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Abstract 1. Introduction
Robust and powerful software instrumentation tools are essential As software complexity increases, instrumentation—a technique
for program analysis tasks such as profiling, performance evalu- for inserting extracode into an application to observeits behavior—
ation, and bug detection. To meet this need, we have developed is becoming more important. Instrumentation can be performed at
a new instrumentation system called Pin. Our goals are to pro- various stages: in the source code, at compile time, post link time,
-to-use, portable, transn, efficient instrumente- or a run time. Pin is a software system that performs run-time
tion. Instrumentation tools (called Pintools) are written in C/C++ binary instrumentation of Linux applications.
using Pin’srich API. Pin follows the model of ATOM, allowing the The goal of Pin is to provide an instrumentation platform for
tool writer to analyze an application at the instruction level with- building awide variety of program analysistoolsfor multiple archi-
out the need for detailed knowledge of the underlying instruction tectures. As a result, the design emphasizes ease-of-use, portabil-
set. The AP is desgn&tﬁn_aw?;m/c@t whenever ity, transparency, efficiency, and robustness. This paper describes
possible, , maki ng Pintool s source compatible across different archi- the design of Pin and shows how it provides these features.
tectures. However, aPintool can access archltecturespecn‘m details Pin's instrumentation_is easy ta use-Ms-user modelys-similar
when necessary. Instrumentation with Pin i t as to the popular ATOM [30 API, which alows atool to insert calls
the application and Pintool observe the applita iginal, unin- oin T itrary locations in the executable. Users
“ strumented behavior. Pin-uses dynamic compilation to instrument do not need to manualy inline instructions or save and restore
Wk >t @@Q.IMW&MQQ For efficiency, Pin Uses sev- @Tmmmmmg
j eral techniques, Including inlining, register re-allocation, liveness instruction set idiosyncrasies, making it possible to write portable
analysis, and instruction scheduling to optimize instrumentation. instrumentation tools. The Pin distribution includes many sample
This fully automated approach delivers significantly better instru- architecture-independent Pintools including profilers, cache simu-
mentation performance than similar tools. For example, Pir-+s3.3X lators, trace analyzers, and memory bug checkers. The APl aso
fﬁwwwwm allows access to architecture-specific information.
counting. To illustrate Pin's versatility, we describe two Pintools Pin provides efficient instrumentation by using a just-in-time
in daily use to analyze production software. Pin is publicly avail- (JIT) compiler to insert and optimize code. In addition to some
able for Linux platforms on four architectures: 1A32 (32-bit x86), standard techniques for dynamic instrumentation systems includ-
EM64T (64-hit x86), Itanium®, and ARM. In the ten months since ing code caching and trace linking, Pin implements register re-
Pin 2 was released in July 2004, there have been over 3000 down- allocation, inlining, liveness analysis, and instruction scheduling to
loads from its website. optimize jitted code. This fully automated-apnroach distingquishes
~ ) ) Pin from most other instrumentationtoalswhich require the user’'s
Categories and Subject Descriptors  D.2.5 [Software Engineer- assistance to boost performance. For example, Valgrind [22] re-
ing]: Testing and Debugging-code inspections and walk-throughs, lies on the tool writer to insert special operations in their in-
debugging aids, tracing; D.3.4[Programming Languages]: Processors-  termediate representation in order to perform inlining; similarly
compilers, incremental compilers DynamoRIO [6] requires the tool writer to manually inline and

savelrestore application registers. -
Another feature that makes Pin efficient is process-attaching ‘-)(‘,'-

Keywords  Instrumentation, program analysistools, dynamic com- china. Like a debugger, Pin can aitach to a process, in-

General Terms Languages, Performance, Experimentation

pilation strument it, collect profiles, and eventually detach. The application
only incurs |nstrumentat|on overhead durlng the perlod that Pinis
attached. Thea £ ity for the in-
wmms
%Wde dlscovery_unnl run
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dresses (both instruction and data) and same values (both register
~and memory) as it wal rumentert-execation. Trans-
parency makes the |nformat| on collected by instrumentation more
relevant and is also necessary for correctness. For example, some

apollcatlons unintentionally access data b ond the t k 0

||r~ i

Pin's first generatlon Pin 0, supports Itanium®. The recently-
released second generation, Pin 2, extends the support to fourt
architectures: 1A32 (32-bit x86) [14], EM64T (64-bit x86) [15],
Itanium® [13], and ARM [16]. Pin 2 for Itanium®is still under
devel opment.

Pin has been gaining popularity both inside and outside of Intel,
with more than 3000 downloads since Pin 2 was first released
in July 2004. This paper presents an in-depth description of Pin,
and is organized as follows. We first give an overview of Pin’s
instrumentation capability in Section 2. We follow by discussing
design and implementation issues in Section 3. We then evaluate in
Section 4 the performance of Pin’s instrumentation and compare it
against other tools. In Section 5, we discuss two sample Pintools
used in practice. Finally, we relate Pin to other work in Section 6
and conclude in Section 7.

2. Instrumentation with Pin

The Pin APl makes it possible to observe al the architectural
state of a process, such as the contents of registers, memory, and
control flow. It uses amodel similar to ATOM [30], where the user
adds procedures (as known n asanalysis routinesin ATOM'’s notion)
to_the application process, and writes instrumentation routines to
m&wtra The arguments
to analysis routines can be architectural state or constants. Pin
also provides a limited ability to-altertre-program behavior hy

allowd analysis routine to overwrite application registers and
WOVV

Instrumentation is performed by a just-in-time (JT) compiler.
Theinput to this compiler isnat bytecode, er, but a native ex-
ecutable. Pin intercepts the execution of the first instruction of the
—_———— . .
executable and generates (“compiles’) new code for the straight-
line code sequence starting at thisinstruction. It then transfers con-

trol to the generated sequence. The generated-cade-saquence js al,
most_identi the original one, but Pin ensures that it regains
COnIIDLehen 2 branch ST T SEqUETCe. ATt regairing bonrol
Pin generates more code for the branch target and continues execu-
tion. Every time the JIT fetches some code, the Pintool has the op-
portunity to instrument it before it is translated for execution. The
translated code and its instrumentation is saved in a code cache for
future execution of the same sequence of instructions to improve
performance.

In Figure 1, we list the code that a user would write to
create a Pintool that prints a trace of address and size for ev-
ery memory write in a program. The main procedure initializes
Pin, registers the procedure called Instruction, and tells Pin
to start execution of the program. The JIT cals Instruction
when inserting new instructions into the code cache, passing
it a handle to the decoded instruction. If the instruction writes
memory, the Pintool inserts a call to RecordMemWrite before
the instruction (specified by the argument IPOINT_BEFORE to
INS_InsertPredicatedCall), passing the instruction pointer
(specified by IARG_INST_PTR), effective address for the mem-
ory operation (specified by TARG_MEMORYWRITE_EA), and number
of bytes written (specified by TARG_MEMORYWRITE_SIZE). Using

1 Although EM64T isa64-bit extension of IA32, we classify it asaseparate

architecture because of its many new features such as 64-bit addressing, a

flat address space, twice the number of registers, and new software conven-
tions [15].
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FILE * trace;

// Print a memory write record

VOID RecordMemWrite(VOID * ip, VOID * addr, UINT32 size) {
fprintf (trace,"%p: W %p %d\n", ip, addr, size);

}

// Called for every instruction
VOID Instruction(INS ins, VOID *v) {
// instruments writes using a predicated call,
// i.e. the call happens iff the store is
// actually executed
if (INS_IsMemoryWrite(lns))

NS_InsertPredice ati(
ins,[IPOINT PE AFUNPTR (RecordMemWrite) ,

IARG_INST_PTR, IARG_MEMORYWRITE_EA,
IARG_MEMORYWRITE_SIZE, IARG_END);

int main(int argc, char *argv([]) {
PIN_Init(argc, argv);
trace = fopen("atrace.out", "w");
INS_AddInstrumentFunction(Instruction, 0);
PIN_StartProgram(); // Never returns
return O;

Figure 1. A Pintool for tracing memory writes.

INS_InsertPredicatedCall ensures that RecordMemWrite iS
invoked only if the memory instruction is predicated true.

Note that the same source code works on all architectures. The
uwﬁﬁmmﬁns on
Itanium, the various addressing modes on each architecture, the
different forms of predication supported by Itanium and ARM, x86
string instructions that can write a variable-size memory area, or
x86 instructions like push that can implicitly write memory.

Pin provides a comprehensive API for inspection and instru-
mentation. In this particular example, instrumentation is done one

instruction at atlme Iti ossrbleto in ect . etrac

n'scall- model issimpler than other toolswheretbeuv
can insert instrumentation-by-adding and deleting statements in an

inte e However, it isequally powerful initsability
to observe architectural state and it frees the user from the need to
understand the idiosyncrasies of an instruction set or learn an in-
termediate language. The inserted code may overwrite scratch reg-
isters or condition codes; Pin effici and restores st
around caIIs so th@e srde effects f er the original applica-
makes it possible to write efficient
and archltecturelndependent instrumentation tools, regardless of
whether the instruction set is RISC, CISC, or VLIW. A combi-
nation of inlining, register re-allocation, and other optimizations
makes Pin’s procedure call-based model as efficient as lower-level
instrumentation models.

3. Design and Implementation

In this section, we begin with a system overview of Pin. We then
discuss how Pininitially gains control of the application, followed
by a detailed description of how Pin dynamically compiles the
application. Finally, we discuss the organization of Pin source code.

3.1 System Overview

Figure 2 illustrates Pin's software architecture. At the highest level,
Pin consists of avirtual machine (VM), acode cache, and an instru-
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Figure2. Pin’s software architecture

mentation APl invoked by Pintools. The VM consists of a just-in-
time compiler (JIT), an emulator, and a dispatcher. After Pin gains
control of the applicafion, the VM coordinates its components to
execute the gpplication. The JIT compiles and instruments applica-
tion code, which is then launched by the dispatcher. The compiled
code is stored in the code cache. Entering/leaving the VM from/to
the code cache involves saving and restoring the application register
state. The or mterprets instructions that cannot be execu

from theVM Since Pin sts abovethe operating system, it can onIy
capture user-level code.

As Figure 2 shows, there are three binary programs present
when an instrumented program isrunning: the application, Pin, and
the Pintool. Pin is the engine that jits and instruments the applica-
tion. The Pintool containsthe instrumentatien-and analysis routines
and.islinked with alibrary that allows it to communicate W|th Fﬁn
While they share the same address
baem_ullpc By making
all of the libraries private, we avoid unwanted interaction between
Pin, the Pintool, and the application. One example of a problematic
interaction is when the application executes a glibc function that
is not reentrant. If the application starts executing the function and
then tries to execute some code that triggers further compilation, it
will enter the JIT. If the JT executes the same glibc function, it
will enter the same procedure a second time while the application
is il executing it, causing an error. Since we have separate copies
of glibc for each component, Pin and the application do not share
any data and cannot have a re-entrancy problem. The same prob-
lem can occur when we jit the analysis code in the Pintool that
calsglibc (jitting the analysis routine allows us to greatly reduce
the overhead of simple instrumentation on Itanium).

32
Theinjector loads Pin into the address space of an application. In-

jection usesthe Unix Ptrace AP to obtain control of an application
an____pﬁh:amMarocessor context. Tt Toads the Pin binary into the
application address space e and starts it running. After initializing
itself, Pin loads the Pintool into the address space and starts it run-
ning. The Pintool initializes itself and then requests that Pin start
the application. Pin creates the initial context and starts jitting the
application at the entry point (or at the current PC in the case of
attach). Using Ptrace as the mechanism for injection allows us to
attach to an already runni ng_process in the same way as a debug-
ger. Tt isalso poss ble to detach from an instrumented process and
contl nue executing the or|g| nal uninstrumented code:

Injecting Pin

.
i

Other tools like DynamoRIO [6] rely on the LD_PRELOAD en-
vironment variable to force the dynamic loader to load a shared li-
brary in the address space. Pin’s method has three advantages. First,
LD_PRELOAD does not-work with statically-linked binaries, which

~“many of our users require. Second, loading an extra shared library

192

will shift al of the application shared libraries and some dynami-
caly alocated memory to a higher address when compared to an
uninstrumented execution. We attempt to preserve the original be-
havior as much as possible. Third, the instrumentation tool cannot
gain. antmLof_the,pnchﬂl_n untll after the shared-library loader
has p partially whil d is able to instrument the
veiLﬂr_stiL_strmtmningpwgtam This capability actually ex-
posed a bug in the Linux shared-library loader, resulting from a
reference to uninitialized data on the stack.

3.3 TheJIT Compiler
3.3.1 Basics

Pin one |SA directly into the same ISA (e.g., IA32
to IA32 ARM to ARM) without going through an intermediate

for compiled col Star a software-ba de
cache, OnIy coderesiding in the code cacheis executed—the origi-
nal codeis never executed. An application is compiled one trace at
atime. A traceis a straight-line sequence of instructions which ter-
minates at one cf conditions: (i conditional control trans-
W@Wﬁtﬂr conditiorel
ntrol transrers, or (iii) a pre-defined number of instructions have
been Tefched in the trace. In addition to the Tast exit, a trace may
nuftple side-exits (the conditional control transfers)Each

exit initially branches to a stub, which re-directs the control to the
VM The VT Gelemines the i e (wihich s Satically i
known indirect control tran§f_g§)_aetﬂatesanew trace for the
i ore;andresumesthe execution

a thet trace.
n the rest of this section, we discuss the following features of

our JIT: trace linking, register re-reallocation, and instrumentation
optimization. Our current performance effort is focusing on 1A32,
EM64T, and Itanium, which have all these features implemented.
While the ARM version of Pin is fully functional, some of the
optimizations are not yet implemented.

3.3.2 Tracelinking
To im| rove performan

W inking a dlrect control transfer
iS straightfo as a unlque target. We simply patch the
branch at the end of one trace to jump to the target trace. However,
an indirec rans rn) has multlple

pOSSi wmwﬂﬂ” ;
meciTanism.

/.Ifilg_ulFe 3(a) illustrates our indirect linking approach as imple-
mented on the x86 architecture. Pin trandates the indirect jump
into a move and a direct jump. The move puts the indirect target
address into register %edx (this register as well as the %ecx and
%esi shown in Figure 3(a) are obtained via register re-allocation,
as we will discuss in Section 3.3.3). The direct jump goes to the
first predicted target address 0x40001000 (which is mapped to
0x70001000 in the code cache for this example). We compare
%edx against 0x40001000 using the 1ea/jecxz idiom used in Dy-
namoRIO [6], which avoids modifying the conditional flags reg-
ister eflags. If the prediction is correct (i.e. %ecx=0), we will
branch to match1 to execute the remaining code of the predicted
target. If the prediction iswrong, we will try another predicted tar-
get 0x40002000 (mapped to 0x70002000 in the code cache). If the
target is not found on the chain, we will branch to LookupHtab_1,
which searches for the target in a hash table (whose base address is

s to branch directly from a

!
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(a) Chaining of predicted indirect targets

0x40000000 0x70001000
jmp [%eax]

W

lea -0x40001000(%edx), %ecx

jecxz $match1
jmp $0x70002000 <’4
match1:| .
0

0x70002000
mov [%eax], %edx

lea -0x40002000(%edx), %ecx VM
jmp $0x70001000 . \/

jecxz $match2

jmp $LookupHTab_1
match2:| |

LookupHTab_1

mov %edx, %esi

and $0x3ff, %esi

cmp 0x30898200(, %esi,8), %edx
inz $VMEntry # miss ——— |
jmp 0x30898204(, %esi,8) #hit

(b) Using cloning to help predict return targets

F():
ret translated without cloning ret translated with cloning

A

FO: A F AL
pop %edx|| | lea—A(%edx), %ecx pop %edx|| | 182 —A(%edx), %ecx

zﬂ jmp A" —] | jecxz $match1 jmp A" — | iecxz $match1
v jmp B’ jmp $LookupHtab_1

\“// “aa
F_B'(): B
}‘ B l e /»
) pop %edx B 9

¥ lea —B(%edx), %ecx impB — lea —B(%edx), %ecx

jecxz $match2 jecxz $match2
jmp $LookupHtab_1 imp $LookupHtab_2

Figure 3. Compiling indirect jumps and returns

0x30898200 in thisexample). If the search succeeds, we will jump
to the trandlated address corresponding to the target. If the search
fails, we will transfer to the VM for indirect target resolution.
While our indirect linking mechanism is similar to the approach
taken in DynamoRIO [6], there are three important differences.
First, in DynamoRIO, the entire chain is generated at one time
and embedded at the trandation of the indirect jump. Therefore
no new predicted target can be added onto the chain after it is
generated. In contrast, our approach i | buildsthechain

Wh rogram |s runnina_and thus we can insert newl
s onto the ¢l in any order (e.g., ananputanaNtarget

erther a the front or the end of the chain). These new targets
can be found in the chain the next time that they occur, without
searching the hash table. The second difference isthat DynamoRIO
uses a global hash table for all indirect jumps whereas Bin uses,
alocal hash t dividual indirect jump. A study by
Kim and Smith [17] shows that the local hash table approach
typically offers higher performance. The third difference isthat we
apply_function cloning [10] to accelerate the most common form
of indirect controltransfers: returns. If a function is called from
multrple sites, we clone multiple copies of the function, one for

h-ca te Conseguently, areturn in each clone will have only
cases, as illustrated by

the example in Frgure 3(b). To impl ement cloning, we associate a
call stack with each trace (more precisely to the static context of

X
¢
A

each trace, which we will discussin Section 3.3.3). Each call stack
remembers the last four call sites and is compactly represented by
hashing the call-site addresses into a single 64-bit integer.

3.3.3 Register Re-allocation
Duww%mwcqqs For or example, the

registers. When |nstrumentat|on inserts a caII |nto an applrcatron

the JIT must ensure that the call does not overwrite any scratch reg-

isters that may be in use by the application. Rather than obtaining

extra registers |n an ad hoc way, Pin rw in
li

both

__catLonLé_l] Pin’ sallocatorr i interprocedural
allocation, but must ile on er‘ee’fefl ne while incremen-

tally discoverina the durlng exec_LJ_tM In contrast, static
compilers can compile one file at a time and bytecode JITs [5, §]
can compile a whole method at one time. We describe two issues
that our trace-based register re-allocation scheme must address:
register liveness analysis and reconciliation of register bindings.

Register Liveness Analysrs Preg;se,mtmes&hformatron of
ore effective since
ﬁ@r reaLsters can be reused by Prn wrthout introducing spills.
Without a complete flow graph, we must incrementally compute
liveness. After a trace at address A is compiled, we record the
liveness at the beginning of the trace in a hash table using address
A as the key. If a trace exit has a statically-known target, we
attempt to retrieve the liveness information from the hash table so
we can compute more precise liveness for the current trace. This
simple method introduces negligible space and time overhead, yet
is effective in reducing register spills introduced by Pin's register
allocation.

Reconciliation of Register Bindings Trace linking (see Sec-
tion 3.3.2) triesto make traces branch directly to each other. When
regrstersarereallocated the JIT must ensure than the register bind-

cg matchés the bindings

ination trace. A straightforward method isto re-
quire a standard binding of registers between traces. For example
Valgrind [22] requires that all virtual register values be flushed to
memory at the end of a basic block. This approach is simple but
inefficient. Figure 4(b) shows how Valgrind would re-allocate reg-
istersfor the original code shown in Figure 4(a) Here, we assume

virt ishound to physical %esi in Trace 1 but to phys-
|caI %edi in Trace 2. Virtual %eax and %ebx are saved at Trace
1's exit because they have been modified in the trace, and they are
reloaded before their uses in Trace 2. EAX and EBX are the mem-
ory locations alocated by the JIT for holding the current values of
virtual %eax and %ebx, respectively.

_In contrast, Pin keeps a virtual register in the same physical
register across traces whenever possible. At a trace _@(ﬂrﬂtfe_,_ﬂ_tjle'
wili"compile a new
trace for #_using the V|rtual to-ohvsrcal reqrster binding a e, sy

.. Therefore, e can branch directly tOWC)‘SﬁOWS how
Prnwould re-allocate registersfor the same original code, assuming
that target ¢ has not been compiled before. Nevertheless, if-t t
has been previously compiled with a register binding B; # B,
then our JIT will g ensation code [19] to reconcile the
regrster binding from B, to B, instead of compiling anew trace for

.. Figure 4(d) shows how Pin would re-allocate registers for the
seme original code, this time assuming that the target ¢ has been
previously compiled with adifferent binding in the virtual %ebx. In
practice, these bindings show differencesin only one or two virtual
registers, and are therefore more efficient than Valgrind's method.
AW%WWJM@M&
sation code. It could be pl efore the branch, which is exactly

the situation shown in Figure 4(d) where the two mov instructions

£ the
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(a) Original code (b) Valgrind’s approach

Trace 1
mov $1, %eax

mov $2, %esi

mov $1, %eax

mov $2, %ebx mov %es,

cmp %ecx, Y%edx izt

jzt

mov EAX, %eax

mov EBX, %edi
dd $1, %eax

sub $2, %edi

t: | add $1, %eax
sub $2, %ebx

)

(¢) Pin (no reconciliation needed)
Trace 1

mov $1, %eax

mov $2, %esi

Compile Trace 2 using the bindings: | cmp %ecx, %edx

Virtual | Physical jzt
|_o5eax | %eax,
%eba—| _%esi/
Y%ecx %ecx M
% vedx | %edx | t'r [add $1, %eax

sub $2, %esi

(d) Pin (minimal reconciliation needed)
Trace 1 (being compiled)

mov $1, %eax

| e $2, %esi

0ECX; oadx

No need to recompile i
Trace 2, simply reconcile\—mov %esi, EBX

the bindings of virtual ~mov EBX, %edi

%ebx in Traces 1 and 2 izt

Trace 2 (previously compiled)
add $1, %eax
sub $2, %edi

Figure 4. Reconciliation of Register Bindings

that adjust the binding are placed before the jz. Or the compensa-
tion code could be placed after the branch (in that case, the two mov
instructions in Figure 4(d) would be placed in between the jz and
t"). We chose the "before” approach because our experimental data
showed that it generally resulted in fewer unique hindings, there-
mﬁj@m%mm Placing the
compensation code before the branch is equivalent to targeting the
register alocation to match the binding at the branch target.
To support reconciliation of register bindings, we need tg re-
m e i trace's entry. This is done by associat-
%ngwmm ns a group
Stafic properties that hold at the trace's entry. Register bind-
ing is one such property; another example_nroperty is the call
stack of the trace, which is used for function cloning (see Sec-
tion 3.3.2). So, precisely speaking, a fined as a pair
_wmymmmﬂsaﬁgmﬂmmg@mheﬁr 41,0al

t F

co trace BeforetheJIT compllesanew trace, |tW|II flrst
Search for acompatible trace in the code cache. Two traces are com-
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atibleif they havethe same entryladdr and their entrySct’sare
either ent in only their © ings (in that
case we can icife from one register binding to the other, aswe

have exemplified in Figure 4(d)). If a compatible trace isfound, the
JIT will simply use it instead of generating a new trace.

3.34 Thread-local Reglster Spilling

J

illing virtual reqisters (e.q., g3

EAX and EBX shown in Flgure 4(b) aretwo locationsin thlSSplIIlhg €

area). To ultithreading, thi
When Pin startsan application thread, it allocates the SpiIIing area
for this thread and steals a physical register (%ebx on x86, %xr7 on
Itanium) to be the spill pointer, which points to the base of this
area. From that point on, any access to the spilling area can be
made through the spill pointer. When we switch threads, the spill
pointer will be set to the Spl|||ng areaof the new thread In addition,

we exploit an optimiz )

plication assumi ngthat itissinglethr : ccmtothespllllng
area are made through absolute addressing and therefore Pin does

ersthat the application isin fact multithreaded, it will invalidate th

solute

g/\f

2/

not need a physical register for the spill pointer. If Pin later discovg <

code cache and recompile the application using the spill pointer t
access the spilling area (Pin can detect multithreading because it
intercepts all thread-create system calls). Since single-threaded ap-
plications are more common than multithreaded ones, this hybrid
approach works well in practice.

3.3.5 Optimizing Instrumentation Performance

AsweW|II show in Sectlon4 m@g—ef—t'r“re—s',gﬁda\&dimmmﬂu
t ion code, rather

than the compilation t| me (Wh| ch |ncl udes msertl ng the instrumen-
tation code). Therefore, it is-beneficial to spend more compilation
time in_optimizing calts+e-arelysis routines. Of course, the run:
time overhead of executing analysis routines highly depends on
their invocation frequency and their complexnty If analysis rou-
i |

al
routine, Each ; i

Aoa-eachinvocation. W|th i nI ining, we eI iminate the bri dge and thus
save those two calls and returns. Also, we no longer explicitly save
caller-saved registers. Instead, we rename the caller-saved registers
in the inlined body of the analysis routine and allow the register a-
locator to manage the spilling. Furthermore, inlining enables other

optimizations like constant folding of analysis routine arguments.
We perform an additional optimization for the x86 architecture.
Most analysis routines modify the conditional flagsregister eflags
(e.g., if an analysis routine increments a counter). Hence, we must
preserve the original eflags value as seen by the application.
However, accessing the eflags isfairly expensive because it must
be done by pushing it onto the stack?. M oreover, we must switch to
another stack before pushing/popping the eflags to avoid chang-

ing the application stack. Pin avoids saving/restoring eflags as

|

much as possible bv_using liveness analysis on lags. The
liveness analysis tracks the individual hits in the eflags written -

and read by each x86 instruction. We frequently discover that the

20n 1A32, we can use 1ahf/sahf to access the eflags without involving
the stack. However, we decided not to use them since these two instructions
are not implemented on current EM64T processors.
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Architecture Number of Number of Lines
SourceFiles | (including comments)
Generic 87 (48%) 53595 (47%)
x86 34 (19%) 22794 (20%)
(IA32+EM64T)

Itanium 34 (19%) 20474 (18%)

ARM 27 (14%) 17933 (15%)

[ TOTAL | 182(100%) | 114796 (100%) I

Table 1. Distribution of Pin source among different architectures
running Linux. Over 99% of code iswritten in C++ and the remain-
ing isin assembly.

eflags a at the point where an analysis routine call i

flags are dead at the point where an analysis routine cal is in-
serted, and are able to eliminate saving and restoring of theeflags.
_nmmmﬁmﬁa
can specify a hint (TPOINT_ANYWHERE) telling Pin that a call to
an analysis routine can be inserted anywhere inside the scope of
instrumentation (e.g., abasic block or atrace). Then Pin can exploit

anumber of optimization opportunities by scheduling the call. For
instance,-Pin-can |nsert the call immediately before an instruction.

that overwrites a r or eflags) and thereby the analysis
__routine can usethat register (or eflags) without first spilling it.

3.4 Organization of Pin Source Code

Since Pin is a multi-platform system, source code sharing is a
key to minimizing the development effort. Our first step was to
share the basic data structures and intermediate representations
with Ispike [20], a static binary optimizer we previously devel oped.
Then we organized Pin source into generic, architecture dependent,
or operating-system dependent modules. Some components likethe
code cache are purely generic, while other components like the
register allocator contain both generic and architecture-dependent
parts. Table 1 shows the distribution of Pin source among different
architectures, in terms of number of source files and lines. We
combine IA32 and EM64T in Table 1 since they are similar enough
to share the same source files. The x86 numbers do not include
the decoder/encoder while the Itanium numbers do not include
the instruction scheduler. The reason is that we borrow these two
components from other Intel tools in library form and we do not

have their murc%ﬂﬂaﬂ&ﬂh&mﬁa@@%&@%@bl e
job in code sh 0 architectures as about 50% of code is

generic.

4. Experimental Evaluation

In this section, we first report the performance of Pin without any
instrumentation on the four supported architectures. \We then report
the performance of Pin with a standard instrumentation—basic-
block counting. Finally, we compare the performance of Pin with
two other tools: DynamoRIO and Valgrind, and show that Pin's
instrumentation performance is superior across our benchmarks.
Our experimental setup is described in Table 2. For 1A32, we
\‘jﬂ‘ww SPECint binaries compiled with gcc -03.

Ve compiled eon with icc because the gcc -03 version does not

work, even without applying Pin. We corrjjd_nw_eﬂzhe.gtfiﬁd\al
statically-linked. i cc-generated binari Il s because

DWW% Weranthe SPECZOOO suite[11]
using reference inputs on TA32, EM64T, and Itanium. On ARM,
we are only able to run the training inputs due to limited physical
memory (128MB), even when executing uninstrumented binaries.

Floating-point benchmarks are not used on ARM asit does not have
floating-point hardware.
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Hardware Linux Compiler Binary
gcc 3.3.2, -083 for
SPECint (except in Shared
1A32 1.7GHz Xeon™, 256KB |, , o | eon where we use
L2 cache, 2GB Memory o icc)
icc 8.0 for SPECfp Static
3.4GHz Xeon™, 1MB L2 Intel ® compiler (icc )
EMG4T cache, 4GB Memory 24.21 8.0), with Static
e interprocedural &
ttaniume | '/ 2C12 anum?2 BV 1, , 44| profile-guided Static
L2 cache, 12GB Memory optimizations
400 MHz XScale® )
ARM 80200, 128 MB Memory 2.4.18 |gcc3.4.1,-02 Static
Table 2. Experimental setup.
4.1 Pin Performance without I nstrumentation
Fi /s the erformance f in to the hench-

marks onthe
Pin 2/Itanium is till under development we instead use Pin O for
Itanium experiments. The y-axis is the time normalized to the na-
tive run time (i.e. 100%). The slowdown of Pin 2 on 1A32 and
EM®64T is similar. In both cases, the-a! er overh

aroun 0 £or integer and within 5%for floating pornt. Thehrgher
ovehmw many more indirest branches
and returns. The slowdown of Pin 0 on Itanium follows the same

trend but is generally larger than on IA32 and EM64T, especially

for floating-poi nt benchmarks. Thisis probably hecause Itanium is 7,
more on the 5.

an |n -order_ar ure, so its perfor ed
v of the Jltted code. In contrast, |A32 and EM64T are out—

of -order_architectures that can-telerate-the overhead introduced in =

250
Q(/O

thejittedesde. Pin's performance on ARM is worse than the other
three architectures because indirect linking (see Section 3.3.2) is
not yet implemented and there are fewer computationa resources
(ILPand memory) available.

One downside of dynamic compilation is that the compilation

time is directly reflected in the application’s run time. To under- 5| ey

%
v
3

2
%
N\
Z
9
%

stand the performance impact of dynamic compilation, we drvrd)e/>(

the total run time into the components shown in Figures 5(a), (b
and (d) (Pin O source code is not instrumented and hence does not
have the breakdown) Code Cache-deretes the time executing the
jitted cod d_like this
compon %. We d|V|de the JIT time into three
categories: JIT- Decode JIT Regalloc, and JIT-Other. JIT-Decodeis
the time spent decoding and encoding instructions, which is anon-
trivial task on the x86 architecture. JIT-Regalloc isthetime spentin
register re-allocation. JIT-Other denotes the remaining time spent
inthe JIT. The last component is VM, which includes all other time
spent in the virtual machine, including instruction emulation and
resolving mispredicted indirect control transfers.

AsFigures 5 (a) and (b) show, the 3+are/M_comporents-en
IA32 and 4T ostly small excent-i erlbmk.
These two benchmarks have the | t jnstru otprint in

EC2 d their executiomnmtin relatlvely__s_h_qrt Conse-
quently, there isinsufficient code reuse for Pin to amortize its com-
pilation cost. In particular, Pin pays ahigh cost in re-allocating reg-
isters compared to most other tools that do not re-all ocate registers.
Neverthel ess, the advantages provided by register re-allocation out-
weigh its compilation overhead (e.g., register re-allocation makes
it easy to provide Pin and Pintools more virtual registers than the
number of physical registers supported by the hardware). In prac-
tice, the performance overhead is a serious concern only for long-
running applications. In that case, we would have sufficient code
reuse to amortize the cost of register re-allocation. Figure 5(d)
shows a different trend for ARM, where the VM component is

ANl

oo

%



(a) Pin 2/IA32

B Code Cache [OJIT-Decode
VM

Normalized Execution Time (%)
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(b) Pin 2EM 64T
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(c) Pin O/Itanium (d) Pin 2ARM
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Normalized Execution Time (%

1000

Normalized Execution Time (%)

Figure 5. Performance of Pin (without any instrumentation) on four architectures. The y-axis is the time normalized to the native run time
(i.e. 100%). INT-AriMean and FP-AriMean on the z-axis are the arithmetic means of the integer and floating-point benchmarks, respectively.

The legends are explained in Section 4.1.

large but al J'T components are small. Thisis because register re-
allocation and indirect linking are not yet implemented on ARM.
Asaresult, al indirect control transfers are resolved by the VM.

4.2 Pin Performance with Instrumentation

We now study the performance of Pin with basic-block counting,
which outputs the execution count of every basic block in the ap-
plication. We chose to measure this tool’s performance because
basic-block counting is commonly used and can be extended to
many other tools such as Opcodemix, which we will discuss in
Section 5.1. Also, this tool is ssimple enough that its performance
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largely depends on how well the JIT integrates it into the applica-
tion. On the other hand, performance of a complex tool like de-
tailed cache simulation mostly depends on the tool’s algorithm. In
that case, our JI'T has less of an impact on performance.

Figure 6 shows the performance of basic-block counting using
Pin on the IA32 architecture. Each benchmark is tested using four
different optimization levels. Without any optimization, the over-
head isfairly large (as much as 20x slowdown in crafty). Adding
inlining helps significantly; the average slowdown improves from
10.4x to 7.8x for integer and from 3.9x to 3.5x for floating point.

The bi formance boost_comes fror eflags liveness .
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@ Without optimization
O Inlining
Inlining + eflags liveness analysis
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M Inlining + eflags liveness analysis + scheduling
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Normalized Execution Time (%)

analysis, reducing the average slowdown to 2.8x for integer and _ . . A
1.5x for floating point. Scheduling of instrumentation code further (@) Without instrumentation _
reduces the slowdown to 2.5x for integer and 1.4x for floating point. , @Valgrind O DyramoRIO M Pin/IA32

o=
1200 - =
: , . '@ 1000
4.3 Performance Comparison with Valgrind and E 5 8
DynamoRIO t g0 | ¥ 8 1 ]
We now compare the performance of Pin against Valgrind and Dy- 3 600 - ] 8 @
namoRIO. Vagrind is a popular instrumentation tool on Linux and 2 2 <
is the only binary-level JIT other than Pin that re-allocates regis- T 400 M 2 = §
ters. DynamoRIO is generally regarded as the performance leader £ 2 s 2 )
in w‘l\&vﬁ@m@f E 200 g B =3 =i
each tool for thisexperiment: Valgrind 2.2.0 [22] and DynamoRIO z
0.9.3[6]. We ran two sets of experiments: one without instrumenta- 0- B B -
¢ tion and one with basic-block counting instrumentation. We imple- 4>Qq/ {5&\ K § o’PQ @c‘,\ & 0@‘* @o{\ & & &
= mented basic-block counting by modifying a tool in the Valgrind AR N Qe}\ © &
>, 7); (package named lackey and a tool in the DynamoRIO package \g\
~n 2 named countcalls. We show only the integer resultsin Figure 7 . . .
3, asinteger codes are more problematic than floating-point codes in (b) With basic-block counting '
“ terms of the Sowdown caused by instrumentation. g [@Valgrind DDynamoRIO MPInfIA32
Figure 7(a) shows that without instrumentation both Pin and 1600 - b=
DynamoRIO significantly outperform Valgrind. DynamoRIO is < 1400 | S
faster than Pin on gcc, perlbmk and vortex, mainly because Pin @ o S
spends more jitting time in these three benchmarks (refer back to g 12007 g . I N
Figure 5(a) for the breakdown) than DynamoRIO, which does not & 1000 2 & " ~ 5 3
re-allocate registers. Pinisfaster than DynamoRIO on afew bench- 2 500 | - L & @ n
marks such as crafty and gap possibly because of the advantages o o 2 N
that Pin has in indirect linking (i.e. incremental linking, cloning, T 600 B S
and local hash tables). Overall, Dvnam is 12% faster than r‘é 400 - =2
Pin without ingtrumentation. Given that DynamoRIO was primar- 5 200 2N
i 01=’—‘—=- RFin-can-eemethis close
A i'% he perf ithi ion sh Oi‘v ‘(\; S e RS S
_ hen we consider the performance with insirmentation shown { P s & © ¥ X
in Ei gm@mﬂaﬂwnd N & & & < Q"’? y q’§°@ & & 4?1\\@@
Aby a significant_ margin: on average, Valgrind slows the applica- &

tion down by 8.3 times,.DynamoRIO by 5.1 times, and Pin by 2.5

times. Valgrind inserts a call before every basic block’s entry but
it does not automatically inline the call. For DynamoRIO, we use
its low-level API to update the counter inline. Nevertheless, Dy-
namoRI O til to saveandresisretheeflage-ovnlicitly ind
each counter update. In contrast, Pin automatically inlines the call
and performs Tiveriess analysis to eliminate unnecessary eflags
savelrestore. This clearly demonstrates a main advantage of Pin: it
provides efficient instrumentation without shifting the burden to the
Pintool writer.

Figure7. Performance comparison among Valgrind, DynamoRIO,
and Pin. Eon is excluded because DynamoRIO does not work on
the icc-generated binary of this benchmark. Omitting eon causes
the two arithmetic means of Pin/lA32 dightly different than the
ones shown in Figures 5(a) and 6.



5. Two Sample PinTools

To illustrate how Pin is used in practice, we discuss two Pintools
that have been used by various groups inside Intel. The first tool,
Opcodemizx, studiesthe frequency of different instruction typesina
program. It isused to compare codes generated by different compil-
ers. The second tool, PinPoints, automatically selects representa-
tive points in the execution of a program and is used to accelerate
processor simulation.

5.1 Opcodemix

Opcodemix, whose source code is included in the Pin 2 distribu-

tion [12], is a simple Pintool that can determine the dynamic mix

of opcodes for a particular execution of a program. The statistics

can be broken down on aper basr c-block, per routine, or per image
i ¥ s 2 basic-block [

tacoerr,'ii

mlnethefunctlon it belongs to and the instruction mixin that basic

bleck. While the output of Opcodemix iS|SA dependent (diTrerent
ISAs have different opcodes), the implementation is generic—the
same source code for Opcodemix isused on the four architectures.

Though simple, Opcodemix has been quite useful both for ar-
chitectural and compiler comparison studies. As an example, the
following analysis revealed a compiler performance problem. We
collected Opcodemix statistics for the SPEC2000 images produced
by two compilers, which we refer to as compilers A and B, for the
EM®64T architecture. For the benchmark crafty, we found that
the image produced by compiler A executed 2% more dynamic in-
structions than the image produced by compiler B. To understand
the cause of the extrainstructions, we looked at the instruction dis-
tribution of frequently-executed routines. The data for the routine
PopCnt () is shown in Table 3, where opcodes with significantly
different frequencies in the two compilers are marked with “<—".
Examining the PopCnt () codes from the two compilers revealed
that the deltasin JE and JNZ were dueto different code-layout deci-
sions, and the deltain MOVL was due to different register selections.
The most surprising finding was the extra PUSHQ and POPQ gener-
ated by compiler A. Figure 8 shows the PopCnt () code generated
by compiler A. After communicating with compiler A'swriters, we
learned that the push and pop are used for stack alignment but are
in fact unnecessary in this case. As aresult, this performance prob-
lem isnow fixed in the latest version of compiler A.

In addition to SPEC, we use Opcodemix to anayze the Oracle
database performance. Typically, more than 10 “Oracle”’ processes
run on the system, but we want to ignore the database startup
and only observe a single process performing a transaction. We
first run Oracle natlvely (i.e. without Pin) to startup the database.

lnar and the attach feature allows Us to
avoid instrumenting the database startup and the other processes.

entire 60 MB Or

5.2 PinPoints

The purpose of the PinPoints [23] toolkit is to automate the oth-
erwise tedlous process of finding regions of programs to si mul ate
validati ns are repr%entatlve and
faor those regions. There aré TWO TTigjo lenges in srmulatlng
Ia@ﬁn_r% programs. First, these programs have long run
times, and detailed simulation of their entire execution is too time
consuming to be practlcal Second these programs often have large
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on future Intel processors.

Instruction Type Count

Compiler A Compiler B  Delta
*total 712M 618M -94M
XORL 94M 94M OM
TESTQ 94M 94M oM
RET 94M 94M oM
PUSHQ 94M oM -94M <-
POPQ 94M oM -94M <-
JE 94M oM -94M <-
LEAQ 37M 37M OM
JNZ 37M 131M 94M <-
ANDQ 37M 37M OM
ADDL 37M 37M OM
MOVL oM 94M 94M <-

Table 3. Dynamic instruction distribution in PopCnt () of crafty
benchmark.

42f538 <PopCnt>:

42f538: push %rsi # unnecessary
42f539: xor %eax,leax

42f53b: test Y%rdi,%rdi

42f53e: je 42f54c

42f540: add $0x1,%eax

42f543: lea Oxffffffffffffffff (Yrdi),%rdx
42f547: and %rdx,’rdi

42f54a: jne 42f540

42fb4c: pop Jrcx # unnecessary
42f54d: retq

Figure 8. PopCnt () code generated by compiler A.

lenge using SrmPomt [28—am odolog uses hhase anal-

sis for fi for smulation. For the sec-
ond challenge we use Pin to collect SimPoint profiles (which we
call PinPoints) and instruction traces, eliminating the need to ex-
ecute the program on a simulator. The ease of running applica
tions with Pintools is a key advantage of the PinPoints toolkit.
PinPoints has been used to collect instruction traces for a wide
variety of programs; Table 4 lists some of the Itanium applications
(SPEC and commercial), including both single-threaded and muilti-
threaded applications. As the table shows, some of the commercial
gpplications are an order of magnitude larger longer-running
than SPE i Id take years. Simurating
only trw_mwnws
to days. We aso validate that the regions chosen represent whole-
program behavior (e.g., the cycles-per-instruction predicted by Pin-
Pointsistypically within 10% of the actual value[23]). Because of
its high 1 simulation time, and ease-of-use,
PinPointsi ict performance of large applications

6. Related Work

Thereisalarge body of related work in the areas of instrumentation
and dynamic compilation. To limit our scope of discussion, we con-
centrate on binary instrumentation in this section. At the highest
level, instrumentation consists of static and dynamic approaches.
binary instrumentation was v ATOM [30],
ol others such as EEL [18], Etch [25] and Morph [31].
Static instrumentation has many limitations compared to dynamic
instrumentation. The most serious one is that it is possible to mix
code and data in an executable and a static tool may not have
enough |nforma¢|on to distinguish the two.-By'%umée-tools_r‘anLely

on to discover al the code time. Other difficult

3
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%
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Program Description Code | Dynamic
Size Count
(MB) | (billions)
SPECINT SPEC CPU2000 integer 1.9 521
2000 suite [11] (avg.)
SPECFP SPEC CPU2000 floating 24 724
2000 -point suite [11] (avg.)
SPECOMP | SPEC benchmarks 84 4800
2001 for evaluating
multithreaded
OpenMP applications [26]
Amber A suite of bio-molecular 6.2 3994
simulation from UCSF [1]
Fluent Computational Fluid 19.6 25406
Dynamics code from
Fluent Inc [2]
LsDyna A general-purpose transient 61.9 4932
dynamic finite element analy-
sis program from Livermore
Software Technology [3]
RenderMan | A photo-redistic rendering 85 797
application from Pixar [4]

Table 4. Applications analyzed with PinPoints. Column 3 shows
the code section size of the application binary and shared libraries
reported by the size command. Column 4 lists the dynamic in-
struction count for the longest-running application input.

problems for static systems are indirect branches, shared libraries,
and dynamically-generated code.

There are two approaches to dynamic instrumentation: probe-
based and jit-based. The probe-based approach works by dynam-
ically replacing instructions in the original program with trampo-
lines that branch to the instrumentation code. Exampl e probe-based
systems include Dyninst [7], Vulcan [29], and DTrace [9]. The
drawbacks of probe-based systems are that (i) instrumentation is
not transparent because original instructions in memory are over-
written by trampolines, (ii) on architectures where instruction sizes
vary (i.e. x86), we cannot replace an instruction by a trampoline
that occupies more bytes than the instruction itself because it will
overwrite the following instruction, and (iii) trampolines are im-
plemented by one or more levels of branches, which can incur
a significant performance overhead. These drawbacks make fine-
grained instrumentation challenging on probe-based systems. In
contrast, the jit-based approach is more suitable for fine-grained in-
strumentation asit works by dynamically compiling the binary and
can insert instrumentation code (or calls to it) anywhere in the bi-
nary. Examplesinclude Valgrind [22], Strata[27], DynamoRIO [6],
Diota[21], and Pinitself. Among these systems, Pinisuniqueinthe
way that it supports high-level, easy-to-use instrumentation, which
at the sametimeis portable across four architectures and is efficient
due to optimizations applied by our JIT.

7. Conclusions

We have presented Pin, asystem that provides easy-to-use, portable,
transparent, efficient, and robust instrumentation. It supports the
IA32, EM64T, Itanium®, and ARM architectures running Linux.
We show that by abstracting away architecture-specific details,
many Pintools can work across the four architectures with little
porting effort. We aso show that the Pin’s high-level, call-based
instrumentation APl does not compromise performance. Auto-
matic optimizations done by our JIT compiler make Pin's instru-
mentation even more efficient than other tools that use low-level
APIs. We also demonstrate the versatility of Pin with two Pin-
tools, Opcodemix and PinPoints. Future work includes develop-
ing novel Pintools, enriching and refining the instrumentation API
as moretools are developed, and porting Pin to other operating sys-

tems. Pinisfreely availableathttp: //rogue.colorado.edu/Pin.
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