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Abstract

We describe the design and implementation of Dynamo, a
software dynamic optimization system that is capable of
transparently improving the performance of a native instruction
stream as it executes on the processor. The input native instruction
stream to_Dynamo can be dvnamicalls thy a JT for
example), or it can come from the execution of a staticaly
compiled native binary. This paper evaluates the Dynamo system
in the latter, more challenging situation, in order to emphasize the
limits, rather than the potential, of the system. Our experiments
demonstrate that_even statically optimi ive binaries
accelerated Dynamo, b ificant _degree. For
example, the average performance of —O optimized Specint95
benchmark binaries created by the HP product C compiler is
improved to a level comparable to their —O4 optimized version

running Wrthout DynarnorBYlTal‘Tﬁa—@GtLﬂE@t_hLS_by_f_QQLJﬂngs
t manlfest only at

compiler to exploi it Dynamo s operatr onis transparent in the sense
that it_does not depend on any user annotations or binary
|P§mamwwm&wwd
compiler, operating system or_hardwae SUpporl. The Dynamo
prototype presented here 1S areaistic implementation running on

an HP PA-8000 workstation under the HPUX 10.20 operating
system.

1. Introduction
Recent trends in software and hardware technologies appear
to be moving in directions that are making traditional performance

delivery mechanisms less effective. The use of ohject-griented
languages and techniques in_modern software development _has
resulted in a greater degree of delayed binding. limiting the size of
wmmwﬁwm Shrink-wrapped
software is being shipped as a collecti f DLLs rather than a
single monolithic executable, making whole-program optimization
at static compile-time virtually impossible. Even in cases where
powerful static compiler optimizations can be applied, computer
system vendors have to rely on the ISV (independent software
vendor) to enable them. This puts computer system vendors in the
uncomfortable position of no a5 control

a-unlack the performance potential of therr own machlnes More
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recently, the use of dynamic code generation environmen L’{'\”ﬁe
Java JITs and dynamic binary translators) makes the applicability
of heavyweight static compiler optimization techniques
impractical. Meanwhile, on the hardware side, technology is
moving toward offloading more complexity from the hardware
logic to the software compiler, as evidenced by the CISC to RISC
to VLIW progression.

The problem with this trend is that the static compiler is

taking-on_an increasingly greater perfpxmance.burgmhrle the
obgmwwmmmvss are continuing to
increase. This will inevitably lead to either very complex comprler
software that provides only modest performance gains on general-
purpose applications, or highly customized compilers that are
tailored for very narrow classes of applications.

The Dynamo project was started in 1996 to investigate a
technology t lement the static compiler’'s traditional
strength as a static performance improvement tool with a novel
dynamic performance improvement capability [3]. In contrast to
the static compiler, Dynamo offers a client-side performance
delivery mechanism that allows computer system vendors to
provide some degree of machine-specific performance without the
ISV’ sinvolvement.

Dynamo is a dynamic optimization system (i.e., theinput isan
executing native instruction stream), implemented entirely in
software. Its operation is transparent: no preparatory compiler
phase or programmer assistance is required, and even legacy native
binaries can be dynamicaly optimized by Dynamo. Because
Dynamo operates at runtime, it has to focus its optimization effort
very carefully. Its optimizations have to not only improve the
executina i but also recoup_tne_overh of
Dynamqo’ operati

The input native |nstruct|on stream to Dynamo can come from
a statically prepared binary created by a traditional optimizing
compiler, or it can be dynamicaly generated by an application
such as a JIT. Clearly, the runtime performance opportunities
available for Dynamo can vary significantly depending on the
source of this input native instruction stream. The experiments
reported in this paper only discuss the operation of Dynamo in the
more challenging situation of accelerating the execution of a
statically optimized native binary. The performance data presented
here thus serve as an indicator of the limits of the Dynamo system,
rather than its potential. The data demonstrates that even in this
extreme test case, Dynamo manages to speedup many applications,
and comes close to breaking even in the worst case.

Section 1 gives an overview of how Dynamo works. The
following sections highlight several key innovations of the
Dynamo system. Section 2 describes Dynamo’'s startup
mechanism, Section 4 gives an overview of the hot code selection,
optimization and code generation process, Section 5 describes how
different optimized code snippets are linked together, Section 6
describes how the storage containing the dynamically optimized
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Figure 1. How Dynamo works

code is managed, and Section 7 describes signal handling. Finaly,
Section 8 summarizes the experimental data to evaluate Dynamo’s
performance. Dynamo is a complex system that took several years
to engineer. This paper only provides an overview of the whole
system. Further details are available in [2] and on the Dynamo
project website (www.hpl.hp.com/cambridge/proj ects/Dynamo).

2. Overview

From a user's perspective, Dynamo looks like a PA-8000
software interpreter that itself runs on a PA-8000 processor (the
hardware interpreter). Interﬂw%we
exast fi o_instrument the application
binary. Srnce software |nterpretart|on is much slower than direct
SXecution on the procr ly interprets the instruction
ce (or trace) isidentified. At
that point, Dynamo generates an optimized version of the trace
(called a fragment) into a software code cache (called the fragment
cache). Subsequent encounters of the hot trace’s entry address
during interpretation will cause control to jump to the top of the
corresponding cached fragment. This effectively suspends the
interpreter and allows the cached code to execute directly on the
processor without incurring any further interpretive overhead.
When control eventually exits the fragment cache, Dynamo
resumes interpreting the instruction stream, and the process repeats
itself.

Figure 1 illustrates this flow of control in more detail.
Dynamo starts out by interpreting the input native instruction
stream until ataken branch is encountered (A). If the branch target
address corresponds to the entry point of a fragment aready in the
fragment cache (B), control jumps to the top of that fragment,
effectively suspending Dynamo, and causing execution of the
cached fragments to occur directly on the underlying processor (F).
Otherwise, if the branch target satisfies a “ start-of-trace” condition
(©), acounter associated with the target addressisincremented (D).

Our current prototype defines start-of-trace as targets of backward-
taken branches (likely loop headers) and fragment cache exit
branches (exits from previoudly identified hot traces). If the
counter value exceeds a preset hot threshold (E), the interpreter
toggles state and goes into “code generation mode” (G). When
interpreting in this mode, ,the t Lction uence being
interpreted is recorded in a hot trace buffer, until an “end-of-trace

condition is reached (H). At that point the hot trace buffer i

processed by a fadt, lightweight optimizer (1) to creste &

native |

,en.tmrzed single-entry__multj-exit. _contiguous sequence _of
alled th tl. Our current prototype defines

end of- trace as backward taken branches or taken branches whose
targets correspond to fragment entry points in the fragment cache
(i.e., fragment cache hits). A tr 2t its
oth_e a certain number of m'*r aetiens. The fragment
generated by the optimizer is emitted into the fragment cacheby a
linker (J), which a ct t_exit ches to other
fragmenmih.e_f_r_a_qm_ent_cac_ﬁe_l_tmq ble. Connectlng fragments
together in this manner minimizes expensive fragment cache exits
to the Dynamo interpretive loop. The new fragment is tagged with
the application binary address of the start-of-trace instruction.
AS-.EX_E_QW&—&B’&J—C&DQ s _working__set
ar Y mz in—the fragment cache, and tbehynamo
ouver ime Dynamo interpretive loop / time spent

nn

Hng thefr ment(‘ )-beginsto drop. Assuming that the

majority “of an application’s execution time is typically spent in a
small portion of its code, the performance benefits from repeated
reuse of the optimized fragments can be sufficient to offset the
overhead of Dynamo’s operation. On the SpecInt95 benchmarks,

L A fragment is similar to a superblock, except for the fact that it is
a gdynamic imstruction sequence, and can Cross static_program
boundaries like procedure calls and returns.
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Application crtO code

push stack frame;

app runs

natively spill caller-save regs;
call dynamo_exec ;
restore caller-save regs
pop stack frame;

app runs

under Dynamo

II/D

Dynamo library code

dynamo_exec :
save callee-save regs to app-context;
copy caller-save regs from stack frame
to app-context;
save stackptr to app-context;
return-pc = value of link reg;
/2 swap Dynamo & application stack;

initialize internal data structures;
all interpreter (return-pc, app-context);

Figure 2. How Dynamo gains control over the application

the average Dynamo overhead is less than 1.5% of execution time.
Dynamo’s interpreter-based hot trace selection process (A- H)
dominates this overhead, with the optimizer and linker components
(I', J) contributing arelatively insignificant amount.

3. Startup and Initialization

Dynamo is provided as a user-mode dynamically linked
library (shared library). The entry point into this library is the
routine dynamo_exec. When dynamo_exec is invoked by an
application, the remainder of the application code after return from
the dynamo_exec call will execute under Dynamo control.

As outlined in Figure 2, dynamo_exec first saves a snapshot
of the application’s context (i.e., the machine registers and stack
environment) to an-internal app-context data structure. It then
swaps the stack environment so that Dynamo™S own code uses a
custom runtime stack allocated separately for its use. Dynamo’'s

i es n terfere with the runtime stack of the

apolication running-on jt. The interpreter (box A 1n Figure 1) is
eventually invoked with the return-pc corresponding to the
application’s dynamo_exec call. The interpreter starts interpreting
the application code from this return-pc, using the context saved in
app-context. The interpreter never returns to dynamo_exec (unless
a specia bailout condition occurs, which is discussed later), and
Dynamo has gai ned control over the appllcatlp_g_io_rrl_tng_pgmt

ever) executed in nlama the way |t would have been if the
appl_numma@r_u_nnmg directly on the orocessor.

We provide a custom version of the execution startup code
crt0.0, that checks to see if the Dynamo library is installed on the
system, and if it is, invokes dynamo_start prior to the jump to
_start (the application’s main entry point). Application binaries
that are linked with this version of crt0.0 will transparently invoke
Dynamo if Dynamo is installed on the system, otherwise they will
execute normally. The application binary itself remains unchanged
whether or not it is run under Dynamo. This strategy alows
Dynamo to preserve the origina mapping of the application’s text
segment, a key requirement for transparent operation.

As part of the initidization done in dynamo_exec prior to
actually invoking the interpreter, Dynamo mmaps a separate area
of memory that it managesitself. All dynamically allocated objects
in Dynamo code are created in this area of memory. Access to this
lication from inadvertently or
maI|C| ouslv corrupti nq Dvnamo S state

L4 b
)

4. Fragment Formation

Due to the significant overheads of operating at runtime,
Dynamo has to maximize the impact of any optimization that it
performs. Furthermore, since the objective is to complement, not |

compete, with the compiler that he instruction sxream
ynamo primarily looks for performance opportunities that tend to

manifest themselves in the runtime context of the application.
These are generaly redundancies that cross static program
boundaries like procedure cals, returns, virtual function cals,
indirect branches and dynamically linked function calls. Another
performance opportunity is instruction cache utilization, since a
dynamically contiguous sequence of frequently executing
instructions may often be statically non-contiguous in the
application binary.

Dynamo’ s unit of runtime optimization is atrace, defined as a
dynamic sequence of consecutively executed instructions. A trace
starts at an address that satisfies the start-of-trace condition and
ends at an address that satisfies the end-of-trace condition. Traces
may extend across statically or dynamically linked procedure
cals/returns, indirect branches and virtua function calls. Dynamo
first selects a “hot” trace, then optimizes it, and finally emits
relocatable code for it into the fragment cache. The emitted
relocatable code is contiguous in the fragment cache memory, and

branchesfhat exif this code jumn to corresponding exit stubs at the
bottom of the code. This code is referred to as a fragment. The
trace is a unit of the application’s dynamic instruction stream (i.e.,
a sequence of application ingructions whose addresses are
application binary addresses) whereas the fragment is a Dynamo
internal unit, addressed by fragment cache addresses. The
following subsections outline the trace selection, trace optimization
and fragment code generation mechanisms of Dynamo.

4.1 Trace selection

Since Dynamo operates at runtime, it cannot afford to use
elaborate profiling mechanisms to identify hot traces (such as
[14][4]). Moreover, most profiling techniques in use today have
been designed for offline use, where the gathered profile data is
collated and analyzed post-mort iective here is not

uracy_hut ictability. If a particular trace is very hot over a
short period of time, but its overall contribution to the execution
tlmelssmall it may stlll be an |mportant trace to identify. Another

) Y ind

overhead and memory footprlnt of the system
As discussed in Section 2, Dynamo uses software
interpretation of the instruction stream to observe runtime

execution behavior. Interpretation is expensive but it prevents the
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need to instrument the application binary or otherwise perturb it in

A/ terpretation Is preferable to stati pllng
because it does not interfere with appllcatlons that use timer
interrupts. Also, as we wi orate Shortly. interpretation allows
Dynamo to select hot regions directly without thaﬁnd
analyze-paint_datistics like the kind produced by PC sampling
techniques. Another important advantage of interpretation is that it
is a deterministic trace selection scheme, which makes the task of
engineering the Dynamo system much easier.

It is worth noting that the “interpreter” here is a native
instruction interpreter and that the underlying CPU is itself a very
fast native instruction interpreter implemented in hardware. This

fact can be epr0|ted on machines that provide f__gs_t_biak_pgm

breakpoi nt window

On the PA- 8000 however breakpomt traps are very expensve and
it was more efficient to implement the interpreter by using
emulation. The higher the interpretive overhead, the earlier
Dynamo has to predict the hot trace in order to keep the overheads

low. In gene@'—thrmoglatlve the trace prediction scheme,
the larger we need to snzet e traament cache_to compensate for

the_| i a result. Thus, the
mt_@f_%#wghpqi has a rgr)r)!e effect thraughout the rest of the
Dynamo system.

Dynamo uses a speculative scheme we refer to as MRET (for
_most recently executed tail) to pick hot traces withott doing any
path_or_branch orofiling The MRET strategy works as follows.
Dynamo associates a counter with certain selected start-of-trace
points such as the target addresses of backward taken branches.
The target of a backward taken branch is very likely to be a loop
header, and thus the head of several hot traces in the loop body. If
the counter associated with a certain start-of-trace address exceeds
apreset threshold value, Dynamo switches its interpreter to a mode
where the sequence of interpreted instructions is recorded as they
are being interpreted. Eventualy, when an end-of-trace condition
is reached, the recorded sequence of instructions (the most recently
executed tal starting from the hot start-of-trace) is selected as a hot
trace.

becomes hot, it is statistically likely that the very next sequence of
execuied _instructions that follow it is aso hot. Thus, instead of
profiling the branches in the rest of the sequence, we simply record
the tail of instructions following the hot start-of-trace and
optimistically pick this sequence as a hot trace. Besides its
simplicity and ease of engineering, MRET has the advantage of
requiring much smaller counter storage than traditional branch or
path profiling techniqu e_only_maintained for
potential loop headers. Furthermore, once a hot trace has been
selected and emitted into the fragment cache, the counter
associated with its start-of-trace address can be recycled. This is
possible because all future occurrences of this address will cause
the cached version of the code to be executed and no further
profiling is required.

Subsequent hot traces that also start at the same start-of-trace
address will be selected when control exits the first selected trace

for that start-of-trace address. Exits from oreviausly salected hot
traces are treated as start-of-frace naints hy Dynamo (see Figure 1).

This allows subsequent hot tails that follow the earlier hot start-of-
trace to be selected by the MRET scheme in the usual manner.
No-profiling is done on the code generated into Dynamo's
fragment cache. This allows the cached code to run directly on the
processor at full native speed without any Dynamo introduced
overheads. The flip side of this is that if the biases of some
hang t trace was selected, Dvnam ul
unaple to detect it. In order to allow Dynamo to adapt to changing
branch biases, the fragment cache is designed to tolerate periodic
flushes. Periodicaly flushing some of the traces in the fragment
cache helps remove unused traces, and also forces re-selection of
active traces. Thisis discussed in more detail in Section 6.

4.2 Trace optimization

The selected hot trace is prepared for optimization by
converting it into a low-level intermediate representation (IR) that
isvery close to the underlying machine instruction set.

The first task of trace optimization is to transform the
branches on the trace so that their fall-through direction remains on
the trace. Loops v_allowed if the loop-back ch _targets 1
thestart-of-trace Otherwise the loop-back branch is treated as a

The insigh in 2 is tha an_instruction N - =
e_insight behind structio trace exit..LUnconditional dir anches undant on thetraqe
A A K é
B c é{r C
— Qb;p Q%
C D fragment [
D G body
Ll E H
! call J
i
! E
return < 7
G - toB exit
III stubs
H trap to tol A
return
I Dynamo P (’U}_l(' 7
J >,

@

(b)

©

Figure 3. Control flow snippet in the application binary, (b) Layout of this snippet in the application program's memory, and (c)
Layout of atracethrough thissnippet in Dynamo's fragment cache.
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aﬂdwked. In the case of branches with side-effects, suchl|
as branch-and-link branches, the side-effect is preserved even if the}
branch itself is removed. After trace optimization, no branch-and-
link type branches remain on the trace.
ven Indirect_branches may be redundant. For example, a

refurn branch it preceded by the corresponding call on the trace i
redundant and will be removed. Other indirect branches are
optimistically transformed into direct conditional branches. The
transformed conditional branch compares the dynamic branch
target with the target contained in the trace at the time the trace

™ was selected (referred to as the predicted indirect branch target). If
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the comparison succeeds, control goes to the predicted (on-trace)
target. If the comparison fails, control is directed to a specia
Dynamo routine that looks up a Dynamo-maintained switch table.
The switch table is a hash table indexed by indirect branch target
addresses (application binary addresses). The table entries contain
the fragment cache address corr%pondl ng to the target. h‘_ﬂer_rt[y

rect branch tarqet control is directed
tc-the—est ot . Otherwise, control
w:;a;e_tg_ﬁe_mw&_f the
interpreter then selects a new hot trace starting at that dynamic
indirect branch target, Dynamo will add a new entry to the switch
table corresponding to the mapping from the start-of-trace
application address to its fragment cache address. Assuming
execution follows the selected hot trace most of the tlme thls
transformation _replaces a potentially expensive i

with_a less exnensive direct conditional branch. The followmg
outlines the transformed code for an indirect branch instruction:

set Rscratcih = address of predicted on-trace target;
if (Rx = = Rscratch) W
copy Rx to Rscratch; use C,c\g

goto switch_table_lookup(Rscratch);

nnrh

The actual register that contains the original indirect branch’s
dynamic target can be different for different indirect branch

|nstruct|ons The 2 of copying this dynamic target to register
Rscr ensure th control_enters the switch teble

kiin r tlne at execution time, the same fixed register (Rscratch)
tai et that has to be looked up.

F| nally, an uncondltlonal trace exit branch is appended to the
bottom of the trace so that control reaching the end of the trace can
exit it viaataken branch. After fixing up the branches on the trace,
the result is a single-entry, multi-exit sequence of instructions with
no interna control join points. Figure 3 illustrates the branch
adjustments that occur after atrace is selected from the application
bi nary.

of i join points, new opportunities

ibr ootrmlzalgn mav be exposed that were otherwise unsafe in the
ariginal_program _code. The simplicity of control flow allowed
within a trace also means traces can be analyzed and optimized

very rapidly. In fact,the Dynamo t ptimizer is non-iterative,
and optimizes a trace in_only_fwo passes. a forward p a
During each pass the necessary data flow
|nf0rmat|on is collected as it proceeds along the fragment Modt of
the optimizations performed involve redu al:

redundant branch eI|m| natlon redundant load removal and
redundant ion. These opportunities typically
result from partial redundancies in the original application binary
that become full redundanciesin ajoin-free trace.

rard

N

,;)

:é (u\\w\ LO\L

The trace optimizer aso sinks all ant
instructions (1.e., on-trace redundancies) into sper:lal off-trace
compensation DIOCKS It creates at the bottom of the trace. This
ensures that the partially redundant instructions get executed only
when control exits the trace along a specific path where the
registers defined by those instructions are downward-exposed.
Fragment A in Figure 5 illustrates such a case. The assignment to
register r5 shown in the compensation block (thick border) could
have originally been in the first trace block. This sinking code
motion ensures that the overhead of executing this assignment is
only incurred when control exits the fragment via the path along
which that assignment to r5 is downwards exposed.

Other conventional optl mlzatlons performed are copy
propagatlon constan i strength  reduction, loop

runtime disambi guated Srditi oad removal by inserting
instruction guards that conditi onaIIy nullify a potentially redundant
load.

respective—memory Iocatlon is not volatrle Informatlon about
volatile variables may be communicated to Dynamo through the
symbol _table. In the absence of any information about volatile
vari load remova transformations are conservatively
suppressed.

4.3 Fragment code generation
The fragment code generator emits code for the trace IR into
the fragment cache The emitted code is referred to as a fragment.

7’4

The fra manager (discussed in 6) first ﬁ

code.

allocates suff|C|ent room in the fragment cache to_ﬂenerate the
nt cache !

'nln ra

ts when it is
emitted |nto the fragment cache. Th|S|sthe case for example, if a
ditect conditional branch is encountered on the trace, which was
converted from the application’s origind indirect branch
instruction by the trace optimizer (see Section 4.2). Such a branch
splits the trace into two fragments. The predicted on-trace target of
the origina indirect branch, which is the instruction immediately
following this branch on the trace, starts a separate fragment.
Virtual registers may be used in the IR but the trace optimizer
retains their origina machine register mappings. The register
alocator attempts to preserve the original machine register
mappings to the extent possible when the code is finally emitted.
The alocator reservers one register to hold the address of the app-
context data structure (see Figure 2) when control is within the
fragment. The app-context is a Dynamo internal data structure that
is used to keep the application's machine state during
interpretation, and also to record a snapshot of the application’s
machine state at the point of the last fragment cache exit to

Dynamo. The trace optimi _uses the app-context as a spill areato

,_QLI_USET_W%_&Q,_CH[LQELSMII_meﬂaCk as a spill area because
that would interfere with stack operations generated by the the statlc
_comniler that created the application binary.

Generation of the fragment code from the trace IR involves
two steps: emitting the fragment body, and emitting the fragment
exit stubs. Emitting the fragment body involves straightforward
generation of the code corresponding to the trace IR itself. After
that, a unique_exit stub is emitted for every fragment-exit-branch
and fragment Ioop-back branch. The exit stub is a piece of code
rom the fragment cache to the Dynamo
acanonical way, as outlined below:

@5
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Figure 4. Example of fragment linking -

spill Rlink to app-context;
branch & link to interpreter;
<ptr to linkage info for this exit branch>

be entered by only one fragment exit branch.
The stub irst saves the link register (Rlink) to the app-
context. It then does a branch and link to the entry point of the
Dynamo interpreter, which sets the Rlink register to the fragment
cache address following this branch. The Dynamo interpreter will
take a snapshot of the application’s machine state (with the
application’s original Rlink value being taken from the app-context
data structure) prior to starting interpretation. The end of the exit
stub beyond the branch and link instruction contains a pointer to
linkage information for the fragment exit branch associated with
the stub. When control exits the fragment to the Dynamo
interpreter, the interpreter consults this linkage information to
figure out the next application address at which it should start
interpretation. The value of the Rlink register contains the address
of the location containing the pointer to the linkage information for
the current fragment exit.

5. Fragment Linking

After the fragment code is emitted into the fragment cache,
the new fragment is linked to other fragments dready in the
fragment cache. Linking invol atchi ment exit branch
WWOW of another fragment,
insteas-eftoitsexitstub.

As an example, suppose the trace BDGIJE in Figure 3 (&) now
becomes hot (B is avalid start-of-trace by our definition, when it is
entered via an exit from the earlier hot trace ACDGHJE). Figure 4
illustrates the linking that occurs after the fragment corresponding
to the BDGIJE trace is emitted into the fragment cache. Linked
branches are shown as dark arrows, and their origina unlinked
versions are indicated as dashed light arrows.

Wﬂwﬁ@b&ww it

prevents expensive exits from the fragment cache back to the
Dynamo interpreter. In our prototype implementation on the PA-
8000 for example, disabling fragment linking resuits in an order of

nitude slowdown (by an average factor of 40 for the Speclnt95
benchmarks).

Fragment linking also provides an opportunity for removing
redundant compensation code from the source fragment involved

"why no restore of interpreter state?"in the link. Recal

~Keeping the working set close together i

Fragment A

Fragment B

-

2
£

1

Figure 5. Example of link-time optimization

that the trace optimizer sinks on-trace
redundancies into compensation blocks, so that these instructions
are only executed when control exits the fragment along a
particular path (see Section 4.2). Fragment A in Figure 5 illustrates
such acase, where the assignment to r5 shown in the compensation
block (thick border) was originally in the first block before it was
sunk into its compensation block. As part of the linkage
information that is kept at each fragment exit stub (the shaded
boxes in Figure 5), a mask of on-trace redundant register
assignments along that particular f ent exit is maintained. In
“Figure 5, thismask would be kept in the exit stub correspondlng to
the compensation block, and bit 5 of the mask would be set. A
similar mask of killed register assignments at the top of every
fragment is also maintained as part of the Dynamo interna data
structure that keeps fragment-related information. At link-time, if a
register appears in both masks, the instruction thet last defined it in
the source fragm ensation block is dead_ be
removed. Thisisillustrated in Figure 5, where the assignment to r5
in Fragment A’s compensation block can be deleted because r5 is
defined before being used on entry to Fragment B.

While the advantages of linking are clear, it also has some
Adisadvantages that impact other parts of the Dynamo system. For
instance, Imkmg makes t I_fragments from
the frag e expensive, because aII |ncom|ng branches into
a fragment must first be unlinked first. Linking also makes it
diffi relocate ments in the fragment cache memory after
they_have heen emitted. This might be useful for instance to do
periodic de-fragmentation of the fragment cache memory.

6. Fragment Cache Management

Dynamo cannot afford to do complicated management of the
fragment cache storage, because of the overheads this would incur.
We could avoid storage management atogether by simply
expanding the size of the fragment cache as needed. But this has
several undesirable effects. For example, one of the advantages of
collecting hot traces in a separate fragment cache is the improved
instruction cache locality and TLB utilization that can result from
memory. This advantage
could go away if over time, the hot traces that make up the current
working set are spread out over a Iarg, area of fragment cache
memory. Clearly, theideal situ
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Figure 6. Dynamic trace selection rate for m88ksim, showing a sharp changein the working set ~106 sec into its execution

to achieve. The overhead of implementing an LRU type scheme to
identify cold fragments would be too expensive as well. Moreover,
as pointed out earlier, any policy that only removes a few
fragments would incur the expense of having to unlink every
incoming branch into these fragments.

Dynamo instead employs a novel pre-emptive flushing
heuristic to periodically remove cold traces from the fragment

cache W|thout incurring ahigh penalty «Aregmnl.ete_f.r_malgghde

m_cmam_that_Ls_mmrMhe_f_m&whe Since control is
predominantly being spent in Dynamo during this stage, the

fragment cache flush is essentially “free”. Figure 6 illustrates this
scenario for the SpecInt95 m88ksim benchmark. Since all
fragments are removed during a fragment cache flush, no unlinking
of branches needs to be done.

The pre-emptive flushing mechanism has other useful side
effects. All fragment-related data structures maintained for Tnternal

book‘keap‘rrg‘BY_D_ﬁmo are tied fo the flush, causing these

mechanism to free dynamic objects associated with frag
are likely to have dropped out of the current working set. If some
fragments belonging to the new working set are inadvertently
flushed as a result, they will be regenerated by Dynamo when
those program addresses are encountered later during execution.
Regeneration of fragments allows Dynamo to adapt to changes in
the application’s branch biases. When a trace is re-created,
Dynamo may select a different tail of instructions from the same

start-of-trace point. This automatic—e-siasing” of fragments is
anotbe;m—edﬂ—eﬁm_o%(mwud1lng
7. Signal Handllng

Op*' i volve code reordenno

making it dlfflcult or |mp055|ble for Dynamo to recreate the

original signal context prior to the optimization. This can create
complications for precise signa delivery. For example, the
application might arm a signal with a handler that examines or
even modifies the machine context at the instant of the signal. If a
signal arrives at a point where a dead register assignment has been
removed, the signal context isincomplete.

Dynamo intercepts al signals, and executes the ram’'s
aach 1 trol, 1N the same manner that it
executes the rest of the application code (box K in Figure 1). This
gives Dynamo an opportunity to rectify the signal context that
would otherwise be passed directly to the application’s handler by
the operating system. such as keyboard

intecrupt wh signal addresswlrrelevant are treated
differe_nﬁyf_m'm'synmussgnais—‘sc;e.—es—melﬁaal{s etc.,

wheretne signal agdressiscritical).

If an asynchronous signal arrives when executing a fragment,
the Dynamo signal handler will queue it and return control back to
thefragment cache Au-qee'da'asydeﬁreﬂeue&gnal_s@Le_pl___(m&ed
when—th <it—oceurs. This alows
Dynamo to prowde a proper sgnal context to the application’s
handler since control is not in the middle of an optimized fragment
a thetime the signal context is constructed.

In order und asynchronous si latency, the
Dynmﬂﬂmmrﬂuks all Ilnkpd hmnr‘hm on the o -rrc-nt
fragment prior to resumin CL e fragment. To
arsconnect self-loopsin a S|m|Iar manner, the fragment generator
emits an exit stub for each self-loop branch in addition to the exit
stubs for the fragment exit branches. Unlinking the current
fragment forces the next fragment exit branch to exit the fragment
cache via the exit stub, preventing the possibility of control
spinning within the fragment cache for an arbitrarily long period of
time before the queued signals are processed

i i . Thisfeature alows
Dynamo to operate in environments wh -time

constraints must be met.

Synchronous signals on the other hand are problematic,
because they cannot be postponed. A drastic solution is to suppress
code removing and reordering transformations altogether. A more
acceptable alternative is to use techniques similar to that devel oped
for debugging of optimized code to de-optimize the fragment code
before attempting to construct the synchronous signal context.
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Figure 7. Speedup of +O2 optimized PA-8000 binariesrunning on
standalone. The contributions from dynamic inlining dueto trace

Dynamo, relative to theidentical binariesrunning
selection, conservative trace optimization and aggressive trace

optimization are shown. Dynamo bails out to direct native execution on go and vortex.

Fortunately, the problem of de-optimizing is much simpler in
Dynamo since only straight-line fragments are considered during
optimization. Optimization logs can be stored along with each
fragment that describes compensation actions to be performed
upon signal-delivery, such as the execution a previously deleted
instruction_This is presently an_ongoing effort in the Dynamo

Our prototype currently implements a less ambitious solution
to this problem, by dividing trace ontimizations into two

categories,  conservative _and  aggressive.  Conservative
optimizations all e precise si ontext o he constructed if a

optimizatio e 0 uarantee this. Examples of

o
e‘" conservative optimizations include constant propagation, constant

folding, strength reduction, copy propagation and redundant
branch removal. The aggressive category includes al of the
conservative optimizations plus dead code removal, code sinking
and loop invariant code motion. Certain aggressive optimizations,
like redundant load removal, can sometimes be incorrect, if the
load is from avolatile memory location.

Dynamo’s trace optimizer is capable of starting out in its
aggressive mode of optimization, and switching to conservative
mode followed by a fragment cache flush if any suspicious
instruction sequence is encountered. Unfortunately, the PA-RISC
binary does not provide information about volatile memory
operations or information about program-installed signa handlers.
So this capability is currently unused in Dynamo. In a future
version of Dynamo, we plan to investigate ways to alow the
generator of Dynamo’s input native instruction stream to provide
hints to Dynamo. Dynamo can use such hints if they are available,
but will not rely on them for operation.

8. Performance Data

For performance evaluation we present experiments on
several integer benchmarks. Dynamo_incurs a fixed <tartun
overhead for glocating and initializing its internal data structur
and the fragment cache. The startup overhead could probably be
improved through more careful engineering. But for the purpo
of this stu by
et o

easy way to make your system look much better: run 100 apps, pi

8

presents data comparing the performance of running severa
integer benchmarks on Dynamo to the identical binary executing
directly on the processor. Our benchmark set includes the
Specint95 benchmarks® and a commercial C++ code called
deltablue, which is an incremental constraint solver [28]. The
programs were compiled at the +O2 optimization level (equivalent
to the default —O option) using the product HP C/C++ compiler.
This__optimization level includes glob: rocedural
ontissization. Performance measurements were based on wall clock
time on alightly loaded single-processor HP PA-8000 workstation
[21] running the HP-UX 10.20 operating system.

Figure 7 shows the speedup that Dynamo achieves over +O2
optimized native program binaries running without Dynamo. For
these runs, Dynamo was configured to use afixed size 150 Kbyte
fragment cache, which is flushed when sharp changes occur to the

ection rate or there isno to generate new fragments.

Details about the performance impact of varying the fragment
cache size are outside the scope of this paper and can be found
elsawhere [2]. As the figure indi Dynamo achieves
cons derable speedup in some casesnovar 22Y% in li and m88skim,
and about 14‘0 in tompress. These four

about (18% in perl,
prograrvs hpave relatively stable working sets, a fact that dynamic

optimization can expl oit very well. The average overall speedup is
about 9%. A signifi
from the-aet-of ing

t_portion of the performance gains come
a race and forming a fragment out of i,
procedure inlining and impro

2 Our experiments do not include the Specint95 gcc benchmark.
This benchmark actually consists of repeated runs of gcc on a
number of input files, and the individual runs are too short
running to qualify for our performance study (less than 60
seconds on the PA-8000). To understand the performance
characteristics of gcc, we modified the gcc program to internally
loop over the input files, thus resulting in a single long
invocation of gcc. We do not show data for the modified gcc
because it does not represent the origina benchmark, but it's
performance characteristics are comparable to that of go for al
of the data shown here.

ck 10 best, report only those.
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Figure 8. Illustration of bail-out. Dynamo bails out on@vnto its execution, after which go runsdirectly on the

processor without incurring any Dynamo over head. m88ksi

bail out.
code layout in the fragment cache. Fragment optimization accounts
for_approximately 3% of the total gains on average, and one-third
of this is due to conservative (signal and volatile-memory safe)
optimizations. Note however, that if we ignore the inputs on which
Dynamo bails out (as discussed shortly), the average contribution
dueto trace optimization isaround 5%.

"~ Dynamo does not achieve performance improvements on
programs go, ijpeg and vortex. Dynama’s startup time is-a-pon-
negligible fraction of the total runtime of ijpeg, as ijpeg does not
run long enough to recoup Dynamo’s startup overhead before
starting to provide any performance benefit. In the case Qf__c@,and
vortex that run for a
working set. A relatlvely hlgh number of dlstlnct dynarmc
execution paths are executed in these benchmarks [4]. Frequently
changing dynamic execution paths result in an unstable working
set, and Dynamo spends too much time selecting traces without
these traces being reused sufficiently in the cache to offset the
overhead of its own operation.

Fortunately, since Dynamo is a native-to-native optimizer, it
can use the original Tnput program binary as a fallback when its
overhead sfarts to get too high. Dynamo constantly monitors the
ratio of time spent in Dynamo over time spent in the fragment
cache. If thisratio stays above atolerable threshold for a prolonged
period of time, Dynamo assumes that the application cannot be

profitably opt|m| zed a runtl me. At that point Dynamo bails-out b
|oadi %&&Wd

jumnin Ilcatlon binary add From that point on the
appllcafmn runs directly on the processor_without any further

dynamic_optimization. Bail-out allows Dynamo to come close to
br’eél@e#?r%ce even on “ill-behaved” programs with
unstable working sets. This is illustrated in the graph in Figure 8
for the benchmark go. The Dynamo overhead for arelatively well-
behaved application, m88ksim, is aso shown for comparison.
Figure 9 shows Dynamo’s performance on binaries compiled
with higher optimization levels. The figure shows the program

200 300

own for comparison as a case where Dynamo does not

runtimes with and without Dynamo, for three optimization levels:
+02 (same as —0), +0O4, and profile-based +0O4 +P (i.e., +O4 with
a prior profile collection run). At level +O4, the HP C compiler
performs global interprocedural and link-timeoptmization. At
level +O4 +P the compiler performs +O4 optimizations based on

__profile information gathered during a_prior—+G4-ran. However,

compile-time increases very significantly from +O2 to +04, and
the ability to debug the binary is lost. Because of this, most
software vendors are reluctant to enable higher optimization levels,
in spite of the performance advantages they offer.
finds performance
ized binaries. In
fact on this set of benchmarks Dynamo is ableto raise the average
performance of +O2 compiled binaries to a level that dlightly
exceeds the performance of their +O4 complled versr ons runnlng
without Dynamo! This
fashion, without th
_special The fact that Dynamo flnds performance |mprovement
opportunities even in +O4 optimized binaries is not as surprising
as it first seems, because Dynamo primarily focuses on runtime
performance opportunities that a static compiler would find
difficult to exploit.
In some programs (such as li and perl),-Byrameo_is ahle to

boost the performance of even profile-feedback co hinaries
=04 +P). On average however, the berefits-of-Bynamo di

once static optimization is enhanced with rofile information. This
is to be expected, as the most beneficial inlining and other path-
sensitive optimizations have been already made at compile-time.
As pointed out in the introduction, the goal of this study is to
establish the limits of Dynamo’s capabilities in an extreme setting,
where the quality of the input program code is good. In compiling

these benchm the static_compiler had all of the prograr
o ailabl d no dynamically Tinked libraries were uised.
Using good quality compiled code as input forced the development
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Figure 8. Dynamo performance on native binaries compiled at higher optimization levels (thefirst 3 barsfor each program
correspond to the native runs without Dynamo, and the next 3 bars correspond to the runs on Dynamo)

effort to focus on fine-tuning the engineering of the Dynamo
system.

It should be emphasized that the performance data shown here
is very specific to the quality of the code produced by the PA-8000
compiler, and to the PA-8000 processor implementation. Although
the hot trace selection and dynamic optimization can be expected
to provide benefits in general, the actual impact in terms of wall-
clock performance |mprovement will vary from target to target. On

th -8l example, the branch

| v is 5 cycles, and |nd|rect branches (including

re;urns) are alwavs mispredicted. Indirect branch removal therefore

makes a big contribution toward Dynamo’s performance gains on

the PA-8000. On the other hand, th&-EA-_F,’uOQQ_has_a_Lar_ge

instructi “ €), so th s from I-cache

’b;,é locality in the software fragment cache cnde are Lnlri(_ely to be

)s?gnlflcant However, the processor has a unified instruction and

data TLB with only 96 entries, so the reduction in TLB pressure
due to better locality of the working set in the fragment cache can
contribute to a performance boost.

9. Related Work

In focusing on native-to-native runtime optimization, Dynamo
is a fundamentally different approach from past work on dynamic
compilation. Just-in-time compilers delay all compilation until
runtime  [6][11][10]. Selective  dynamic compilation
[2][91[23][13][22][26][16][24] is a staged form of compilation that
restricts dynamic compilation to selected portions of code
identified by user annotations or source language extensions. In
these cases, the static compiler prepares the dynamic compilation
process as much as possible by generating templates that are
instantiated at run-time by a specialized dynamic compiler.

In contrast to both just-in-time and selective dynamic
compilation, Dynamo separates that task of compilation, which
occurs prior to execution, from dynamic optimization, which
occurs entirely at runtime and without requiring user assistance.
Dynamo’s input is an aready compiled native instruction stream,
that is re-optimized to exploit performance opportunities that
manifest themselves at runtime.

A lot of work has been done on dynamic trandation as a
technique for non-native system emulation [8][30][5][31][12][17].
The idea is to lower emulation overhead by caching native code
trandations of frequently interpreted regions. Unlike such binary
trandators, Dynamo is not concerned with trandation. The
Dynamo approach does however alow one to couple a fast
lightweight translator that emits native code to Dynamo, which
then becomes a backend optimizer.

There are several implementations of offline binary
trandlators that also perform native code optimization [7][29].
These generate profile data during the initial run via emulation,
and perform background trandation together with optimization of
hot spots based on the profile data. The benefit of the profile-based
optimization is only available during subsequent runs of the
program and the initial profile-collecting run may suffer from
worsened performance.

Hardware solutions for a limited form of runtime code
optimization are now commonplace in modern superscalar
microprocessors [21][25][19]. The optimization unit is a fixed size
instruction window, with the optimization logic operating on the
critical execution path. The Trace Cache is another hardware
alternative that can be extended to do superscalar-like optimization
off the critical path [27][15]. Dynamo offers the potentia for a
purely software aternative, which could alow it to be tailored to
specific application domains, and cooperate with the compiler or
JIT in ways that hardware dynamic optimizers cannot.

10. Conclusion

Dynamo is a novel performance delivery mechanism. It
complements the compiler’s traditional strength as a static
performance improvement tool by providing a dynamic
optimization capability. In contrast to other approaches to dynamic
optimization, Dynamo works transparently, requiring no user
intervention. This fact alows Dynamo to be bundled with a
computer system, and shipped as a client-side performance
delivery mechanism, whose activation does not depend on the
ISVs (independent software vendors) in the way that traditional
compiler optimizations do.



This paper demonstrates that it is possible to engineer a
practical software dynamic optimizer that provides a significant
performance benefit even on highly optimized executables
produced by a static compiler. The key is to focus the optimization
effort on opportunities that are likely to manifest themselves only
at runtime, and hence those that a static compiler might miss.

We are currently investigating applications of Dynamo’'s
dynamic optimization technology in many different areas. One of
the directions we are exploring is to export an APl to the
application program, so that a “Dynamo-aware” application can
use the underlying system in interesting ways. This might be useful
for example to implement a very low-overhead profiler, or a JT
compiler. From Dynamo’s perspective, user and/or compiler hints
provided via this APl might dlow it to perform more
comprehensive optimizations that go beyond the scope of
individual traces. Finally, we are also looking at the problem of
transparent de-optimization at runtime.
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