
RETROSPECTIVE:

ATOM
A System for Building Customized

Program Analysis Tools

Amitabh Srivastava
Microsoft Research
One Microsoft Way

Redmond, WA

amitabhs@microsoft.com

Alan Eustace
Google

2400 Bayshore Parkway
Mountain View, CA

eustace@google.com

1. BACKGROUND
A decade ago in the early 1990s, Digital was building its new high
performance Alpha processor. As Alpha was Digital’s first 64-bit
processor, the compilation systems, binary formats, linkers, and
operating system were being redesigned. A wide variety of tools
such as optimization tools, architectural simulation tools, and
profiling tools were needed. Most existing tools did not share any
common infrastructure; building each tool from scratch was a time
consuming and cumbersome process. Around the same time,
binary tools were slowly emerging [3][6][12]. Binary tools
offered clear advantages: they were independent of the compiler
and the source language; they did not require recompilation and
provided an opportunity for taking advantage of the processor
characteristics.

Digital’s Western Research Lab had been active in link time
optimizations for many years. We were building an optimization
system, OM, to perform aggressive optimizations at link-time.
Unlike previous binary systems, OM disassembled the binary to
build a symbolic intermediate representation that removed all hard
coded addresses. The representation was rich enough to perform
interprocedural flow analysis and whole program optimizations
[11]. The initial prototype of OM was built on the MIPS based
DECStations but was quickly moved to Alpha when it became
available. OM performed a set of classical optimizations, code
locality optimizations, and 64-bit optimizations [10]. OM became
a product on the Alpha and an integrated part of the Digital
compiler system. It played a key role in improving performance
for benchmarks like SPEC and TPC-C.

Although OM had been designed for optimizations, it contained a
rich binary modification infrastructure that could support a wide
range of transformations. Due to our colleagues from varying
backgrounds ranging from processor design to software, our
attention shifted to other tools besides optimization. We quickly
recognized that cache simulators used by hardware designers and
basic block counting tools used by software developers had large

parts in common: both instrumented the binary at selected points.
This observation led to the creation of ATOM; ATOM provided
the common infrastructure needed by all tools while allowing tool
designers to easily specify tool-specific parts through a set of
simple APIs.

2. DEVELOPMENT OF ATOM
ATOM was implemented by extending OM. A set of interfaces
were added to query and modify OM’s intermediate
representation. OM provided the mechanism to read the binary
and write the final binary from the modified intermediate
representation. ATOM allowed the user specified routines for
analyzing the collected data to run in the same address space
without disturbing the application. ATOM, thus, used fast
procedure calls for communication rather than inter process
communication or by storing data on disk.

We were overwhelmed by the response ATOM received. ATOM
quickly became a popular infrastructure for building customized
tools. Its simplicity and ease of use helped in its adoption. One
did not have to be a strong software developer to build tools;
many key tools could be built with few lines of code in a few
hours [2]. ATOM was particularly popular with Digital’s
processor designers; most simulations for new processor designs
were done using ATOM. Simulations that took several days to
run on instruction-level simulators could now be done in a few
hours using ATOM (ATOM could intercept instructions of
interest while allowing the rest of the program to run at original
speed). Architects could quickly evaluate dozens of alternatives,
rather than relying on intuitions and small address traces. As we
had hoped, ATOM was being used in many different ways by
people who knew little about binary modification. Tools like
execution profilers, memory profilers, leak detection tools, and
compiler auditing tools also started to appear on the Alpha.

3. EXTERNAL USAGE
As more people heard about ATOM, we started receiving requests
for ATOM from academia. Since ATOM was not a product, there
were concerns about its stability and the support cost it might
entail. However, we decided to make an early version of ATOM
available to universities for research and teaching. The large
number of publications at conferences speaks of how widely

20 Years of the ACM/SIGPLAN Conference on Programming Language
Design and Implementation (1979-1999): A Selection, 2003.
Copyright 2003 ACM 1-58113-623-4 $5.00

ACM SIGPLAN 528 Best of PLDI 1979-1999

ATOM was used for research in universities. ATOM enabled
small research teams to produce results that were only possible for
a handful of large institutions. Releasing ATOM to academia was
one of the best decisions we made.

As ATOM’s adoption grew, we worked with the Digital product
groups to remove the remaining irritants in its usage. For example,
ATOM did not work on the final executable; it required all the
object files that were linked together to produce the final
executable. (ATOM needed relocation information to build an
accurate intermediate representation; the relocations were only
present in object files and were removed from the final
executable.) The production linker was extended to add compact
relocations to all Alpha binaries. The clever encoding of
relocations had minimal impact on the size of the executables.
This important step brought binary tools into the mainstream
Alpha compiler system. ATOM became a fully supported product
on the Alpha platform.

The fast emerging market of personal computers had caught
everyone’s attention. The presence of large number of software
applications and software developers on the PC platform
presented a promising business opportunity. If an infrastructure
like ATOM existed on the PC, a wide variety of tools could be
easily built. After long tedious periods of working with business
people, TracePoint was spun-off from Digital as a start-up with
venture funding to produce tools for the PC market. ATOM and
OM were moved to the Intel x86 architecture under the Win32
operating system. TracePoint [1] produced products like HiProf, a
hierarchical profiler, and Visual Coverage, a test coverage tool.
(HiProf won the PC magazine editor choice award for the best
profiler.)

4. RELATED SYSTEMS
A number of systems providing ATOM like functionality were
developed on various platforms such as EEL [4] on the SPARC
architecture, Etch [7] and Vulcan [9] on the x86 architecture, and
BIT [5] for Java byte code. Vulcan has extended the core ideas of
ATOM in important ways. Vulcan can perform static and dynamic
binary code modification on heterogeneous systems in distributed
environments. It is actively being developed at Microsoft
Research and can currently work on systems built with x86, IA64,
and MSIL binaries. Vulcan has recently been used for binary
matching [13] and test prioritization [8]. It is gratifying to see
Vulcan as active in Microsoft as ATOM was in Digital.

5. CONCLUSION
The impact of ATOM over the last decade reinforces the
importance of infrastructures for rapid research and development.
As we had to support a large community, a substantial part of our
time went into building and enhancing ATOM. However, we
gained valuable insights into building infrastructures through that
experience. Although our only regret is that we did not get enough
time to use ATOM for all the things we originally planned, a lot
more got accomplished as many more people were able to use it in
different ways. On hindsight, we made the right trade-off.

6. ACKNOWLEDGMENTS
Great many people have been involved with ATOM directly or
indirectly over the last decade. However, we would specially like
to thank all our colleagues at Digital’s Western Research Lab for
making this the most enjoyable experience. This work would not
have been possible without their involvement and encouragement.
The environment at WRL made it a fun place to be.
REFERENCES

[1] Digital Corporation, New Digital Spin-Off Eyes Huge
Microsoft Developers' Market for X86 Platforms,
http://wint.decsy.ru/internet/digital/v0000676.htm.

[2] A. Eustace and A. Srivastava. ATOM: A Flexible Interface
for Building High Performance Program Analysis Tools.
USENIX Winter Conference, 1995, pp 303-314.

[3] J. R. Larus and T. Ball, “Rewriting executable files to
measure program behavior”, Software Practice and
Experience, vol. 24, no. 2, pp 197-218, Feb. 1994.

[4] J. R. Larus and E. Schnarr, “EEL: Machine-Independent
Executable Editing”, Programming Language Design and
Implementation, June 1995.

[5] H. Lee and B. Zorn, “BIT: A Tool for instrumenting Java
bytecodes”, USENIX Symposium on Internet Technologies
and Systems, Monterey, CA, 1997.

[6] MIPS Computer Systems, Inc., Assembly Language
Programmer’s Guide, 1986.

[7] T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H.
Levy, B. Chen, and B. Bershad, “Instrumentation and
Optimization of Win32/Intel Executables Using Etch”,
USENIX Windows NT Workshop, Aug. 1997.

[8] A. Srivastava and J. Thiagarajan, “Effectively Prioritizing
Tests in Development Environment”, Proc. Int’l Symp.
Software Testing and Analysis, July. 2002.

[9] A. Srivastava, A. Edwards, and H. Vo, “Vulcan: Binary
Transformation in a Distributed Environment”, Microsoft
Research Technical Report, MSR-TR-2001-50.

[10] A. Srivastava and D. Wall. Link-Time Optimization of
Address Calculation on a 64-bit Architecture. Symposium on
Programming Language Design and Implementation, 1994,
pp 49-60.

[11] A. Srivastava and D. Wall. A Practical System for
Intermodule Code Optimization at Link Time. Journal of
Programming Language, 1(1):1-18, March 93.

[12] D. Wall, “Systems for late code modification”, Code
Generation – Concept, Tools, Techniques, pp 275-293,
Springer-Verlag, 1992. Also available as WRL Research
Report 92/3, May 1992.

[13] Z. Wang, K. Pierce, and S. McFarling, “BMAT: A Binary
Matching Tool for Stale Profile Propagation”, The Journal of
Instruction-Level Parallelism, vol. 2, May 2000.

ACM SIGPLAN 529 Best of PLDI 1979-1999

ACM SIGPLAN 530 Best of PLDI 1979-1999

ACM SIGPLAN 531 Best of PLDI 1979-1999

ACM SIGPLAN 532 Best of PLDI 1979-1999

ACM SIGPLAN 533 Best of PLDI 1979-1999

ACM SIGPLAN 534 Best of PLDI 1979-1999

ACM SIGPLAN 535 Best of PLDI 1979-1999

ACM SIGPLAN 536 Best of PLDI 1979-1999

ACM SIGPLAN 537 Best of PLDI 1979-1999

ACM SIGPLAN 538 Best of PLDI 1979-1999

ACM SIGPLAN 539 Best of PLDI 1979-1999

