce the overhead of an attractive, fully automatic
approach for run-time bounds checking of arrays and strings
in C and C++ programs. Our techniques are essentially
based on a fine-grain partitioning of memory. They bring
the average overhead of run-time checks down to only 12%
for a set of benchmarks we have evaluated. Thus, we believe
we have achieved the twin goals that have not been simulta-
neously achieved so far: overhead low enough for production
use, and fully automatic checking, i.e., not requiring manual
effort to circumvent compatibility problems or to assist the
compiler’s checking techniques.

We have two goals for the future. First, we aim to evaluate
our overheads for a wider range of real-world application
programs in the future. Second, we aim to integrate our
array bounds checks into the SAFECode system [5, 4], which
detects pointer cast errors and dangling pointer errors but
not all array bounds errors.
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