
Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen Eric Eide John Regehr
University of Utah, School of Computing

{ jxyang, chenyang, eeide, regehr }@cs.utah.edu

Abstract
Compilers should be correct. To improve the quality of C compilers,
we created Csmith, a randomized test-case generation tool, and
spent three years using it to find compiler bugs. During this period
we reported more than 325 previously unknown bugs to compiler
developers. Every compiler we tested was found to crash and also
to silently generate wrong code when presented with valid input.
In this paper we present our compiler-testing tool and the results
of our bug-hunting study. Our first contribution is to advance the
state of the art in compiler testing. Unlike previous tools, Csmith
generates programs that cover a large subset of C while avoiding the
undefined and unspecified behaviors that would destroy its ability
to automatically find wrong-code bugs. Our second contribution is a
collection of qualitative and quantitative results about the bugs we
have found in open-source C compilers.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—testing tools; D.3.2 [Programming
Languages]: Language Classifications—C; D.3.4 [Programming
Languages]: Processors—compilers

General Terms Languages, Reliability

Keywords compiler testing, compiler defect, automated testing,
random testing, random program generation

1. Introduction
The theory of compilation is well developed, and there are compiler
frameworks in which many optimizations have been proved correct.
Nevertheless, the practical art of compiler construction involves a
morass of trade-offs between compilation speed, code quality, code
debuggability, compiler modularity, compiler retargetability, and
other goals. It should be no surprise that optimizing compilers—like
all complex software systems—contain bugs.

Miscompilations often happen because optimization safety
checks are inadequate, static analyses are unsound, or transfor-
mations are flawed. These bugs are out of reach for current and
future automated program-verification tools because the specifica-
tions that need to be checked were never written down in a precise
way, if they were written down at all. Where verification is imprac-
tical, however, other methods for improving compiler quality can
succeed. This paper reports our experience in using testing to make
C compilers better.

c© ACM, 2011. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the 2011 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), San Jose,
CA, Jun. 2011, http://doi.acm.org/10.1145/NNNNNNN.NNNNNNN

1 int foo (void) {
2 signed char x = 1;
3 unsigned char y = 255;
4 return x > y;
5 }

Figure 1. We found a bug in the version of GCC that shipped with
Ubuntu Linux 8.04.1 for x86. At all optimization levels it compiles
this function to return 1; the correct result is 0. The Ubuntu compiler
was heavily patched; the base version of GCC did not have this bug.

We created Csmith, a randomized test-case generator that sup-
ports compiler bug-hunting using differential testing. Csmith gen-
erates a C program; a test harness then compiles the program us-
ing several compilers, runs the executables, and compares the out-
puts. Although this compiler-testing approach has been used be-
fore [6, 16, 23], Csmith’s test-generation techniques substantially
advance the state of the art by generating random programs that
are expressive—containing complex code using many C language
features—while also ensuring that every generated program has a
single interpretation. To have a unique interpretation, a program
must not execute any of the 191 kinds of undefined behavior, nor
depend on any of the 52 kinds of unspecified behavior, that are
described in the C99 standard.

For the past three years, we have used Csmith to discover bugs
in C compilers. Our results are perhaps surprising in their extent: to
date, we have found and reported more than 325 bugs in mainstream
C compilers including GCC, LLVM, and commercial tools. Figure 1
shows a representative example. Every compiler that we have tested,
including several that are routinely used to compile safety-critical
embedded systems, has been crashed and also shown to silently
miscompile valid inputs. As measured by the responses to our bug
reports, the defects discovered by Csmith are important. Most of
the bugs we have reported against GCC and LLVM have been
fixed. Twenty-five of our reported GCC bugs have been classified as
P1, the maximum, release-blocking priority for GCC defects. Our
results suggest that fixed test suites—the main way that compilers
are tested—are an inadequate mechanism for quality control.

We claim that Csmith is an effective bug-finding tool in part
because it generates tests that explore atypical combinations of C
language features. Atypical code is not unimportant code, how-
ever; it is simply underrepresented in fixed compiler test suites.
Developers who stray outside the well-tested paths that represent
a compiler’s “comfort zone”—for example by writing kernel code
or embedded systems code, using esoteric compiler options, or au-
tomatically generating code—can encounter bugs quite frequently.
This is a significant problem for complex systems. Wolfe [30], talk-
ing about independent software vendors (ISVs) says: “An ISV with
a complex code can work around correctness, turn off the optimizer
in one or two files, and usually they have to do that for any of the
compilers they use” (emphasis ours). As another example, the front

1

mailto:jxyang@cs.utah.edu
mailto:chenyang@cs.utah.edu
mailto:eeide@cs.utah.edu
mailto:regehr@cs.utah.edu
http://doi.acm.org/10.1145/NNNNNNN.NNNNNNN

page of the Web site for GMP, the GNU Multiple Precision Arith-
metic Library, states, “Most problems with compiling GMP these
days are due to problems not in GMP, but with the compiler.”

Improving the correctness of C compilers is a worthy goal:
C code is part of the trusted computing base for almost every modern
computer system including mission-critical financial servers and life-
critical pacemaker firmware. Large-scale source-code verification
efforts such as the seL4 OS kernel [12] and Airbus’s verification
of fly-by-wire software [24] can be undermined by an incorrect
C compiler. The need for correct compilers is amplified because
operating systems are almost always written in C and because C
is used as a portable assembly language. It is targeted by code
generators from a wide variety of high-level languages including
Matlab/Simulink, which is used to generate code for industrial
control systems.

Despite recent advances in compiler verification, testing is still
needed. First, a verified compiler is only as good as its specification
of the source and target language semantics, and these specifications
are themselves complex and error-prone. Second, formal verification
seldom provides end-to-end guarantees: “details” such as parsers,
libraries, and file I/O usually remain in the trusted computing
base. This second point is illustrated by our experience in testing
CompCert [14], a verified C compiler. Using Csmith, we found
previously unknown bugs in unproved parts of CompCert—bugs
that cause this compiler to silently produce incorrect code.

Our goal was to discover serious, previously unknown bugs:

• in mainstream C compilers like GCC and LLVM;
• that manifest when compiling core language constructs such as

arithmetic, arrays, loops, and function calls;
• targeting ubiquitous architectures such as x86 and x86-64; and
• using mundane optimization flags such as –O and –O2.

This paper reports our experience in achieving this goal. Our first
contribution is to advance the state of the art in compiler test-case
generation, finding—as far as we know—many more previously
unknown compiler bugs than any similar effort has found. Our
second contribution is to qualitatively and quantitatively characterize
the bugs found by Csmith: What do they look like? In what parts of
the compilers are they primarily found? How are they distributed
across a range of compiler versions?

2. Csmith
Csmith began as a fork of Randprog [27], an existing random
C program generator about 1,600 lines long. In earlier work, we
extended and adapted Randprog to find bugs in C compilers’
translation of accesses to volatile-qualified objects [6], resulting
in a 7,000-line program. Our previous paper showed that in many
cases, these bugs could be worked around by turning volatile-object
accesses into calls to helper functions. The key observation was this:
while the rules regarding the addition, elimination, and reordering
of accesses to volatile objects are not at all like the rules governing
ordinary variable accesses in C, they are almost identical to the rules
governing function calls.

For some test programs generated by Randprog, our rewriting
procedure was insufficient to correct a defect that we had found in
the C compiler. Our hypothesis was that this was always due to “reg-
ular” compiler bugs not related to the volatile qualifier. To investigate
these compiler defects, we shifted our research emphasis toward
looking for generic wrong-code bugs. We turned Randprog into
Csmith, a 40,000-line C++ program for randomly generating C pro-
grams. Compared to Randprog, Csmith can generate C programs
that utilize a much wider range of C features including complex
control flow and data structures such as pointers, arrays, and structs.
Most of Csmith’s complexity arises from the requirement that it

output

execute

compiler 1

Csmith

no bug
majorityminority

bug

execute

compiler 3

compare

execute

compiler 2

Figure 2. Finding bugs in three compilers using randomized differ-
ential testing

interleave static analysis with code generation in order to produce
meaningful test cases, as described below.

2.1 Randomized Differential Testing using Csmith
Random testing [9], also called fuzzing [17], is a black-box testing
method in which test inputs are generated randomly. Randomized
differential testing [16] has the advantage that no oracle for test
results is needed. It exploits the idea that if one has multiple, deter-
ministic implementations of the same specification, all implementa-
tions must produce the same result from the same valid input. When
two implementations produce different outputs, one of them must
be faulty. Given three or more implementations, a tester can use
voting to heuristically determine which implementations are wrong.
Figure 2 shows how we use these ideas to find compiler bugs.

2.2 Design Goals
Csmith has two main design goals. First and most important, every
generated program must be well formed and have a single meaning
according to the C standard. The meaning of a C program is the
sequence of side effects it performs. The principal side effect of a
Csmith-generated program is to print a value summarizing the com-
putation performed by the program.1 This value is a checksum of the
program’s non-pointer global variables at the end of the program’s
execution. Thus, if changing the compiler or compiler options causes
the checksum emitted by a Csmith-generated program to change, a
compiler bug has been found.

The C99 language [11] has 191 undefined behaviors—e.g.,
dereferencing a null pointer or overflowing a signed integer—that
destroy the meaning of a program. It also has 52 unspecified
behaviors—e.g., the order of evaluation of arguments to a function—
where a compiler may choose from a set of options with no
requirement that the choice be made consistently. Programs emitted
by Csmith must avoid all of these behaviors or, in certain cases
such as argument-evaluation order, be independent of the choices
that will be made by the compiler. Many undefined and unspecified
behaviors can be avoided structurally by generating programs in
such a way that problems never arise. However, a number of
important undefined and unspecified behaviors are not easy to avoid
in a structural fashion. In these cases, Csmith solves the problem
using static analysis and by adding run-time checks to the generated
code. Section 2.4 describes the hazards that Csmith must avoid and
its strategies for avoiding them.

Csmith’s second design goal is to maximize expressiveness
subject to constraints imposed by the first goal. An “expressive”
generator supports many language features and combinations of
features. Our hypothesis is that expressiveness is correlated with
bug-finding power.

1 Accesses to volatile objects are also side effects as described in the C
standard. We do not discuss these “secondary” side effects of Csmith-
generated programs further in this paper.

2

Csmith creates programs with the following features:

• function definitions, and global and local variable definitions
• most kinds of C expressions and statements
• control flow: if/else, function calls, for loops, return,
break, continue, goto

• signed and unsigned integers of all standard widths
• arithmetic, logical, and bitwise operations on integers
• structs: nested, and with bit-fields
• arrays of and pointers to all supported types, including pointers

and arrays
• the const and volatile type qualifiers, including at different

levels of indirection for pointer-typed variables

The most important language features not currently supported
by Csmith are strings, dynamic memory allocation, floating-point
types, unions, recursion, and function pointers. We plan to add some
of these features to future versions of our tool.

2.3 Randomly Generating Programs
The shape of a program generated by Csmith is governed by a
grammar for a subset of C. A program is a collection of type,
variable, and function definitions; a function body is a block; a
block contains a list of declarations and a list of statements; and a
statement is an expression, control-flow construct (e.g., if, return,
goto, or for), assignment, or block. Assignments are modeled
as statements—not expressions—which reflects the most common
idiom for assignments in C code. We leverage our grammar to
produce other idiomatic code as well: in particular, we include a
statement kind that represents a loop iterating over an array. The
grammar is implemented by a collection of hand-coded C++ classes.

Csmith maintains a global environment that holds top-level
definitions: i.e., types, global variables, and functions. The global
environment is extended as new entities are defined during program
generation. To hold information relevant to the current program-
generation point, Csmith also maintains a local environment with
three primary kinds of information. First, the local environment
describes the current call chain, supporting context-sensitive pointer
analysis. Second, it contains effect information describing objects
that may have been read or written since (1) the start of the current
function, (2) the start of the current statement, and (3) the previous
sequence point.2 Third, the local environment carries points-to
facts about all in-scope pointers. These elements and their roles
in program generation are further described in Section 2.4.

Csmith begins by randomly creating a collection of struct type
declarations. For each, it randomly decides on a number of members
and the type of each member. The type of a member may be
a (possibly qualified) integral type, a bit-field, or a previously
generated struct type.

After the preliminary step of producing type definitions, Csmith
begins to generate C program code. Csmith generates a program
top-down, starting from a single function called by main. Each step
of the program generator involves the following sub-steps:

1. Csmith randomly selects an allowable production from its gram-
mar for the current program point. To make the choice, it consults

2 As explained in Section 3.8 of the C FAQ [25], “A sequence point is a
point in time at which the dust has settled and all side effects which have
been seen so far are guaranteed to be complete. The sequence points listed
in the C standard are at the end of the evaluation of a full expression (a full
expression is an expression statement, or any other expression which is not a
subexpression within any larger expression); at the ||, &&, ?:, and comma
operators; and at a function call (after the evaluation of all the arguments,
and just before the actual call).”

a probability table and a filter function specific to the current
point: there is a table/filter pair for statements, another for ex-
pressions, and so on. The table assigns a probability to each
of the alternatives, where the sum of the probabilities is one.
After choosing a production from the table, Csmith executes the
filter, which decides if the choice is acceptable in the current con-
text. Filters enforce basic semantic restrictions (e.g., continue
can only appear within a loop), user-controllable limits (e.g.,
maximum statement depth and number of functions), and other
user-controllable options. If the filter rejects the selected pro-
duction, Csmith simply loops back, making selections from the
table until the filter succeeds.

2. If the selected production requires a target—e.g., a variable or
function—then the generator randomly selects an appropriate
target or defines a new one. In essence, Csmith dynamically
constructs a probability table for the potential targets and in-
cludes an option to create a new target. Function and variable
definitions are thus created “on demand” at the time that Csmith
decides to refer to them.

3. If the selected production allows the generator to select a type,
Csmith randomly chooses one. Depending on the current context,
the choice may be restricted (e.g., while generating the operands
of an integral-typed expression) or unrestricted (e.g., while
generating the types of parameters to a new function). Random
choices are guided by the grammar, probability tables, and filters
as already described.

4. If the selected production is nonterminal, the generator recurses.
It calls a function to generate the program fragment that corre-
sponds to the nonterminal production. More generally, Csmith
recurses for each nonterminal element of the current production:
e.g., for each subcomponent of a compound statement, or for
each parameter in a function call.

5. Csmith executes a collection of dataflow transfer functions. It
passes the points-to facts from the local environment to the
transfer functions, which produce a new set of points-to facts.
Csmith updates the local environment with these facts.

6. Csmith executes a collection of safety checks. If the checks
succeed, the new code fragment is committed to the generated
program. Otherwise, the fragment is dropped and any changes
to the local environment are rolled back.

When Csmith creates a call to a new function—one whose body
does not yet exist—generation of the current function is suspended
until the new function is finished. Thus, when the top-level function
has been completely generated, Csmith is finished. At that point
it pretty-prints all of the randomly generated definitions in an
appropriate order: types, globals, prototypes, and functions. Finally,
Csmith outputs a main function. The main function calls the top-
level randomly generated function, computes a checksum of the
non-pointer global variables, prints the checksum, and exits.

2.4 Safety Mechanisms
Table 1 lists the mechanisms that Csmith uses to avoid generating C
programs that execute undefined behaviors or depend on unspecified
behaviors. This section provides additional detail about the hazards
that Csmith must avoid and its strategies for avoiding them.

Integer safety More and more, compilers are aggressively ex-
ploiting the undefined nature of integer behaviors such as signed
overflow and shift-past-bitwidth. For example, recent versions of
Intel CC, GCC, and LLVM evaluate (x+1)>x to 1 while also eval-
uating (INT_MAX+1) to INT_MIN. In another example, discovered
by the authors of Google’s Native Client software [3], routine refac-
toring of C code caused the expression 1<<32 to be evaluated on a

3

Code-Generation- Code-Execution-
Problem Time Solution Time Solution
use without initialization explicit initializers, —

avoid jumping over
initializers

qualifier mismatch static analysis —
infinite recursion disallow recursion —
signed integer overflow bounded loop vars safe math wrappers
OOB array access bounded loop vars force index in bounds
unspecified eval. order effect analysis —

of function arguments
R/W and W/W conflicts effect analysis —

betw. sequence points
access to out-of-scope pointer analysis —

stack variable
null pointer dereference pointer analysis null pointer checks

Table 1. Summary of Csmith’s strategies for avoiding undefined
and unspecified behaviors. When both a code-generation-time and
code-execution-time solution are listed, Csmith uses both.

platform with 32-bit integers. The compiler exploited this undefined
behavior to turn a sandboxing safety check into a nop.

To keep Csmith-generated programs from executing integer
undefined behaviors, we implemented a family of wrapper functions
for arithmetic operators whose (promoted) operands might overflow.
This was not difficult, but had a few tricky aspects. For example,
the C99 standard does not explicitly identify the evaluation of
INT_MIN%-1 as being an undefined behavior, but most compilers
treat it as such. The C99 standard also has very restrictive semantics
for signed left-shift: it is illegal (for implementations using 2’s
complement integers) to shift a 1-bit into or past the sign bit. Thus,
evaluating 1<<31 destroys the meaning of a C99 program on a
platform with 32-bit ints.

Several safe math libraries for C that we examined themselves ex-
ecute operations with undefined behavior while performing checks.
Apparently, avoiding such behavior is indeed a tricky business.

Type safety The aspect of C’s type system that required the
most care was qualifier safety: ensuring that const and volatile
qualifiers attached to pointers at various levels of indirection are not
removed by implicit casts. Accessing a const- or volatile-qualified
object through a non-qualified pointer results in undefined behavior.

Pointer safety Null-pointer dereferences are easy to avoid using
dynamic checks. There is, on the other hand, no portable run-time
method for detecting references to a function-scoped variable whose
lifetime has ended. (Hacks involving the stack pointer are not robust
under inlining.) Although there are obvious ways to structurally
avoid this problem, such as using a type system to ensure that a
pointer to a function-scoped variable never outlives the function, we
judged this kind of strategy to be too restrictive. Instead, Csmith
freely permits pointers to local variables to escape (e.g., into global
variables) but uses a whole-program pointer analysis to ensure that
such pointers are not dereferenced or used in comparisons once they
become invalid.

Csmith’s pointer analysis is flow sensitive, field sensitive, context
sensitive, path insensitive, and array-element insensitive. A points-to
fact is an explicit set of locations that may be referenced, and may
include two special elements: the null pointer and the invalid (out-
of-scope) pointer. Points-to sets containing a single element serve as
must-alias facts unless the pointed-to object is an array element.
Because Csmith does not generate programs that use the heap,
assigning names to storage locations is trivial.

Effect safety The C99 standard states that “[t]he order of evalua-
tion of the function designator, the actual arguments, and subexpres-
sions within the actual arguments is unspecified.” Also, undefined

behavior occurs if “[b]etween two sequence points, an object is
modified more than once, or is modified and the prior value is read
other than to determine the value to be stored.”

To avoid these problems, Csmith uses its pointer analysis to
perform a conservative interprocedural analysis and determine the
effect of every expression, statement, and function that it generates.
An effect consists of two sets: locations that may be read and
locations that may be written. Csmith ensures that no location is
both read and written, or written more than once, between any pair
of sequence points. As a special case, in an assignment, a location
can be read on the RHS and also written on the LHS.

Effects are computed, and effect safety guaranteed, incrementally.
At each sequence point, Csmith resets the current effect (i.e., may-
read and may-write sets). As fragments of code are generated,
Csmith tests if the new code has a read/write or write/write conflict
with the current effect. If a conflict is detected, the new code is
thrown away and the process restarts. For example, if Csmith is
generating an expression p + func() and it happens that func may
modify p, the call to func is discarded and a new subexpression is
generated. If there is no conflict, the read and write sets are updated
and the process continues. Probabilistic progress is guaranteed: by
design, Csmith always has a non-zero chance of generating code
that introduces no new conflicts, such as a constant expression.

Array safety Csmith uses several methods to ensure that array
indices are in bounds. First, it generates index variables that are
modified only in the “increment” parts of for loops and whose
values never exceed the bounds of the arrays being indexed. Second,
variables with arbitrary value are forced to be in bounds using the
modulo operator. Finally, as needed, Csmith emits explicit checks
against array lengths.

Initializer safety A C program must not use an uninitialized
function-scoped variable. For the most part, initializer safety is
easy to ensure structurally by initializing variables close to where
they are declared. Gotos introduce the possibility that initializers
may be jumped over; Csmith solves this by forbidding gotos from
spanning initialization code.

2.5 Efficient Global Safety
Csmith never commits to a code fragment unless it has been shown
to be safe. However, loops and function calls threaten to invalidate
previously validated code. For example, consider the following code,
in which Csmith has just added the loop back-edge at line 7.

1 int i;
2 int *p = &i;
3 while (...) {
4 *p = 3;
5 ...
6 p = 0;
7 }

The assignment through p at line 4 was safe when it was
generated. However, the newly added line 7 makes line 4 unsafe,
due to the back-edge carrying a null-valued p.

One solution to this problem is to be conservative: run the whole-
program dataflow analysis before committing any new statement to
the program. This is not efficient. We therefore restrict the analysis
to local scope except when function calls and loops are involved. For
a function call, the callee is re-analyzed at each call site immediately.

Csmith uses a different strategy for loops. This is because so
many statements are inside loops, and the extra calls to the dataflow
analysis add substantial overhead to the code generator. Csmith’s
strategy is to optimistically generate code that is locally safe. Local
safety includes running a single step of the dataflow engine (which
reaches a sound result when generating code not inside any loop).

4

The global fixpoint analysis is run when a loop is closed by adding
its back-edge. If Csmith finds that the program contains unsafe
statements, it deletes code starting from the tail of the loop until
the program becomes globally safe. This strategy is about three
times faster than pessimistically running the global dataflow analysis
before adding every piece of code.

2.6 Design Trade-offs
Allow implementation-defined behavior An ideally portable test
program would be “strictly conforming” to the C language standard.
This means that the program’s output would be independent of all
unspecified and unspecified behaviors and, in addition, be indepen-
dent of any implementation-defined behavior. C99 has 114 kinds of
implementation-defined behavior, and they have pervasive impact
on the behavior of real C programs. For example, the result of per-
forming a bitwise operation on a signed integer is implementation-
defined, and operands to arithmetic operations are implicitly cast to
int (which has implementation-defined width) before performing
the operation. We believe it is impossible to generate realistically ex-
pressive C code that retains a single interpretation across all possible
choices of implementation-defined behaviors.

Programs generated by Csmith do not generate the same output
across compilers that differ in (1) the width and representation of
integers, (2) behavior when casting to a signed integer type when
the value cannot be represented in an object of the target type, and
(3) the results of bitwise operations on signed integers. In practice
there is not much diversity in how C implementations define these
behaviors. For mainstream desktop and embedded targets, there
are roughly three equivalence classes of compiler targets: those
where int is 32 bits and long is 64 bits (e.g., x86-64), those where
int and long are 32 bits (e.g., x86, ARM, and PowerPC), and
those where int is 16 bits and long is 32 bits (e.g., MSP430 and
AVR). Using Csmith, we can perform differential testing within an
equivalence class but not across classes.

No ground truth Csmith’s programs are not self-checking: we are
unable to predict their outputs without running them. This is not a
problem when we use Csmith for randomized differential testing.

We have never seen an “interesting” split vote where randomized
differential testing of a collection of C compilers fails to produce
a clear consensus answer, nor have we seen any cases in which a
majority of tested compilers produces the same incorrect result.
(We would catch the problem by hand as part of verifying the
failure-inducing program.) In fact, we have not seen even two
unrelated compilers produce the same incorrect output for a Csmith-
generated test case. It therefore seems unlikely that all compilers
under test would produce the same incorrect output for a test case.
Of course, if that did happen we would not detect that problem; this
is an inherent limitation of differential testing without an oracle.
In summary, despite the fact that Knight and Leveson [13] found
a substantial number of correlated errors in an experiment on N-
version programming, Csmith has yielded no evidence of correlated
failures among unrelated C compilers. Our hypothesis is that the
observed lack of correlation stems from the fact that most compiler
bugs are in passes that operate on an intermediate representation
and there is substantial diversity among IRs.

No guarantee of termination It is not difficult to generate random
programs that always terminate. However, we judged that this would
limit Csmith’s expressiveness too much: for example, it would force
loops to be highly structured. Additionally, always-terminating
tests cannot find compiler bugs that wrongfully terminate a non-
terminating program. (We have found bugs of this kind.) About
10% of the programs generated by Csmith are (apparently) non-
terminating. In practice, during testing, they are easy to deal with
using timeouts.

Target middle-end bugs Commercial test suites for C compil-
ers [1, 19, 20] are primarily aimed at checking standards confor-
mance. Csmith, on the other hand, is mainly intended to find bugs in
the parts of a compiler that perform transformations on an interme-
diate representation—the so-called “middle end” of a compiler. As a
result, we have found large numbers of middle-end bugs missed by
existing testing techniques (Section 3.6). At the same time, Csmith
is rather poor at finding gaps in standards conformance. For example,
it makes no attempt to test a compiler’s handling of trigraphs, long
identifier names, or variadic functions.

Targeting the middle end has several aspects. First, all generated
programs pass the lexer, parser, and typechecker. Second, we per-
formed substantial manual tuning of the 80 probabilities that govern
Csmith’s random choices. Our goal was to make the generated pro-
grams “look right”—to contain a balanced mix of arithmetic and
bitwise operations, of references to scalars and aggregates, of loops
and straight-line code, of single-level and multi-level indirections,
and so on. Third, Csmith specifically generates idiomatic code (e.g.,
loops that access all elements of an array) to stress-test parts of the
compiler we believe to be error-prone. Fourth, we designed Csmith
with an eye toward generating programs that exercise the constructs
of a compiler’s intermediate representation, and we decided to avoid
generating source-level diversity that is unlikely to improve the
“coverage” of a compiler’s intermediate representations. For exam-
ple, since additional levels of parentheses around expressions are
stripped away early in the compilation process, we do not generate
them, nor do we generate all of C’s syntactic loop forms since they
are typically all lowered to the same IR constructs. Finally, Csmith
was designed to be fast enough that it can generate programs that
are a few tens of thousands of lines long in a few seconds. Large
programs are preferred because (empirically—see Section 3.3) they
find more bugs. In summary, many aspects of Csmith’s design and
implementation were informed by our understanding of how modern
compilers work and how they break.

3. Results
We conducted five experiments using Csmith, our random program
generator. This section summarizes our findings.

Our first experiment was uncontrolled and unstructured: over a
three-year period, we opportunistically found and reported bugs in
a variety of C compilers. We found bugs in all the compilers we
tested—hundreds of defects, many classified as high-priority bugs.
(§3.1)

In the second experiment, we compiled and ran one million
random programs using several years’ worth of versions of GCC
and LLVM, to understand how their robustness is evolving over time.
As measured by our tests over the programs that Csmith produces,
the quality of both compilers is generally improving. (§3.2)

Third, we evaluated Csmith’s bug-finding power as a function of
the size of the generated C programs. The largest number of bugs is
found at a surprisingly large program size: about 81 KB. (§3.3)

Fourth, we compared Csmith’s bug-finding power to that of four
previous random C program generators. Over a week, Csmith was
able to find significantly more distinct compiler crash errors than
previous program generators could. (§3.4)

Finally, we investigated the effect of testing random programs on
branch, function, and line coverage of the GCC and LLVM source
code. We found that these metrics did not significantly improve
when we added randomly generated programs to the compilers’
existing test suites. Nevertheless, as shown by our other results,
Csmith-generated programs allowed us to discover bugs that are
missed by the compilers’ standard test suites. (§3.5)

We conclude the presentation of results by analyzing some of
the bugs we found in GCC and LLVM. (§3.6, §3.7)

5

GCC LLVM
Crash 2 10
Wrong code 2 9
Total 4 19

Table 2. Crash and wrong-code bugs found by Csmith that manifest
when compiler optimizations are disabled (i.e., when the –O0
command-line option is used)

3.1 Opportunistic Bug Finding
We reported bugs to 11 different C compiler development teams.
Five of these compilers (GCC, LLVM, CIL, TCC, and Open64)
were open source and five were commercial products. The eleventh,
CompCert, is publicly available but not open source.

What kinds of bugs are there? It is useful to distinguish between
errors whose symptoms manifest at compile time and those that
only manifest when the compiler’s output is executed. Compile-
time bugs that we see include assertion violations or other internal
compiler errors; involuntary compiler termination due to memory-
safety problems; and cases in which the compiler exhausts the RAM
or CPU time allocated to it. We say that a compile-time crash error
has occurred whenever the compiler process exits with a status other
than zero or fails to produce executable output. Errors that manifest
at run time include the computation of a wrong result; a crash or
other abnormal termination of the generated code; termination of a
program that should have executed forever; and non-termination of
a program that should have terminated. We refer to these run-time
problems as wrong-code errors. A silent wrong-code error is one
that occurs in a program that was produced without any sort of
warning from the compiler; i.e., the compiler silently miscompiled
the test program.

Experience with commercial compilers There exist many more
commercial C compilers than we could easily test. The ones we
chose to study are fairly popular and were produced by what we
believe are some of the strongest C compiler development teams.
Csmith found wrong-code errors and crash errors in each of these
tools within a few hours of testing.

Because we are not paying customers, and because our findings
represent potential bad publicity, we did not receive a warm response
from any commercial compiler vendor. Thus, for the most part, we
simply tested these compilers until we found a few crash errors and
a few wrong-code errors, reported them, and moved on.

Experience with open-source compilers For several reasons, the
bulk of our testing effort went towards GCC and LLVM. First and
most important, compiler testing is inherently interactive: we require
feedback from the development team in the form of bug fixes.
Bugs that occur with high probability can mask tricky, one-in-a-
million bugs; thus, testing proceeds most smoothly when we can
help developers rapidly destroy the easy bugs. Both the GCC and
LLVM teams were responsive to our bug reports. The LLVM team
in particular fixed bugs quickly, often within a few hours and usually
within a week. The second reason we prefer dealing with open-
source compilers is that their development process is transparent:
we can watch the mailing lists, participate in discussions, and see
fixes as they are committed. Third, we want to help harden the
open-source development tools that we and many others use daily.

So far we have reported 79 GCC bugs and 202 LLVM bugs—the
latter figure represents about 2% of all LLVM bug reports. Most of
our reported bugs have been fixed, and twenty-five of the GCC bugs
were marked by developers as P1: the maximum, release-blocking
priority for a bug. To date, we have reported 325 in total across all
tested compilers (GCC, LLVM, and others).

An error that occurs at the lowest level of optimization is
pernicious because it defeats the conventional wisdom that compiler
bugs can be avoided by turning off the optimizer. Table 2 counts
these kinds of bugs, causing both crash and wrong-code errors, that
we found using Csmith.

Testing CompCert CompCert [14] is a verified, optimizing com-
piler for a large subset of C; it targets PowerPC, ARM, and x86. We
put significant effort into testing this compiler.

The first silent wrong-code error that we found in CompCert was
due to a miscompilation of this function:

1 int bar (unsigned x) {
2 return -1 <= (1 && x);
3 }

CompCert 1.6 for PowerPC generates code returning 0, but the
proper result is 1 because the comparison is signed. This bug and five
others like it were in CompCert’s unverified front-end code. Partly
in response to these bug reports, the main CompCert developer
expanded the verified portion of CompCert to include C’s integer
promotions and other tricky implicit casts.

The second CompCert problem we found was illustrated by two
bugs that resulted in generation of code like this:

stwu r1, -44432(r1)

Here, a large PowerPC stack frame is being allocated. The problem
is that the 16-bit displacement field is overflowed. CompCert’s
PPC semantics failed to specify a constraint on the width of this
immediate value, on the assumption that the assembler would catch
out-of-range values. In fact, this is what happened. We also found a
handful of crash errors in CompCert.

The striking thing about our CompCert results is that the middle-
end bugs we found in all other compilers are absent. As of early 2011,
the under-development version of CompCert is the only compiler we
have tested for which Csmith cannot find wrong-code errors. This is
not for lack of trying: we have devoted about six CPU-years to the
task. The apparent unbreakability of CompCert supports a strong
argument that developing compiler optimizations within a proof
framework, where safety checks are explicit and machine-checked,
has tangible benefits for compiler users.

3.2 Quantitative Comparison of GCC and LLVM Versions
Figure 3 shows the results of an experiment in which we com-
piled and ran 1,000,000 randomly generated programs using
LLVM 1.9–2.8, GCC 3.[0–4].0, and GCC 4.[0–5].0. Every pro-
gram was compiled at –O0, –O1, –O2, –Os, and –O3. A test case
was considered valid if every compiler terminated (successfully
or otherwise) within five minutes and if every compiled random
program terminated (correctly or otherwise) within five seconds. All
compilers targeted x86. Running these tests took about 1.5 weeks
on 20 machines in the Utah Emulab testbed [28]. Each machine had
one quad-core Intel Xeon E5530 processor running at 2.4 GHz.

Compile-time failures The top row of graphs in Figure 3 shows
the observed rate of crash errors. (Note that the y-axes of these
graphs are logarithmic.) These graphs also indicate the number of
crash bugs that were fixed in response to our bug reports. Both
compilers became at least three orders of magnitude less “crashy”
over the range of versions covered in this experiment. The GCC
results appear to tell a nice story: the 3.x release series increases
in quality, the 4.0.0 release regresses because it represents a major
change to GCC’s internals, and then quality again starts to improve.

The middle row of graphs in Figure 3 shows the number of
distinct assertion failures in LLVM and the number of distinct
internal compiler errors in GCC induced by our tests. These are the
numbers of code locations in LLVM and GCC at which an internal

6

 0.0001

 0.001

 0.01

 0.1

 1

 10

1
.9

2
.0

2
.1

2
.2

2
.3

2
.4

2
.5

2
.6

2
.7

2
.8

C
ra

s
h

 E
rr

o
r

R
a

te
 (

%
)

LLVM version

4
.5

5
6

%

3
.1

9
5

%

3
.3

0
8

%

4
.7

2
9

%

0
.9

3
1

8
%

0
.6

8
0

4
%

0
.6

7
9

7
%

0
.0

9
0

8
%

0
.0

1
3

4
%

0
.0

0
2

2
%

4
 b

u
g
s
 f
ix

e
d

2
1
 b

u
g
s
 f
ix

e
d

1
3
 b

u
g
s
 f
ix

e
d

2
7
 b

u
g
s
 f
ix

e
d

2
6
 b

u
g
s
 f
ix

e
d

2
2
 b

u
g
s
 f
ix

e
d

 0.0001

 0.001

 0.01

 0.1

 1

 10

3
.0

.0

3
.1

.0

3
.2

.0

3
.3

.0

3
.4

.0

4
.0

.0

4
.1

.0

4
.2

.0

4
.3

.0

4
.4

.0

4
.5

.0

C
ra

s
h

 E
rr

o
r

R
a

te
 (

%
)

GCC version

9
.1

0
5

%

0
.2

0
4

6
%

0
.1

8
9

1
%

0
.1

7
1

7
%

0
.0

4
7

4
%

4
.7

8
9

%

2
.6

1
4

%

5
.5

6
7

%

6
.1

1
7

%

0
.0

0
2

6
%

0
.0

0
0

3
%

2
1
 b

u
g
s
 f
ix

e
d

1
1
 b

u
g
s
 f
ix

e
d

 0

 5

 10

 15

 20

 25

 30

1
.9

2
.0

2
.1

2
.2

2
.3

2
.4

2
.5

2
.6

2
.7

2
.8

D
is

ti
n

c
t

A
s
s
e

rt
 F

a
ilu

re
s

LLVM version

2
7

2
0

1
8

2
2

2
2

1
2 1
3

7

1
0

1

4
 b

u
g
s
 f
ix

e
d

2
1
 b

u
g
s
 f
ix

e
d

1
3
 b

u
g
s
 f
ix

e
d

2
7
 b

u
g
s
 f
ix

e
d

2
6
 b

u
g
s
 f
ix

e
d

2
2
 b

u
g
s
 f
ix

e
d

 0

 2

 4

 6

 8

 10

 12

 14

3
.0

.0

3
.1

.0

3
.2

.0

3
.3

.0

3
.4

.0

4
.0

.0

4
.1

.0

4
.2

.0

4
.3

.0

4
.4

.0

4
.5

.0

D
is

ti
n

c
t

In
te

rn
a

l
C

o
m

p
ile

r
E

rr
o

rs

GCC version

1
0 1

1

9

7 7

1
1

7

6

1
4

5

0

2
1
 b

u
g
s
 f
ix

e
d

1
1
 b

u
g
s
 f
ix

e
d

 0.0001

 0.001

 0.01

 0.1

 1

 10

1
.9

2
.0

2
.1

2
.2

2
.3

2
.4

2
.5

2
.6

2
.7

2
.8

W
ro

n
g

 C
o

d
e

 E
rr

o
r

R
a

te
 (

%
)

LLVM version

0
.2

0
5
8
%

0
.1

6
6
7
%

0
.1

2
5
7
%

0
.1

6
6
1
% 0
.9

4
1
4
% 7

.5
4
2
%

0
.1

8
4
7
%

0
.2

4
9
1
%

0
.0

3
%

0
.0

0
0
2
%

4
 b

u
g
s
 f
ix

e
d

1
6
 b

u
g
s
 f
ix

e
d

1
1
 b

u
g
s
 f
ix

e
d

6
 b

u
g
s
 f
ix

e
d

7
 b

u
g
s
 f
ix

e
d

1
1
 b

u
g
s
 f
ix

e
d

 0.0001

 0.001

 0.01

 0.1

 1

 10

3
.0

.0

3
.1

.0

3
.2

.0

3
.3

.0

3
.4

.0

4
.0

.0

4
.1

.0

4
.2

.0

4
.3

.0

4
.4

.0

4
.5

.0

W
ro

n
g

 C
o

d
e

 E
rr

o
r

R
a

te
 (

%
)

GCC version

0
.0

4
1
6
%

0
.0

1
4
7
%

0
.0

1
3
3
%

0
.0

0
6
2
%

0
.0

1
2
7
%

0
.0

1
7
8
%

0
.0

4
2
6
%

0
.0

3
7
9
%

0
.0

3
7
8
%

0
.0

1
0
3
%

0
.0

0
5
4
%

5
 b

u
g
s
 f
ix

e
d

1
1
 b

u
g
s
 f
ix

e
d

Figure 3. Distinct crash errors found, and rates of crash and wrong-code errors, from recent LLVM and GCC versions

consistency check failed. These graphs conservatively estimate the
number of distinct failures in these compilers, since we encountered
many segmentation faults caused by use of free memory, null-pointer
dereferences, and similar problems. We did not include these faults
in our graphed results due to the difficulty of mapping crashes back
to distinct causes.

It is not clear which of these two metrics of crashiness is
preferable. The rate of crashes is easy to game: we can make it
arbitrarily high by biasing Csmith to generate code triggering known

bugs, and compiler writers can reduce it to zero by eliminating
error messages and always returning a “success” status code to the
operating system. The number of distinct crashes, on the other hand,
suffers from the drawback that it depends on the quantity and style
of assertions in the compiler under test. Although GCC has more
total assertions than LLVM, LLVM has a higher density: about one
assertion per 100 lines of code, compared to one in 250 for GCC.

Run-time failures The bottom pair of graphs in Figure 3 shows
the rate of wrong-code errors in our experiment. Unfortunately, we

7

 0

 10

 20

 30

 40

 50

 60
5
-8

9
-1

6

1
7
-3

2

3
3
-6

4

6
5
-1

2
8

1
2
9
-2

5
6

2
5
7
-5

1
2

5
1
3
-1

0
2
4

1
0
2
5
-2

0
4
8

2
0
4
9
-4

0
9
6

4
0
9
7
-8

1
9
2

8
1
9
3
-1

6
3
8
4

1
6
3
8
5
-3

2
7
6
8

3
2
7
6
9
-6

5
5
3
6

D
is

ti
n

c
t

C
ra

s
h

 E
rr

o
rs

Range of Program Sizes Tested, in Tokens

Figure 4. Number of distinct crash errors found in 24 hours of
testing with Csmith-generated programs in a given size range

can only report the rate of errors, and not the number of bugs causing
them, because we do not know how to automatically map failing
tests back to the bugs that cause them. These graphs also indicate
the number of wrong-code bugs that were fixed in response to our
bug reports.

3.3 Bug-Finding Performance as a Function of Test-Case Size
There are many ways in which a random test-case generator might
be “tuned” for particular goals, e.g., to focus on certain kinds
of compiler defects. We performed an experiment to answer this
question: given the goal of finding many defects quickly, should one
configure Csmith to generate small programs or large ones? Other
factors being equal, small test cases are preferable because they are
closer to being reportable to compiler developers.

Using the same compilers and optimization options that we
used for the experiments in Section 3.2, we ran our testing process
multiple times. For each run we selected a size range for test inputs,
configured Csmith to generate programs in that range,3 executed
the test process for 24 hours, and counted the distinct crash errors
found. We repeated this for various ranges of test-input sizes.

Figure 4 shows that the rate of crash-error detection varies
significantly as a function of the sizes of the test programs produced
by Csmith. The greatest number of distinct crash errors is found
by programs containing 8 K–16 K tokens: these programs averaged
81 KB before preprocessing. The confidence intervals are at 95%
and were computed based on five repetitions.

We hypothesize that larger test cases expose more compiler errors
for two reasons. First, throughput is increased because compiler start-
up costs are better amortized. Second, the combinatorial explosion of
feature interactions within a single large test case works in Csmith’s
favor. The decrease in bug-finding power at the largest sizes appears
to come from algorithms—in Csmith and in the compilers—that
have superlinear running time.

3.4 Bug-Finding Performance Compared to Other Tools
To evaluate Csmith’s ability to find bugs, we compared it to four
other random program generators: the two versions of Randprog
described in Section 2 and two others described in Section 5. We ran
each generator in its default configuration on one of five identical

3 Although we can tune Csmith to prefer generating larger or smaller output,
it lacks the ability to construct a test case of a specific size on demand. We
ran this experiment by precomputing seeds to Csmith’s random-number
generator that cause it to generate programs of the sizes we desired.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1 2 3 4 5 6 7

C
u
m

u
la

ti
v
e
 D

is
ti
n
c
t
C

ra
s
h
 E

rr
o
rs

Testing Time (Days)

Csmith : 86 crashes

Eide08 : 33 crashes

Lindig07 : 20 crashes

McKeeman98 : 9 crashes

Turner05 : 14 crashes

Figure 5. Comparison of the ability of five random program gener-
ators to find distinct crash errors

Line Function Branch
Coverage Coverage Coverage

make check-c 75.13% 82.23% 46.26%
make check-c & random 75.58% 82.41% 47.11%

GCC % change +0.45% +0.13% +0.85%
absolute change +1,482 +33 +4,471
make test 74.54% 72.90% 59.22%
make test & random 74.69% 72.95% 59.48%

Clang % change +0.15% +0.05% +0.26%
absolute change +655 +74 +926

Table 3. Augmenting the GCC and LLVM test suites with 10,000
randomly generated programs did not improve code coverage much

and otherwise-idle machines, using one CPU on each host. Each
generator repeatedly produced programs that we compiled and tested
using the same compilers and optimization options that were used
for the experiments in Section 3.2. Figure 5 plots the cumulative
number of distinct crash errors found by these program generators
during the one-week test. Csmith significantly outperforms the other
tools.

3.5 Code Coverage
Because we find many bugs, we hypothesized that randomly gener-
ated programs exercise large parts of the compilers that were not cov-
ered by existing test suites. To test this, we enabled code-coverage
monitoring in GCC and LLVM. We then used each compiler to
build its own test suite, and also to build its test suite plus 10,000
Csmith-generated programs. Table 3 shows that the incremental
coverage due to Csmith is so small as to be a negative result. Our
best guess is that these metrics are too shallow to capture Csmith’s
effects, and that we would generate useful additional coverage in
terms of deeper metrics such as path or value coverage.

3.6 Where Are the Bugs?
Table 4 characterizes the GCC and LLVM bugs we found by
compiler part. Tables 5 and 6 show the ten buggiest files in LLVM
and GCC as measured by our experiment in Section 3.1. Most of
the bugs we found in GCC were in the middle end: the machine-
independent optimizers. LLVM is a younger compiler and our
testing shook out some front-end and back-end bugs that would
probably not be present in a more mature software base.

8

GCC LLVM
Front end 0 10
Middle end 49 75
Back end 17 74
Unclassified 13 43
Total 79 202

Table 4. Distribution of bugs across compiler stages. A bug is
unclassified either because it has not yet been fixed or the developer
who fixed the bug did not indicate what files were changed.

Wrong-
Code Crash

C File Name Purpose Bugs Bugs
fold-const constant folding 3 6
combine instruction combining 1 5
tree-ssa-pre partial redundancy elim. 0 4
tree-vrp variable range propagation 0 4
tree-ssa-dce dead code elimination 0 3
tree-ssa-reassoc arithmetic expr. reassociation 0 2
reload1 register reloading 1 1
tree-ssa-loop- loop iteration counting 1 1

niter
dse dead store elimination 2 0
tree-scalar- scalar evolution 2 0

evolution
Other (15 files) n/a 19 24
Total (25 files) n/a 29 50

Table 5. Top ten buggy files in GCC

Wrong-
Code Crash

C++ File Name Purpose Bugs Bugs
Instruction- mid-level instruction 9 6

Combining combining
SimpleRegister- register coalescing 1 10

Coalescing
DAGCombiner instruction combining 5 3
LoopUnswitch loop unswitching 1 4
LICM loop invariant code motion 0 5
LoopStrength- loop strength reduction 1 3

Reduce
FastISel fast instruction selection 1 3
llvm-convert GCC-LLVM IR conversion 0 4
ExprConstant constant folding 2 2
JumpThreading jump threading 0 4
Other (72 files) n/a 46 92
Total (82 files) n/a 66 136

Table 6. Top ten buggy files in LLVM

3.7 Examples of Wrong-Code Bugs
This section characterizes a few of the bugs that were revealed by
miscompilation of programs generated by Csmith. These bugs fit
into a simple model in which optimizations are structured like this:

analysis
if (safety check) {
transformation

}

An optimization can fail to be semantics-preserving if the
analysis is wrong, if the safety check is insufficiently conservative,
or if the transformation is incorrect. The most common root cause
for bugs that we found was an incorrect safety check.

GCC Bug #1: wrong safety check4 If x is variable and c1 and
c2 are constants, the expression (x/c1)!=c2 can be profitably
rewritten as (x-(c1*c2))>(c1-1), using unsigned arithmetic
to avoid problems with negative values. Prior to performing the
transformation, expressions such as c1*c2 and (c1*c2)+(c1-1)
are checked for overflow. If overflow occurs, further simplifications
can be made; for example, (x/1000000000)!=10 always evaluates
to 0 when x is a 32-bit integer. GCC falsely detected overflow for
some choices of constants. In the failure-inducing test case that we
discovered, (x/-1)!=1 was folded to 0. This expression should
evaluate to 1 for many values of x, such as 0.

GCC Bug #2: wrong transformation5 In C, if an argument of
type unsigned char is passed to a function with a parameter of
type int, the values seen inside the function should be in the range
0..255. We found a case in which a version of GCC inlined this kind
of function call and then sign-extended the argument rather than
zero-extending it, causing the function to see negative values of the
parameter when the function was called with arguments in the range
128..255.

GCC Bug #3: wrong analysis6 We found a bug that caused GCC
to miscompile this code:

1 static int g[1];
2 static int *p = &g[0];
3 static int *q = &g[0];
4
5 int foo (void) {
6 g[0] = 1;
7 *p = 0;
8 *p = *q;
9 return g[0];

10 }

The generated code returned 1 instead of 0. The problem oc-
curred when the compiler failed to recognize that p and q are aliases;
this happened because q was mistakenly identified as a read-only
memory location, which is defined not to alias a mutable location.
The wrong not-alias fact caused the store in line 7 to be marked as
dead so that a subsequent dead-store elimination pass removed it.

GCC Bug #4: wrong analysis7 A version of GCC miscompiled
this function:

1 int x = 4;
2 int y;
3
4 void foo (void) {
5 for (y = 1; y < 8; y += 7) {
6 int *p = &y;
7 *p = x;
8 }
9 }

When foo returns, y should be 11. A loop-optimization pass
determined that a temporary variable representing *p was invariant
with value x+7 and hoisted it in front of the loop, while retaining
a dataflow fact indicating that x+7 == y+7, a relationship that no
longer held after code motion. This incorrect fact lead GCC to
generate code leaving 8 in y, instead of 11.

4 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=42721
5 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43438
6 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=42952
7 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43360

9

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=42721
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43438
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=42952
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43360

LLVM Bug #1: wrong safety check8 (x==c1)||(x<c2) can be
simplified to x < c2 when c1 and c2 are constants and c1<c2.
An LLVM version incorrectly transformed (x==0)||(x<-3) to
x < -3. LLVM did a comparison between 0 and −3 in the safety
check for this optimization, but performed an unsigned comparison
rather than a signed one, leading it to incorrectly determine that the
transformation was safe.

LLVM Bug #2: wrong safety check9 (x|c1)==c2 evaluates to 0
if c1 and c2 are constants and (c1&˜c2)!=0. In other words, if any
bit that is set in c1 is unset in c2, the original expression cannot be
true. A version of LLVM contained a logic error in the safety check
for this optimization, wrongly replacing this kind of expression with
0 even when c1 was not a constant.

LLVM Bug #3: wrong safety check10 “Narrowing” is a strength-
reduction optimization that can be applied to loads when only part
of an object is needed, or to stores where only part of an object is
modified. For example, at the level of the abstract machine this code
loads and stores an unsigned int:

1 unsigned y;
2
3 void bar (void) {
4 y |= 255;
5 }

Optimizing compilers for x86 may translate bar into the following
code, which loads nothing and stores a single byte:

bar:
movb $-1, y
ret

We found a case in which LLVM attempted to perform an
analogous narrowing operation, but a logic error caused the safety
check to succeed even when a different store modified the object
prior to the store that was the target of the narrowing transformation.

LLVM Bug #4: wrong analysis11 This code should print “5”:

1 void foo (void) {
2 int x;
3 for (x = 0; x < 5; x++) {
4 if (x) continue;
5 if (x) break;
6 }
7 printf("%d", x);
8 }

LLVM’s scalar evolution analysis computes properties of loop
induction variables, including the maximum number of iterations.
Line 5 of the program above caused this analysis to mistakenly
conclude that x was 1 after the loop executed.

4. Discussion
Are we finding bugs that matter? One might suspect that random
testing finds bugs that do not matter in practice. Undoubtedly
this happens sometimes, but in a number of instances we have
direct confirmation that Csmith is finding bugs that matter, because
bugs that we have found and reported have been independently
rediscovered and re-reported by application developers. By a very
conservative estimate—counting only the times that a compiler

8 http://llvm.org/bugs/show_bug.cgi?id=2844
9 http://llvm.org/bugs/show_bug.cgi?id=7750
10 http://llvm.org/bugs/show_bug.cgi?id=7833
11 http://llvm.org/bugs/show_bug.cgi?id=7845

developer explicitly labeled a wrong-code bug report as a duplicate
of one of ours—this has happened eight times: four times for GCC
and four for LLVM. We also have indirect confirmation that our bugs
matter. The developers of open-source compilers fixed almost all of
the bugs that we reported, and the GCC development team marked
25 of our bugs as P1: the maximum, release-blocking priority.

Creating reportable bugs Reporting compiler crash bugs is easy,
but reporting wrong-code bugs is harder. Compiler developers will
(rightfully) ignore a wrong-code bug report that is based on a large
random program. Rather, a bug report must be accompanied by com-
pelling evidence that a bug exists; in most cases the best evidence
is a small test case that is obviously miscompiled. Delta debug-
ging [31] automates test-case reduction, but all existing variants that
are intended for reducing C programs—such as hierarchical delta
debugging [18] and Wilkerson’s implementation [29]—introduce
undefined behavior. The resulting programs are small but useless.
To avoid undefined behavior during reduction, we rely on compiler
warnings, dynamic checkers, and manual test-case reduction. There
is substantial room for improvement.

The relationship between testing and verification As our Comp-
Cert results make plain, verification does not obviate testing, but
rather complements it. Testing can provide end-to-end evidence that
numerous paths through a system work properly. Verification, on the
other hand, typically focuses on a narrow slice of a stack of tools,
and the parts outside the slice remain in the trusted computing base.
There does not yet appear to be a nuanced understanding of the
kinds of testing, and the amount of testing effort, that are rendered
unnecessary by artifacts like CompCert [14] and seL4 [12].

Toward realistic, correct compilers Compilers must support rapid
development to cope with new optimizations, new source languages,
and new target architectures. Generated code often needs to be
resource-efficient to support application developers’ goals. Finally,
compilers should generate correct code. Meeting even two of these
goals is challenging, and it is not clear how to meet all three in a
single tool. There seem to be four paths forward.

Compiler verification. Although it is difficult to imagine a
verified compiler for C++0x, due to the immense complexity of
the draft standard, CompCert is an existence proof that a verified,
optimizing C compiler is within reach. However, the burden of
verification is significant. CompCert still lacks a number of useful
C features and few mainstream compiler developers have the
formal verification skills that are needed to add new language
features and optimization passes. On the other hand, projects such as
XCERT [26] may dramatically lower the bar for working on verified
compilation.

Compiler simplicity. For non-bottleneck applications, compiler
optimization adds little end-user value. It would seem possible to
take a simple compiler such as TCC [2], which does not optimize
across statement boundaries, and validate it through code inspec-
tions, heavy use, and other techniques. At present, however, TCC is
much buggier than more heavily-used compilers such as GCC and
LLVM.

Compiler testing. We hypothesize that it is possible to gain
high confidence in a complex compiler like GCC by choosing a
fixed configuration, disabling optimization passes whose effects are
significantly non-local, and performing “just enough testing.” A
test plan would be sufficient if all code paths through the compiler
that are used to compile an application of interest had been tested.
Clearly, a sophisticated way to abstract over paths is needed.

Equivalence checking. If equivalence checkers for machine
code [7] could scale to large programs, verified compilers would
be largely unnecessary because one compiler’s output could be
proved equivalent to another’s. Although these tools are not likely
to scale up to multi-megabyte applications anytime soon, it should

10

http://llvm.org/bugs/show_bug.cgi?id=2844
http://llvm.org/bugs/show_bug.cgi?id=7750
http://llvm.org/bugs/show_bug.cgi?id=7833
http://llvm.org/bugs/show_bug.cgi?id=7845

be possible to automatically partition applications into smaller parts
so that equivalence checking can be done piecewise.

Future work Augmenting Csmith with white-box testing tech-
niques, where the structure of the tested system is taken into account
in a first-class way, would be productive. This will be difficult for
several reasons. First, we anticipate substantial challenges in inte-
grating the necessary constraint-solving machinery with Csmith’s
existing logic for generating valid C programs. It is possible that we
will need to start over, next time engineering a version of Csmith in
which all constraints are explicit and declarative, rather than being
buried in a small mountain of C++. Second, the inverse problems
that must be solved to generate an input become prohibitively dif-
ficult when inputs pass through a parser, particularly if the parser
contains hash tables. Godefroid et al. [8] showed a way to solve this
problem by integrating a constraint solver with a grammar for the
language being generated. However, due to its non-local pointer and
effect analyses, the validity decision problem for programs in the
subset of C that Csmith generates is far harder than the question
of whether a program can be generated by the JavaScript grammar
used by Godefroid et al.

5. Related Work
Compilers have been tested using randomized methods for nearly
50 years. Boujarwah and Saleh [4] gave a good survey in 1997.
In 1962, Sauder [22] tested the correctness of COBOL compilers
by placing random variables in programs’ data sections. In 1970,
Hanford [10] used a PL/1 grammar to drive the generation of random
programs. The grammar was extensible and was augmented by
“syntax generators” that could be used, for example, to ensure that
variables were declared before being used. In 1972, Purdom [21]
used a syntax-directed method to generate test sentences for a parser.
He gave an efficient algorithm for generating short sentences from a
context-free grammar such that each production of the grammar was
used at least once, and he tested LR(1) parsers using this technique.

Burgess and Saidi [5] designed an automatic generator of test
cases for FORTRAN compilers. The tests were designed to be self-
checking and to contain features that optimizing compilers were
known to exploit. In order to predict test cases’ results, the code
generator restricted assignment statements to be executed only once
during the execution of the sub-program or main program. These
tests found four bugs in two FORTRAN 77 compilers.

In 1998, McKeeman [16] coined the term “differential testing.”
His work resulted in DDT, a family of program generators that
conform to the C standard at various levels, from level 1 (random
characters) to level 7 (generated code is “model conforming,” incor-
porating some high-level structure). DDT is more expressive than
Csmith (DDT is capable of generating all legal C programs) and it
was used to find numerous bugs in C compilers. To our knowledge,
McKeeman’s paper contains the first acknowledgment that it is im-
portant to avoid undefined behavior in generated C programs used
for compiler testing. However, DDT avoided only a small subset
of all undefined behaviors, and only then during test-case reduc-
tion, not during normal testing. Thus, it is not a suitable basis for
automatic bug-finding.

Lindig [15] used randomly generated C programs to find several
compiler bugs related to calling conventions. His tool, called Quest,
was specially targeted: rather than generating code with control
flow and arithmetic, Quest generates code that creates complex data
structures, loads them with constant values, and passes them to a
function where assertions check the received values. Because its
tests are self-checking, Quest is not based on differential testing.
Self-checking tests are convenient, but the drawback is that Quest
is far less expressive than Csmith. Lindig used Quest to test GCC,
LCC, ICC, and a few other compilers and found 13 bugs.

Sheridan [23] also used a random generator to find bugs in
C compilers. A script rotated through a list of constants of the
principal arithmetic types, producing a source file that applied
various operators to pairs of constants. This tool found two bugs in
GCC, one bug in SUSE Linux’s version of GCC, and five bugs in
CodeSourcery’s version of GCC for ARM. Sheridan’s tool produces
self-checking tests. However, it is less expressive than Csmith and it
fails to avoid undefined behavior such as signed overflow.

Zhao et al. [32] created an automated program generator for
testing an embedded C++ compiler. Their tool allows a general test
requirement, such as which optimization to test, to be specified in a
script. The generator constructs a program template based on the test
requirement and uses it to drive further code generation. Zhao et al.
used GCC as the reference to check the compiler under test. They
reported greatly improved statement coverage in the tested modules
and found several new compiler bugs.

6. Conclusion
Using randomized differential testing, we found and reported hun-
dreds of previously unknown bugs in widely used C compilers, both
commercial and open source. Many of the bugs we found cause a
compiler to emit incorrect code without any warning. Most of our re-
ported defects have been fixed, meaning that compiler implementers
found them important enough to track down, and 25 of the bugs we
reported against GCC were classified as release-blocking. All of this
evidence suggests that there is substantial room for improvement in
the state of the art for compiler quality assurance.

To create a random program generator with high bug-finding
power, the key problem we solved was the expressive generation
of C programs that are free of undefined behavior and independent
of unspecified behavior. Csmith, our program generator, uses both
static analysis and dynamic checks to avoid these hazards.

The return on investment from random testing is good. Our rough
estimate—including faculty, staff, and student salaries, machines
purchased, and university overhead—is that each of the more than
325 bugs we reported cost less than $1,000 to find. The incremental
cost of a new bug that we find today is much lower.

Software Csmith is open source and available for download at
http://embed.cs.utah.edu/csmith/.

Acknowledgments
The authors would like to thank Bruce Childers, David Coppit,
Chucky Ellison, Robby Findler, David Gay, Casey Klein, Gerwin
Klein, Chris Lattner, Sorin Lerner, Xavier Leroy, Bill McKeeman,
Diego Novillo, Alastair Reid, Julian Seward, Zach Tatlock, our
shepherd Atanas Rountev, and the anonymous reviewers for their
invaluable feedback on drafts of this paper. We also thank Hans
Boehm, Xavier Leroy, Michael Norrish, Bryan Turner, and the GCC
and LLVM development teams for their technical assistance in
various aspects of our work.

This research was primarily supported by an award from
DARPA’s Computer Science Study Group.

References
[1] ACE Associated Computer Experts. SuperTest C/C++ compiler test

and validation suite. http://www.ace.nl/compiler/supertest.
html.

[2] F. Bellard. TCC: Tiny C compiler, ver. 0.9.25, May 2009. http:
//bellard.org/tcc/.

[3] C. L. Biffle. Undefined behavior in Google NaCl, Jan. 2010. http://
code.google.com/p/nativeclient/issues/detail?id=245.

11

http://embed.cs.utah.edu/csmith/
http://www.ace.nl/compiler/supertest.html
http://www.ace.nl/compiler/supertest.html
http://bellard.org/tcc/
http://bellard.org/tcc/
http://code.google.com/p/nativeclient/issues/detail?id=245
http://code.google.com/p/nativeclient/issues/detail?id=245

[4] A. S. Boujarwah and K. Saleh. Compiler test case generation methods:
a survey and assessment. Information and Software Technology,
39(9):617–625, 1997.

[5] C. J. Burgess and M. Saidi. The automatic generation of test cases for
optimizing Fortran compilers. Information and Software Technology,
38(2):111–119, 1996.

[6] E. Eide and J. Regehr. Volatiles are miscompiled, and what to do about
it. In Proc. EMSOFT, pages 255–264, Oct. 2008.

[7] X. Feng and A. J. Hu. Cutpoints for formal equivalence verification of
embedded software. In Proc. EMSOFT, pages 307–316, Sept. 2005.

[8] P. Godefroid, A. Kieżun, and M. Y. Levin. Grammar-based whitebox
fuzzing. In Proc. PLDI, pages 206–215, June 2008.

[9] R. Hamlet. Random testing. In J. Marciniak, editor, Encyclopedia of
Software Engineering. Wiley, second edition, 2001.

[10] K. V. Hanford. Automatic generation of test cases. IBM Systems
Journal, 9(4):242–257, Dec. 1970.

[11] International Organization for Standardization. ISO/IEC 9899:TC2:
Programming Languages—C, May 2005. http://www.open-std.
org/jtc1/sc22/wg14/www/docs/n1124.pdf.

[12] G. Klein et al. seL4: Formal verification of an OS kernel. In Proc.
SOSP, pages 207–220, Oct. 2009.

[13] J. C. Knight and N. G. Leveson. An experimental evaluation of the
assumption of independence in multiversion programming. IEEE
Trans. Software Eng., 12(1):96–109, Jan. 1986.

[14] X. Leroy. Formal verification of a realistic compiler. Commun. ACM,
52(7):107–115, July 2009.

[15] C. Lindig. Random testing of C calling conventions. In Proc.
AADEBUG, pages 3–12, Sept. 2005.

[16] W. M. McKeeman. Differential testing for software. Digital Technical
Journal, 10(1):100–107, Dec. 1998.

[17] B. P. Miller, L. Fredriksen, and B. So. An empirical study of the
reliability of UNIX utilities. Commun. ACM, 33(12):32–44, Dec.
1990.

[18] G. Misherghi and Z. Su. HDD: Hierarchical delta debugging. In Proc.
ICSE, pages 142–151, May 2006.

[19] Perennial, Inc. ACVS ANSI/ISO/FIPS-160 C validation suite, ver. 4.5,
Jan. 1998. http://www.peren.com/pages/acvs_set.htm.

[20] Plum Hall, Inc. The Plum Hall validation suite for C. http:
//www.plumhall.com/stec.html.

[21] P. Purdom. A sentence generator for testing parsers. BIT Numerical
Mathematics, 12(3):366–375, 1972.

[22] R. L. Sauder. A general test data generator for COBOL. In AFIPS
Joint Computer Conferences, pages 317–323, May 1962.

[23] F. Sheridan. Practical testing of a C99 compiler using output compar-
ison. Software—Practice and Experience, 37(14):1475–1488, Nov.
2007.

[24] J. Souyris, V. Wiels, D. Delmas, and H. Delseny. Formal verification of
avionics software products. In Proc. FM, pages 532–546, Nov. 2009.

[25] S. Summit. comp.lang.c frequently asked questions. http://c-faq.
com/.

[26] Z. Tatlock and S. Lerner. Bringing extensibility to verified compilers.
In Proc. PLDI, pages 111–121, June 2010.

[27] B. Turner. Random Program Generator, Jan. 2007. http://sites.
google.com/site/brturn2/randomcprogramgenerator.

[28] B. White et al. An integrated experimental environment for distributed
systems and networks. In Proc. OSDI, pages 255–270, Dec. 2002.

[29] D. S. Wilkerson. Delta ver. 2006.08.03, Aug. 2006. http://delta.
tigris.org/.

[30] M. Wolfe. How compilers and tools differ for embedded systems. In
Proc. CASES, Sept. 2005. Keynote address. http://www.pgroup.
com/lit/articles/pgi_article_cases.pdf.

[31] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-
inducing input. IEEE Trans. Software Eng., 28(2):183–200, Feb. 2002.

[32] C. Zhao et al. Automated test program generation for an industrial
optimizing compiler. In Proc. ICSE Workshop on Automation of
Software Test, pages 36–43, May 2009.

12

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
http://www.peren.com/pages/acvs_set.htm
http://www.plumhall.com/stec.html
http://www.plumhall.com/stec.html
http://c-faq.com/
http://c-faq.com/
http://sites.google.com/site/brturn2/randomcprogramgenerator
http://sites.google.com/site/brturn2/randomcprogramgenerator
http://delta.tigris.org/
http://delta.tigris.org/
http://www.pgroup.com/lit/articles/pgi_article_cases.pdf
http://www.pgroup.com/lit/articles/pgi_article_cases.pdf

	Abstract
	Introduction
	Csmith
	Randomized Differential Testing using Csmith
	Design Goals
	Randomly Generating Programs
	Safety Mechanisms
	Efficient Global Safety
	Design Trade-offs

	Results
	Opportunistic Bug Finding
	Quantitative Comparison of GCC and LLVM Versions
	Bug-Finding Performance as a Function of Test-Case Size
	Bug-Finding Performance Compared to Other Tools
	Code Coverage
	Where Are the Bugs?
	Examples of Wrong-Code Bugs

	Discussion
	Related Work
	Conclusion
	Acknowledgments
	References

