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We describe a method designed to significantly reduce the effort required to retarget a compiler to
a new architecture, while at the same time producing fast and effective compilers. The basic idea
is to use the native C compiler at compiler construction time to discover architectural features of
the new architecture. From this information a formal machine description is produced. Given this
machine description, a native code-generator can be generated by a back-end generator such as BEG
or burg. A prototype automatic Architecture Discovery Tool (called ADT) has been implemented.
This tool is completely automatic and requires minimal input from the user. Given the Internet
address of the target machine and the command-lines by which the native C compiler, assembler,
and linker are invoked, ADT will generate a BEG machine specification containing the register
set, addressing modes, instruction set, and instruction timings for the architecture. The current
version of ADT is general enough to produce machine descriptions for the integer instruction sets of
common RISC and CISC architectures such as the Sun SPARC, Digital Alpha, MIPS, DEC VAX, and
Intel x86.

Categories and Subject Descriptors: D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Portability; D.3.2 [Programming Languages]: Language Classifications—
Macro and assembly languages; D.3.4 [Programming Languages]: Processors—Translator writ-
ing systems and compiler generators

General Terms: Languages

Additional Key Words and Phrases: Back-end generators, compiler configuration scripts,
retargeting

1. INTRODUCTION

An important aspect of a compiler implementation is its retargetability. For
example, a new programming language whose compiler can be quickly retar-
geted to a new hardware platform or a new operating system is more likely to
gain widespread acceptance than a language whose compiler requires extensive
retargeting effort.

In this paper we will briefly review the problems associated with two
popular approaches to building retargetable compilers, C Code Code Gen-
eration, and Specification-Driven Code Generation. We will then propose a
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new method, Self-Retargeting Code Generation, which attempts to overcome
these problems.

The basic idea behind Self-Retargeting Code Generation is very simple. Con-
sider a scenario where we have just been delivered a new machine M, with
a CPU whose ISA is unknown to us. In order to retarget the compiler for
our favorite language to M, we need to find out about M’s instruction set,
register set, addressing modes, instruction timings, procedure calling conven-
tions, etc. We could attempt to read the manuals that were shipped with M,
but it might be easier if, somehow, we could coax this information directly
out of M and the systems software (native code compilers and assemblers)
that were shipped with it. In fact, we can treat M (and its system software)
as an oracle that has complete self-knowledge, and we can think of clever
ways of querying M about itself, convincing it to give up this information.
For example:

(1) We could ask any native code compiler about the instruction set, register
set, and addressing modes of the ISA, as well as the standard calling con-
ventions of the operating system.

(2) We could ask any assembler about the instruction encoding of the machine,
and, if it is an optimizing assembler, the instruction scheduling rules of the
architecture.

(3) We could askM itself, finally, about the cost of each instruction, sinceM
is an expert on executing instructions for its own ISA.

The Architecture Discovery Tool, or ADT, the tool we will be describing in this
paper, implements the Self-Retargeting Code Generation idea. Given the In-
ternet address of a machine, ADT will query it and its native C compiler and
assembler, extracting information about the ISA, instruction costs, procedure
calling conventions, assembler syntax, etc.. From this information the ADT will
synthesize a formal machine description from which the BEG back-end gener-
ator can produce a new code generator.

Before we continue to discuss the design of ADT, we will briefly discuss the
merits of C Code Code Generation and Specification-Driven Code Generation.

1.1 C Code Code Generation

The back-end of a C Code Code Generation-based compiler generates C code
which is compiled by the native C compiler. If care has been taken to pro-
duce portable C code, then targeting a new architecture requires no further
action from the compiler writer. Furthermore, any improvement to the native
C compiler’s code generation and optimization phases will automatically ben-
efit the compiler. A number of compilers have achieved portability through C
Code Code Generation. Examples include early versions of the SRC Modula-3
compiler [Digital Systems Research Center 1996] and the ISE Eiffel compiler
[Interactive Software Engineering 1996].

Unfortunately, experience has shown that generating truly portable C code
is much more difficult than it might seem. Not only is it necessary to handle
architecture and operating system specific differences such as word size and
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alignment, but also the idiosyncrasies of the C compilers themselves. Machine-
generated C code will often exercise the C compiler more than code written
by humans, and is therefore more likely to expose hidden problems in the code
generator and optimizer. Other potential problems are the speed of compilation1

and the fact that the C compiler’s optimizer (having been targeted at code
produced by humans) may be ill equipped to optimize the code emitted by our
compiler.

Further complications arise if there is a large semantic gap between the
source language and C. For example, if there is no clean mapping from the
source language’s types to C’s types, the generated C program program will be
very difficult to debug.

C Code Code Generation-based compilers for languages supporting garbage
collection face even more difficult problems. Many collection algorithms assume
that there will always be a pointer to the beginning of every dynamically allo-
cated object, a requirement which is violated by some optimizing C compilers.
Under certain circumstances, this will result in live objects being collected.

Other compelling arguments against the use of C as an intermediate lan-
guage can be found in Chase and Ridoux [1990]. C−− [Ramsey and Jones 2000]
is a recent attempt to design a C-like intermediate language that overcomes
these difficulties.

1.2 Specification-Driven Code Generation

The back-end of a Specification-Driven Code Generation compiler generates
intermediate code which is transformed to machine code by a specification-
driven code generator. The main disadvantage is that retargeting becomes a
much more arduous process, since a new specification has to be written for
each new architecture. A gcc [Stallman 1995] machine specification, for exam-
ple, can be several thousand lines long. Popular back-end generators such as
BEG [Emmelmann et al. 1989] and burg [Fraser et al. 1992] require detailed
descriptions of the architecture’s register set and register classes, as well as a
set of pattern-matching rules that provide a mapping between the intermediate
code and the instruction set.

Writing correct machine specifications can be a difficult task in itself. This
can be seen by browsing through gcc’s machine descriptions. The programmers
writing these specifications experienced several different kinds of problems:

Documentation/Software Errors/Omissions. The most serious and com-
mon problems seem to stem from documentation being out of sync with the
actual hardware/software implementation:

(1) “. . . the manual says that the opcodes are named movsx . . . ,
but the assembler . . . does not accept that.’’ [i386]

(2) “WARNING! There is a small i860 hardware limitation
(bug?) which we may run up against . . . we must avoid

1In some C Code Code Generation-based compilers the most expensive part of compilation is com-
piling the generated C code.
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using an ‘addu’ instruction to perform such comparisons
because . . . This fact is documented in a footnote on
page 7-10 of the . . . Manual.” [i860]

Lack of Understanding of the Architecture. Even with access to manuals,
some specification writers seemed uncertain of exactly which constructs were
legal:

(3) “Is this number right?” [mips]
(4) “Can this ever happen on i386?” [i386]
(5) “Will divxu always work here?” [i386]

Hardware/Software Updates. Often, updates to the hardware or systems
software are not immediately reflected by updates in the machine specification:

(6) “This has not been updated since version 1. It is
certainly wrong.” [ns32k]

Lack of Time. Sometimes the programmer knew what needed to be done,
but simply did not have the time to implement the changes:

(7) “This INSV pattern is wrong. It should . . . Fixing this
is more work than we care to do for the moment, because
it means most of the above patterns would need to be
rewritten . . . .” [Hitachi H8/300]

Note that none of these comments are gcc specific. Rather, they express uni-
versal problems of writing and maintaining a formal machine specification,
regardless of which machine-description language and back-end generator is
being targeted.

1.3 Self-Retargeting Code Generation

In this paper we will propose an approach to the design of retargetable compil-
ers which combines the advantages of the two methods outlined above, while
avoiding most of their drawbacks. The basic idea is to use the native C compiler
to discover architectural features of the new target machine, and then to use
that information to automatically produce a specification suitable for input to
a back-end generator. We will refer to this method as Self-Retargeting Code
Generation.

More specifically, our system generates a number of small C programs2 which
are compiled to assembly-code by the native C compiler. We will refer to these
codes collectively as samples, and individually as C code samples and assembly-
code samples.

The assembly-code samples are analyzed to extract information regarding
the instruction set, the register set and register classes, the procedure call-
ing convention, available addressing modes, and the sizes and alignment con-
straints of available data types.

2Obviously, other widely available languages such as FORTRAN will do equally well.
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Fig. 1. The structure of a self-retargeting compiler ac for some language L. The back-end generator
BEG and ADT are integrated into ac. In this example, the user asks ac to retarget itself to the
SPARC.

The primary application of the ADT is to aid and speed up manual retar-
geting. Although a complete analysis of a new architecture can take a long
time (several hours, depending on the speed of the host and target systems and
the link between them), it is still 1-2 orders of magnitude faster than manual
retargeting.

However, with the advent of Self-Retargeting Code Generation it will also
become possible to build self-retargeting compilers, that is, compilers that can
automatically adapt themselves to produce native code for any architecture.
Figure 1 shows the structure of such a compiler ac for some language L. Orig-
inally designed to produce code for the Alpha and VAX, ac is able to retarget
itself to the SPARC architecture. The user only needs to supply the Internet
address of a SPARC machine and the command lines by which the C compiler,
assembler, and linker are invoked on this machine. ADT, which is integrated
into the compiler, then proceeds to compile a large number of small C samples
on the SPARC, analyzes the resulting assembly code, and based on the informa-
tion it has collected, constructs a machine specification from which BEG (also
included in ac) generates a new back-end.

The architecture discovery package will have other potential uses as well.
For example, machine-independent tools for editing of executables (EEL)
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[Larus and Schnarr 1995], ATOM [Srivastava and Eustace 1994], dynamic com-
pilation (DCG) [Engler and Proebsting 1994], and decompilation [Cifuentes and
Gough 1995] all need access to architectural descriptions, and their retargeting
would be simplified by automatic architecture discovery.

2. SYSTEM OVERVIEW AND REQUIREMENTS

For a system like this to be truly useful it must make few requirements—of
its users as well as of the target machines. The prototype implementation has
been designed to be as automatic as possible, to require as little user input as
possible, and to require the target system to provide as few and simple tools
as possible:

(1) We require a user to provide the Internet address of the target machine
and the command-lines by which the C compiler, assembler, and linker are
invoked. For a wide range of machines, all other information is deduced by
the system itself, without further user interaction.

(2) We require the target machine to provide a C compiler that produces assem-
bly code, an assembler which flags illegal assembly instructions,3 a linker,
and a remote execution facility such as rsh. The C compiler is used to provide
assembly-code samples for us to analyze; the assembler is used to deduce
the syntax of the assembly language; and the remote execution facility is
used for communication between the development and target machines.

If these requirements have been fulfilled, the ADT will produce a BEG machine
description completely autonomously.

The ADT consists of five major components (see Figure 2). The Genera-
tor generates C code programs and compiles them to assembly code on the
target machine. The Lexer extracts and tokenizes relevant instructions (i.e.,
corresponding to the C statements in the sample) from the assembly code.
The preprocessor builds a data-flow graph from each sample. The Extractor
uses this graph to extract the semantics of individual instructions and ad-
dressing modes. The synthesizer, finally, gathers the collected information to-
gether and produces a machine description, in our case for the BEG back-end
generator.

3. THE GENERATOR AND LEXER

The Generator produces a large number of simple C code samples. Samples
may contain arithmetic and logical operations like

pmain(){int b=5,c=6,a=b+c;}q,
conditionals like

pmain(){int b=5,c=6,a=7; if(b<c)a=8;}q,

3The manner in which errors are reported is unimportant; assemblers which simply crash on the
first error are quite acceptable for our purposes.
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Fig. 2. An overview of the major components of the architecture discovery system. The Generator
produces a large number of small C programs (a) and compiles them to assembly on the target ma-
chine. The Lexer analyzes the raw assembly code (b) and extracts and tokenizes the instructions
that are relevant to our further analyses (c). The Preprocessor deduces the signature of all instruc-
tions, and builds a data-flow graph (d) from each sample. The semantics of individual instructions
(e) are deduced from this graph, and from this information, finally, a complete BEG specification
(f ) is built.

and procedure calls like

pmain(){int b=5,a; a=P(b);}q.

We would prefer to generate a “minimal” set of samples, the smallest set such
that the resulting assembly-code samples would be easy to analyze and would
contain all the instructions produced by the compiler. Unfortunately, we cannot
know whether a particular sample will produce interesting code combinations
for a particular machine until we have tried to analyze it. We must therefore
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Fig. 3. A C code sample and the resulting assembly code generated by the native Alpha compiler.
The four relevant instructions of the sample have been shaded.

produce as many simple samples as possible. For example, for subtraction we
generate

a=b-c, a=a-b, a=b-a,
a=a-a, a=b-b, a=7-b,
a=b-7, a=7-a, a=a-7.

This means that we will be left with a large number of samples, typically around
150 for each numeric type supported by the hardware. The samples are created
by simply instantiating a small number of templates parameterized on type
(int, float, etc.) and operation (+,−, etc.).

3.1 Extracting Relevant Instructions

The samples are compiled to assembly code by the native C compiler and the
Lexer extracts the instructions relevant to our analysis. This is nontrivial, since
the relevant instructions often only make up a small fraction of the ones pro-
duced by the C compiler.

The Alpha C compiler, for example, will compile pmain(){int b,c,a=b+c;}q
into the twenty-two nonblank lines shown in Figure 3. Eleven of these lines are
directives, one line is a label, one is a comment, and nine are instructions. Only
four instructions are relevant to us. Furthermore, compiling with a moderate
level of optimization (−O2) makes the compiler remove the code generated from
a=b+c, since it can determine that a’s value will never be used. Similarly, in the
sample pmain(){int b=1,c=2,a=b+c;}q (where initializations have been included
in order to be able to execute the sample), the Alpha C compiler will replace
a=b+c by a=3 even with optimization turned off.
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Fig. 4. A C code sample and the resulting assembly-code sample for the VAX. The relevant in-
struction (addl3) can be easily found since it is delimited by labels L2 and L4, corresponding to
Begin and End, respectively, and the assembly code contains several jumps to these labels.

Fortunately, it is possible to design the C code samples to make it easy to
extract the relevant instructions and to minimize the compiler’s opportunities
for optimizations that could complicate our analyses. In Figure 4 a separately
compiled procedure Init initializes the variables a, b, and c, but hides the
initialization values from the compiler to prevent it from performing constant
propagation. The main routine contains three conditional jumps to two labels
Begin and End, immediately preceding and following the statement a=b+c. The
compiler will not be able to optimize these jumps away since they depend on
variables hidden within Init. Two assembly-code labels corresponding to Begin
and End will effectively delimit the instructions of interest. These labels will
be easy to identify since they each must be referenced at least three times.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 4, July 2002.



378 • Collberg

The printf statement ensures that a dead code elimination optimization will
not remove the assignment to a.

3.2 Tokenizing the Input

Before we can start parsing the assembly code samples, we must try to discover
as much as possible about the syntax accepted by the assembler. Fortunately,
most modern assembly languages seem to be variants of a “standard” notation:

—there is at most one instruction per line;
—each instruction consists of an optional label, an operator, and a list of comma-

separated arguments;
—integer literals are prefixed by their base; and
—comments extend from a special comment-character to the end of the line.

We use two fully automated techniques for discovering the details of a particular
assembler:

(1) we can textually scan the assembly code produced by the C compiler, or
(2) we can draw conclusions based on whether a particular assembly program

is accepted or rejected by the assembler.

We call these methods Textual Analysis and Assembler Error Analysis,
respectively.

For example, one of the first things we need to discover is what integer literal
syntax the assembler accepts:

(1) Which bases are accepted?
(2) Which prefixes do the different bases use?
(3) Are upper-, lower-, and/or mixed-case hexadecimal literals accepted?

To extract this information, we use a simple textual analysis. We start by com-
piling the program pmain(){int a=1235;}q and then scan the resulting assem-
bly code for the constant 1235, in all the common bases. If we find the string
"0x4d3," we can conclude that lower-case hexadecimal constants with the pre-
fix "0x" are accepted by the assembler.

We use assembler error analysis to discover the comment-characters ac-
cepted by the assembler. We start out with the assembly code produced from
pmain(){ }q and add a line consisting of a suspected comment character (such
as #) followed by other, obviously erroneous characters, yielding a line such as
p#&$^*%*^)(&q. We submit this to the assembler for acceptance or rejection. If
the assembler does not produce any errors, we can conclude that # is indeed
a comment character. We repeat this process with all combinations of one or
two special characters. This way, we find out that the Alpha assembler accepts
comments of the form

(1) pÃ#q until end of line,
(2) p/*q until p*/q, and
(3) p//q until end of line.
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Fig. 5. Prolog definite clause grammars (DCGs) describing the integer register set of the SPARC
((a) and (b)) and the addressing modes of the x86 (c). The grammars can be used directly for either
parsing or generation. digit(L,H) parses digits between L and H. int( ), reg( ), and lab( ) parse
integers, registers, and labels, respectively, and return the parsed token.

3.3 Finding the Register Set and Addressing Modes

To find the register set supported by the architecture, we start with a simple
textual analysis of the samples, using the heuristic that any operand or part of
an operand that is not a label or a literal, and that does not contain a bracket,
is a potential register. From these strings we build a grammar4 that generates
the strings (Figure 5(a)).

For architectures with large register sets, it is likely that not all registers
will be present in the samples. We therefore construct a generalized grammar
(Figure 5(b)) that is used to generate a stream of potential registers which are
tested using assembler error analysis.

Classification of addressing modes is straightforward once we have gained a
good understanding of the register set. A grammar (Figure 5(c)) is constructed
that is able to parse an arbitrary operand, and return its kind (a number) and
its constituent parts. The grammar in Figure 5(c), for example, classifies the
string "0(,%edx,8)" as being an addressing mode of type 6 whose constituent
parts are [int(0),reg(%edx),int(8)]. Obviously, at this point this is merely a
syntactic classification. Later we will discover the exact mathematical function
computed by the addressing mode.

We also use assembler error analysis to discover the accepted ranges of in-
teger immediate operands. On the SPARC, for example, we would detect that
the add instruction’s immediate operand is restricted to [-4096,4095].

Finally, assembler error analysis is used to construct register classes. A reg-
ister class is defined to be any subset of registers that can occur in at least one
argument position of at least one instruction or addressing mode. For example,
if an instruction set has two instructions pfoo rq and pbar sq, where r is one
of the registers R2 or R5 and s is one of R3 and R5, then we will construct two
register classes {R2, R5} and {R3, R5}. Note that this is a different classification
than what most ISA descriptions would give. Most manuals will classify two

4Algorithms developed in the field “Computational Learning Theory” can be used for this purpose.
See Brāzma [1995].
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Fig. 6. A simple assignment sample, and the corresponding MIPS assembly code and data-flow
graph.

registers as belonging to the same class if they “look the same,” even if they are
not completely interchangeable.

Some assembly languages can be quite exotic. The Tera [Tera Computer
Company 1995], for example, uses a variant of Scheme as its assembly language.
In such cases our automated techniques will not be sufficient, and we require
the user to provide a translator into a more standard notation.

4. THE PREPROCESSOR

The samples produced by the lexical phase may contain irregularities that
will make them difficult to analyze directly. Some problems may be due to
the idiosyncrasies of the architecture, some due to the code generation and
optimization algorithms used by the C compiler. It is the task of the preproces-
sor to identify any problems and convert each sample into a standard form (a
data-flow graph) which can serve as the basis for further analysis. Referring
back to Figure 2, the preprocessor takes a set of parsed assembly-code samples
as input (Figure 2(c)) and produces a set of data-flow graphs (Figure 2(d)) as
output.

A data-flow graph makes explicit the exact flow of information between in-
dividual instructions in a sample. For example, the preprocessor would convert
the MIPS assembly code sample in Figure 6(b) into the data-flow graph in
Figure 6(c). It is obviously much easier to extract information from the data-
flow graph than directly from the assembly code.

In order to be able to build the data-flow graph, we must, for every instruction
of every sample, know where the instruction takes its arguments and where
it deposits its result(s). There are several major sources of confusion, some of
which are illustrated in Figure 7.

For example, an operand that does not appear explicitly in the assembly code,
but is hardwired into the instruction itself, is called an implicit argument. They
occur frequently on older architectures (on the x86, cltd (Figure 12) takes its in-
put argument and delivers its result in register %eax), as well as on more recent
ones when procedure call arguments are passed in registers (Figure 7(a)). If we
cannot identify implicit arguments, we obviously cannot accurately describe
the flow of information in the samples.
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Fig. 7. Examples of compiler- and architecture-induced irregularities that the preprocessor must
deal with. On the SPARC, procedure actuals are passed in registers %o0, %o1, etc. Hence these are
implicit input arguments to the call instruction in (a). In (b), the x86 C compiler is using register
%eax for three independent tasks: to push b, to push c, and to extract the result of the function
call. The SPARC mov instruction in (c) is in the call instruction’s delay slot, and is hence executed
before the call. In (d), finally, the Alpha C compiler generated a redundant instruction paddl $4,

0, $4q.

As shown in Figure 7(b), a sample may contain several distinct uses of the
same register. Again, we need to be able to detect such register reuse or the flow
of information within the sample cannot be identified.

4.1 Mutation Analysis

Static analysis of individual samples is not sufficient to accurately detect and
repair irregularities such as the ones shown in Figure 7. Instead we use a novel
dynamic technique called Mutation Analysis which compares the execution re-
sult of an original sample with one that has been slightly changed. Based on
the result of this comparison, we can draw conclusions about the structure of
the assembly code.

Figure 8 shows the overall structure of a mutation analysis. The particular
mutation illustrated in Figure 8 tries to determine if there is a data dependence
between the first two instructions of the sample. The mutation simply swaps the
two load instructions, executes the mutated sample, and compares the result to
the result of executing the original sample. In this case the results are identical,
which allows us to conclude that the two load instructions are indeed data
independent.

Figure 9 lists the mutations available to us. We can delete, move and copy
instructions, rename registers, and insert “clobbering” instructions that over-
write a register with some random value.
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Fig. 8. Mutation Analysis algorithm. The original C code sample is compiled and executed, and
its result is recorded. The same sample is also compiled to assembly code. This sample is mutated,
assembled, linked, and executed, and its output is compared to that of the original sample. In most
cases several variant mutations are generated, all of which have to produce the same value as the
original sample in order for the mutation to succeed.

Fig. 9. This table lists the available mutations: we can move, copy, and delete instructions,
and we can rename and clobber (overwrite) registers. The Aj

i s are operands not affected by the
mutations.
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Fig. 10. Removing redundant instructions. In this example we are interested in whether instruc-
tion (1) is redundant.

To avoid a mutation succeeding (producing the same value as the original
sample) by chance, we always try several variants of the same mutation. A
mutation is successful only if all variants succeed. Two variants may, for exam-
ple, differ in the values used to clobber a register, or in the new register name
chosen for a rename mutation.

4.2 Eliminating Redundant Instructions

To illustrate this idea we will consider a trivial, but extremely useful, analysis,
redundant instruction elimination. An instruction is removed from a sample
and the modified sample is assembled, linked, and executed on the target ma-
chine. If the mutated sample produces the same result as the original one, the
instruction is removed permanently. This process is repeated for every instruc-
tion of every sample. This mutation will yield samples which are smaller and
simpler than the original, and hence easier to analyze.

Figure 10 illustrates this. In Figure 10(b) we delete instruction (1); assemble,
link, and execute the sample; and compare the result with that produced from
the original sample in (a). If they are the same, we conclude that instruction
(1) is redundant and can be removed permanently.

Even for a trivial mutation like this, we must take special care for the mu-
tation not to succeed by chance. For example, if register $1 contains the same
value as 184($sp) then the sample will produce the correct value regardless of
whether instruction (1) is present or not. To counter this possibility, we must
clobber all registers with random values. To make sure that the clobbers them-
selves do not initialize a register to a correct value, two variant mutations
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Fig. 11. Splitting the sample from Figure 7(b). (a) shows the sample after the references to %eax

in (7) and (8) have been processed. Mutation (b) will fail (i.e., produce a value different from the
original sample), since the region only contains the use of %eax, not its definition. The region is
extended until the mutated sample produces the same result as the original (c), and then again
until the results differ (d).

(Figure 10(c) and (d)) are constructed using different clobbering values. Both
variants must succeed for the mutation to succeed.

The result of these mutations is a new set of simplified samples, where re-
dundant instructions (such as pmove R1, R1q, pnopq, padd R1, 0, R1q) have been
eliminated. These samples will be easier for the algorithms in Section 5 to
analyze. They will also be less confusing to further mutation analyses.

To further illustrate the use of mutation analysis, we will next consider three
more profound preprocessing tasks in detail, namely Live-Range Splitting, Im-
plicit Argument Detection, and Register Definition/Use Computation.

4.3 Splitting Register Live-Ranges

Some samples (such as Figure 7(b)) will contain several unrelated references
to the same register. To allow further analysis, we need to split such register
references into distinct regions. Figure 11 shows how we can use the rename and
clobber mutations to construct regions that contain the smallest set of registers
that can be renamed without changing the semantics of the sample. Regions
are grown backwards, starting with the last use of a register, and continuing
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Fig. 12. Detecting implicit arguments. (a) is the original x86 sample. The (b) mutation will succeed,
indicating that cltd, idivl, and movl are independent of %ecx. The (c) and (d) mutations will both
fail, since %eax is an implicit argument to idivl.

until the region also contains the corresponding definition of that register. To
make the test completely reliable, the new register is clobbered just prior to the
proposed region, and each mutated sample is run several times with different
clobbering values.

4.4 Detecting Implicit Arguments

Detecting implicit arguments is complicated by the fact that some instructions
have a variable number of implicit input arguments (cf. call in Figure 7(a,c)),
some have a variable number of implicit output arguments (the x86’s idivl
returns the quotient in %eax and the remainder in %edx), and some take implicit
arguments that are both input and output.

The only information we get from running a mutated sample is whether it
produces the same result as the original one. Therefore all our mutations must
be “correctness preserving,” in the sense that unless there is something special
about the sample (such as the presence of an implicit argument), the mutation
should not affect the result.

So, for example, it should be legal to move an instruction I2 before an in-
struction I1 as long as they (and any intermediate instructions) do not have
any registers in common.5 Therefore the mutation in Figure 12(c) should suc-
ceed, which it does not, since %eax is an implicit argument to idivl.

The algorithm runs in two steps. We first attempt to prove that, for each
operator O and each register R, O is independent of R, that is, R is not
an implicit argument of O. We do this by renaming R, which, if there are
no implicit arguments, should not affect the result computed by the sample

5Note that while this statement does not hold for arbitrary codes (where, for example, aliasing may
be present), it does hold for our simple samples.
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Fig. 13. Computing definition/use information. Necessary register clobbers have been omitted for
clarity. The first occurrence of R1 in (a) is a definition (D), the last one a use (U). The references to
R1 in (2) and (3) could be either uses, or use-definitions (U/D). The mutation in (b) will succeed iff
(2) is a pure use. In (c) we assume that (b) failed, and hence (2) is a use-definition. (c) will succeed
iff (3) is a pure use.

(see Figure 12 (b) and (c)). For those operator/register-pairs that fail the first
step, we use move mutations to show that the registers are actually implicit
arguments (Figure 12(d)).

4.5 Computing Definition/Use

When implicit register arguments have been detected and made explicit and
distinct register uses have been split into individual live ranges, we are ready
to attempt our final preprocessing task. Each register reference in a live range
has to be analyzed and we have to determine which references are pure uses,
pure definitions, and use-definitions. Instructions that both use and define a
register are common on CISC machines,6 but less common on modern RISC
machines.

The first occurrence of a register in a live-range must be a definition; the
last one must be a use. The intermediate occurrences can either be pure uses
or use-definitions. For example, in the following x86 multiplication sample, the
first reference to register %edx (%edx1) is a pure definition, the second reference
(%edx2) a use-definition, and the last one (%edx3) a pure use:

main () {
int a,b,c;
a = b * c;
}

movl -8(%ebp),%edx1
imull -12(%ebp),%edx2
movl %edx3,-4(%ebp)

Figure 13 shows how we use the copy and rename mutations to create a sep-
arate path from the first definition of a register R1 to a reference of R1 that is

6For example, on the VAX paddl2 5,r1q increments register one by 5.
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either a use or a use-definition. If the reference is a use-definition, the muta-
tion will fail, since the new value computed will not be passed on to the next
instruction that uses R1.

4.6 Building the Data-Flow Graph

The last task of the preprocessor is to combine the gathered information into a
data-flow graph for each sample. This graph will form the basis for all further
analysis.

A data-flow graph describes the flow of information between elements of a
sample. Information that was implicit or missing in the original sample but
recovered by the preprocessor is made explicit in the graph. The nodes of the
graph are

(1) operators in the assembly code sample,
(2) operands in the assembly code sample, and
(3) semantic arguments, that is, variables that occurred in the original

C sample.

Figure 14 shows several examples of data-flow graphs. All the graph draw-
ings in this paper were generated automatically (using METAPOST [Hobby 1992])
as part of the documentation produced by the ADT. Operator nodes are drawn
as rectangular boxes, operand nodes as round-edged boxes, and semantic argu-
ments as ovals. Nodes that represent implicit arguments are drawn unshaded.

For ease of identification, each node in a graph is labeled Nai, where N is the
operator or operand, i is the instruction number, and a is N’s argument number
in the instruction. In Figure 14(b), for example, $1113 refers to the use of register
$11 as the first argument to the third instruction (mul). Semantic arguments
are represented by data descriptors [Holt 1987]. For example, in Figure 14(b),
@L1.a refers to the variable a at static nesting level 1.

Informally, there is an edge A→ B if B uses a value stored in or computed
by A. More formally, and referring to Figure 14(b), there is an edge A→ B

(1) if A is an operator that stores a value into a register B (edge e2),
(2) if B is an operator that reads a value or address stored in A (edges e1, e4, e5),
(3) if A = R

j
i and B = Rlk>i are the same register R, such that Op0i stores a value

into R that is subsequently used by Op0k (edge e3), or
(4) if A is a semantic argument and B is the node in which the computation of

A’s l- or r-value begins (edges e6, e7).

Given the information provided by the various mutation analyses, building
the graph for a sample is straightforward. A node is created for every operator
and operand that occurs explicitly in the sample. Instructions that were deter-
mined to be redundant (Section 4.2) are ignored. Extra nodes are created for all
implicit input and output arguments (Section 4.4). Finally, based on the infor-
mation gathered through live-range splitting (Section 4.3) and definition-use
analysis (Section 4.5), output register nodes can be connected to the correspond-
ing input nodes.
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Fig. 14. (a) and (b) MIPS assignment, (c) and (d) MIPS multiplication, and (e) and (f) x86 division
samples and their corresponding data-flow graphs.

Note that once all samples have been converted into data-flow graphs, we
can easily determine the signatures of individual instructions. This is a first
and crucial step toward a real understanding of the machine. From the graph
in Figure 14(f), for example, we can conclude that cltd is a register-to-register
instruction, and that the input and output registers both have to be %eax.

5. THE EXTRACTOR

The purpose of the extractor is to analyze the data-flow graphs generated by the
preprocessor and to extract the function computed by each individual operator
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Fig. 15. Data-flow graphs after graph matching. (a) is MIPS multiplication, (b) is x86 division,
and (d) is VAX addition. (c) is the pattern-matching template.

and operand. Referring back to Figure 2, the extractor takes a set of data-
flow graphs as input (Figure 2(d)) and produces a set of instruction semantics
(Figure 2(e)) as output.

In this section we will describe two of the many techniques that can be
employed: Graph Matching, which is a simple and fast approach that works
well in many cases, and Reverse Interpretation, which is a more general (and
much slower) method.

5.1 Graph Matching

To extract the information of interest from the data-flow graphs, we need to
make the following observation: for a binary arithmetic sample a = b ⊕ c, the
graph will have the general structure shown in Figure 15(c). That is, the graph
will have paths Pb and Pc originating in @L1.b and @L1.c and intersecting at
some node P . Furthermore, there will be paths Pp and Pa originating in P and
@L1.a that intersect at some node Q . Pp may be empty, while all other paths
will be nonempty.

P marks the point in the graph where ⊕ is performed. The paths Pb and Pc
represent the code that loads the r-values of b and c, respectively. Similarly, Pa
represents the code that loads a’s l-value. Q , being the point where the paths
computing b⊕ c and a’s l-value meet, marks the point where the value computed
from b⊕ c is stored in a.

Hence, we can draw the following conclusions from the samples in Figure 15:

(1) On the MIPS, P = mul03, Q = sw04. Hence, lw is responsible for loading the
r-values of b and c, mul performs multiplication, and sw stores the result.

(2) On the x86, b’s r-value is loaded by the operator sequence [movl01, movl02,
cltd01] contained in Pb. The division is performed by P = idivl04, which
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also loads c’s r-value (since Pc does not contain any operators). Q = movl05,
finally, stores the computed value.

(3) On the VAX, Pa, Pb, and Pc contain no operators, and P = Q = addl301.
Hence, addl3 loads the r-values of b and c and stores their sum in a.

5.2 Reverse Interpretation

Graph Matching is fast and simple but it fails to analyze some graphs. Particu-
larly problematic are samples that perform multiplication by a constant, since
these are often expanded to sequences of shifts and adds. Figure 16 shows such
a case. Note that node 10931, which represents the literal multiplicand, is com-
pletely disconnected from the rest of the graph. As a result, matching the graph
against the template in Figure 15(c) will fail.

The method we will describe next, on the other hand, is completely general
and can handle this and other kinds of nonstandard graphs, but suffers from a
worst-case exponential time complexity.

In the following, we will take an interpreter I to be a function

I :: Sem× Prog× Envin −→ Envout.

Sem is a mapping from instructions to their semantic interpretation, Env a map-
ping from memory locations, registers, etc., to values, and Prog is the sequence
of instructions to be executed. The result of the interpretation is a new envi-
ronment, with (possibly) new values in memory and registers. The example in
Figure 17(a) adds 5 to the value in memory location 10 (M[10]) and stores the
result in memory location 20.

A reverse interpreter R, on the other hand, is a function that, given a program
and an initial and final environment, will return a semantic interpretation that
turns the initial environment into the final environment. R has the signature

R :: Semin × Envin × Prog× Envout −→ Semout.

In other words, R extends Semin with new semantic interpretations, such that
the program Prog transforms Envin to Envout. In the example in Figure 17(b),
the reverse interpreter determines that the add instruction performs addition.

5.2.1 The Algorithm. We will devote the remainder of this section to a
detailed discussion of reverse interpretation. Particularly, we will show how
a probabilistic search strategy (based on expressing the likelihood of an in-
struction having a particular semantics) can be used to implement an effective
reverse interpreter.

The idea is simply to interpret each sample, choosing (nondeterministically)
new interpretations of the operators and operands until every sample produces
the required result. The reverse interpreter will start out with an empty se-
mantic mapping (Semin = {}), and, on completion, will return a Semout mapping
each operator and addressing mode to a semantic interpretation.

The reverse interpreter has a small number of semantic primitives (arith-
metic, comparisons, logical operations, loads, stores, etc.) to choose from. RISC-
type instructions will map more or less directly into these primitives, but
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Fig. 16. SPARC multiplication sample. Note how the register live-ranges have been split to sim-
plify building the data-flow graph.

they can be combined to model arbitrarily complex machine instructions. For
example,

addl3ε←a,a,a(a, b, c) = store (a, add (load (b), load (c)))7

7To distinguish between instructions with the same mnemonic but different semantics (such as
paddl $4,%ecxq and paddl -8(%ebp),%edxq on the x86), instructions are indexed by their signa-
tures. In these signatures, a represents an address, r a register, c a literal, and ε a null argument.
lwr←a, for example, is an instruction that takes an address as argument and returns a result in a
register.
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Fig. 17. (a) shows the result of an interpreter I evaluating a program [[store(20, add(load(10), 5))]],
given an environment {M[10] = 7, M[20] = 9}. The result is a new environment in which memory
location 20 has been updated. (b) shows the result of a reverse interpretation. R is given the same
program and the same initial and resulting environments as I . R also knows the semantics of the
load and store instructions. Based on this information, R will determine that in order to turn
Envin into Envout, the add instruction should have the semantics add(x, y) = x + y .

Fig. 18. Reverse interpretation example. The data-flow graph in Figure 14(d) has been broken up
into seven primitive instructions, each one of the form result← operator← (arguments). am1

a←r,c
represents the “register+ offset” addressing mode. The ai ’s are “pseudo-registers” which hold the
result of address calculations.

models the VAX add instruction, and

maddr←r,r,r(a, b, c) = add (a, mul (b, c))

the MIPS multiply-and-add. Figure 19 lists the most important primitives, and
in Section 5.2.3 we will discuss the choice of primitives in detail.

The example in Figure 18 shows the reverse interpretation of the sample
in Figure 14 (c) and (d). The data-flow graph has been converted into a list of
instructions to be interpreted. In this example, we have already determined
the semantics of the sw and lw instructions and the am1

a←r,c register+ offset
addressing mode. All that is left to do is to fix the semantics of the mul instruction
such that the resulting environment contains M[@L1.a] = 34117. The reverse
interpreter does this by enumerating all possible semantic interpretations of
mul, until one is found that produces the correct Envout.

Before we can arrive at an effective algorithm, there are a number of issues
that need to be resolved.
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First of all, it should be clear there will be an infinite number of valid seman-
tic interpretations of each instruction. In the example in Figure 18, mulr←r,r
could get any one of the semantics mulr←r,r(a, b) = a ∗ b, mulr←r,r(a, b) =
a ∗ b∗ 1, mulr←r,r(a, b) = b2 ∗a/b, etc. Since most machine instructions
have very simple semantics, we should strive for the simplest (shortest)
interpretations.

Second, there may be situations where a set of samples will allow several
conflicting interpretations. To see this, let S= pmain(){int b=2,c=1,a=b*c;}q be
a sample, and let the multiplication instruction generated from S be named mul.
Given that Envin = {b = 2, c = 1} and Envout = {b = 2, c = 1, a = 2}, the reverse
interpreter could reasonably conclude that mul(a, b) = a/b, or even mul(a, b) =
a− b+ 1. A wiser choice of initialization values (such as b=34117,c=109) would
avoid this problem. A Monte Carlo algorithm can help us choose wise initial-
ization values: generate pairs of random numbers (a, b) until a pair is found for
which none of the interpreter primitives (or simple combinations of the primi-
tives) yield the same result.

Third, the reverse interpreter might produce the wrong result if its arith-
metic is different from that of the target architecture. We use enquire
[Pemberton 1991] to gather information about word sizes on the target ma-
chine, and simulate arithmetic in the correct precision.

A further complication is how to handle addressing mode calculations such
as a1 ← am1

a←r,c ← (120, $sp) which are used in calculating variable ad-
dresses. These typically rely on stack or frame pointer registers which are
initialized outside the sample. How is it possible for the interpreter to deter-
mine that in Figure 18 @L1.a, @L1.b, and @L1.c are addressed as 124 + $sp,
120 + $sp, 116 + $sp, respectively, for some unknown value of $sp? We
handle this by initializing every register not initialized by the sample it-
self to a unique value ($sp←⊥$sp

). The interpreter can easily determine
that a symbolic value 124+⊥$sp

must correspond to the address @L1.a af-
ter having analyzed a couple of samples such as pmain(){int a=1231;}q in
Figure 14(b).

However, the most difficult problem of all is how the reverse interpreter can
avoid combinatorial explosion. We will address this issue next.

5.2.2 Guiding the Interpreter. Reverse interpretation is essentially an ex-
haustive search for a workable semantics of the instruction set. Or, to put it
differently, we want the reverse interpreter to consider all possible semantic
interpretations of every operator and addressing mode encountered in the sam-
ples, and then choose an interpretation that allows all samples to evaluate to
their expected results. As noted before, there will always be an infinite num-
ber of such interpretations, and we want the interpreter to favor the simpler
ones.

Any number of heuristic search methods can be used to implement the re-
verse interpreter. There is, however, one complication. Many search algorithms
require a fitness function which evaluates the goodness of the current search
position, based on the results of the search so far. This information is used
to guide the direction of the continued search. Unfortunately, no such fitness
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function can exist in our domain. To see this, let us again consider the example
interpretation in Figure 18. The interpreter might guess that

mulr←r,r(a, b) = mul (a, add (100, b)),

and, since 313 ∗ 100 + 109 = 31409 is close to the real solution (34117) the
fitness function would give this solution a high goodness value. Based on this
information, the interpreter may continue along the same track, perhaps trying

mulr←r,r(a, b) = mul (a, add (110, b)).

This is clearly the wrong strategy. In fact, an unsuccessful interpretation
(one that fails to produce the correct Envout) gives us no new information to
help guide our further search.

Fortunately, we can still do much better than a completely blind search. The
current implementation is based on a probabilistic best-first search. The idea
is to assign a likelihood (or priority) to each possible semantic interpretation of
every operator and addressing mode. The interpreter will consider more likely
interpretations (those that have higher priority) before less likely ones. Note
the difference between likelihoods and fitness functions: the former are static
priorities that can be computed before the search starts, the latter are evaluated
dynamically as the search proceeds.

Let I be an instruction, S the set of samples in which I occurs, and R a
possible semantic interpretation of I . Then the likelihood that I will have the
interpretation R is

likelihood(S, I, R) = c1 ·match(S, I, R)+ c2 · sem(S, R)
+ c3 · sig(I, R)+ c4 · name(I, R)

where the ci ’s are implementation specific weights and match, sem, sig, and
name are functions defined below.

—match(S, I, R) This function represents information gathered from success-
ful (or even partially successful) graph matchings. Let S be the MIPS mul-
tiplication sample in Figure 15(a). After graph matching we know that the
operators and operands along the Pb path will be involved in loading the
value of @L1.b. Therefore match(S, lwr←a, load) will be very high. Similarly,
since the paths from @L1.b and @L1.c convene in the mul30 node, mul is highly
likely to perform a multiplication, and therefore match(S, mulr←r,r, mul) will
also be high.

When available, this is the most accurate information we can come by. It
is therefore weighted highly in the likelihood(S, I, R) function.

—sem(S, R) The semantics of the sample itself is another important source of
information, particularly when combined with an understanding of common
code generation idioms.

As an example, let S= pmain(){int b,c,a=b*c;}q. Then we know that the
corresponding assembly-code sample is much more likely to contain load,
store, mul, add, or shiftLeft instructions, than (say) a div or a branch. Hence,
for this example, sem(S, mul) > sem(S, add)À sem(S, branch).
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—sig(I, R) The signature of an instruction can provide some clues as to the
function it performs. For example, if I takes an address argument, it is
quite likely to perform a load or a store, and if it takes a label argu-
ment, it probably does a branch. Similarly, an instruction (such as swε←r,a in
Figure 15(a) or addl3ε←a,a,a in Figure 15(d)) that returns no result is likely
to perform (some sort of) store operation.

—name(I, R) Finally, we take into account the name of the operator. This is
based on the observation that, if I ’s mnemonic contains the string "add"
or "plus," it is more likely to perform (some sort of) addition than (say)
a left shift. Unfortunately, this information can be highly inaccurate,8 so
name(I, R) is given a low weighting.

For many samples, these heuristics are highly successful. Often the reverse
interpreter will come up with the correct semantic interpretation of an instruc-
tion after just one or two tries. In fact, while previous versions of the system
relied exclusively on graph matching, the current implementation now mostly
uses matching to compute the match(S, I, R) function.

There are still complex samples for which the reverse interpreter will not
find a solution within a reasonable time. In such cases, a time-out function
interrupts the interpreter and the sample is discarded.

5.2.3 Primitive Instructions. The instruction primitives used by the
reverse interpreter largely determine the range of architectures that can be
analyzed. A comprehensive set of complex primitives might map cleanly into a
large number of instruction set architectures, but would slow down the reverse
interpreter. A smaller set of simple primitives would be easier for the reverse
interpreter to deal with, but might fail to provide a semantic interpretation for
some instructions. As can be seen from Figure 19, the current implementation
employs a small, RISC-like instruction set, which allows us to handle current
RISCs and CISCs. It lacks, among other things, conditional expressions. This
means that we currently cannot analyze instructions like the VAX’s arithmetic
shift (ash), which shifts to the left if the count is positive, and to the right
otherwise.

In other words, the reverse interpreter will do well when analyzing an in-
struction set that is at the same or slightly higher level than its built-in primi-
tives. However, dealing with micro-code-like or very complex instructions may
well be beyond its capabilities. The reason is our need to always find the shortest
semantic interpretation of every instruction. This means that when analyzing a
complex instruction we will have to consider a very large number of short (and
wrong) interpretations before we arrive at the longer, correct one. Since the
number of possible interpretations grows exponentially with the length of the
semantic interpretation, the reverse interpreter may quickly run out of space
and time.

Although very complex instructions are currently out of favor, they were
once very common. Consider, for example, the VAX’s polynomial evaluation

8For example, consider that s8addq (Alpha) and madd (Mips R10000) are multiply-and-add instruc-
tions, and that, on the IBM/360, the mnemonic for addition is A and for load L.
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Fig. 19. Reverse interpreter primitives. Available types are Int (I), Bool (B), Address (A), Label
(L), and Condition Code (C). M[ ] is the memory. T is True and F is False. C is an array of booleans
representing the outcome of a comparison. While the current implementation only handles integer
instructions, future versions will handle all standard C types. Hence the reverse interpreter will
have to be extended with the corresponding primitives.

instruction pPOLYq or the HP 2100 [Hewlett-Packard 1968] series computers’
“alter-skip-group.” The latter contains 19 basic opcodes that can be combined
(up to eight at a time) into very complex statements. For example, the state-
ment pCLA,SEZ,CME,SLA,INAqwill clear A, skip if E=0, complement E, skip if
LSB(A)=0, and then increment A. It is unlikely that any automated techniques
would be able to reverse-engineer such instructions.

5.3 Analyzing Procedures and Procedure Calls

To generate code for procedures, we need to know which information needs to go
in procedure headers and footers. Typically, the header will contain instructions
or directives that reserve space on the runtime stack for new activation records.
Similarly, to generate code for procedure calls we need to know how the caller
passes actual arguments to the callee.

We use a technique we call Difference Analysis to deduce this type of informa-
tion. The idea is simply to observe and draw conclusions from the differences
between the assembly code generated from a sequence of increasingly more
complex samples.

For example, to analyze procedure declarations we compile

void P(){};
void P(){int a;};
void P(){int a,b;};
void P(){int a,b,c;};

· · ·
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Fig. 20. MIPS function call sample. Note that, except for @L1.f, there is a path from all semantic
operands to the procedure call instruction jal. This indicates that, on the MIPS, the first four
arguments are passed in registers, the rest on the stack.

which will result in assembly-code samples which only differ in the amount of
stack space allocated for activation records.

Unfortunately, things can get more complicated. On the VAX, for example,
the procedure header must contain a register mask containing the registers
that are used by the procedure and which need to be saved on procedure entry.
Even if ADT were able to deduce these requirements, BEG has no provision for
expressing them.

We use a similar technique to analyze procedure calls. We generate samples

P();
P(a);
P(a,b);
P(a,b,c);
· · ·

and compare the resulting assembly code samples for differences. For the MIPS
(see Figure 20), for example, we will find that the first four arguments are
passed in registers $4-$7, and that any further arguments are passed on the
stack. Strictly speaking, ADT does not understand anything about procedure
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calling conventions. All it learns from analyzing the samples is an operational
specification, such as

“To pass the first argument to a procedure on the MIPS, I move the
argument into register $4. The second argument I move into $5. . . .
The fifth argument, I move into 16($sp). . . .”

The current version of ADT does not learn about floating point instructions,
so the complications introduced by the interaction between floating point and
integer arguments are currently ignored. We would deal with this problem
the same way as outlined above, by drawing conclusions from the differences
between successively more complex examples involving arguments of different
types:

int i,j;
float x,y;
P(i,x);
P(x,i);
P(i,x,j);
P(x,i,y);
· · ·

6. THE SYNTHESIZER

The synthesizer collects all the information gathered by previous phases and
converts it into a machine description. Referring back to Figure 2, the syn-
thesizer takes a description of instruction semantics as input (Figure 2(e))
and produces a BEG specification (Figure 2(d)) as output. The input to the
synthesizer is realized as a set of Prolog predicates. This is illustrated in
Figure 21.

If the ADT is part of a self-retargeting compiler, the generated machine de-
scription would be fed directly into BEG and the resulting code generator would
be integrated into the compiler. If, instead, the ADT is used to speed up a man-
ual compiler retargeting effort, the machine description could first be refined
by the compiler writer.

The main difficulty of this phase is that there may not be a simple map-
ping from the intermediate code instructions emitted by the compiler into
the machine code instructions provided by the ISA we have discovered. As
an example, consider a compiler which emits an intermediate code instruction
BranchEQ(a, b, L) ≡ IF a = b GOTO L. Using the primitives in Figure 19, the
semantics of BranchEQ can be described as brTrue (isEQ (compare (a1, a2)), L).
This, incidentally, is the exact semantics we derive for the MIPS’ beq instruc-
tion. Hence, in this case, generating the appropriate BEG pattern matching
rule is straightforward.

However, on most other machines the BranchEQ instruction has to be
expressed as a combination of two machine code instructions. For example,
on the Alpha we derive cmpeq(a, b) ≡ isEQ (compare (a, b)) and bne(a, L) ≡
brTrue (a, L). To handle this problem, a special synthesizer phase (the Com-
biner) attempts to combine machine code instructions to match the semantics of
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Fig. 21. A subset of the information gathered by ADT for the Sparc. The data is expressed as
Prolog predicates. The comments are not part of the generated code.
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intermediate code instructions. Again, we resort to exhaustive search. We con-
sider any combination of instructions to see if combining their semantics will
result in the semantics of one of the instructions in the compiler’s intermediate
code.9 Any such combination results in a separate BEG pattern matching rule.
See Figure 24(c) for an example.

Depending on the complexity of the machine description language, the syn-
thesizer may have to contend with other problems as well. BEG, for example,
has a powerful way of describing the relationship between different addressing
modes, so called chain rules. A chain rule expresses under which circumstances
two addressing modes have the same semantics. The chain-rules in Figure 24(a)
to (b) express that the SPARC’s register+ offset addressing mode is the same as
the register immediate addressing mode when the offset is 0. To construct the
chain-rules, we consider the semantics SA and SB of every pair of addressing
modes A and B. For each pair, we exhaustively assign small constants (such
as 0 or 1) to the constant arguments of SA and SB, and we assign registers
with hardwired values (such as the SPARC’s %g0) to SA’s and SB ’s register
arguments. If the resulting semantics S′A and S′B are equal, we emit the corre-
sponding chain-rule.

Figures 22, 23, 24, and 25 show parts of a BEG specification for the SPARC,
generated by ADT:

—Figure 22 defines the nodes of the intermediate code trees that the generated
back-end accepts. This part of the specification is currently hard-coded.

—Figure 23 lists the registers and addressing modes found by the ADT.
AddrMode4, for example, is the SPARC’s register+ offset addressing mode.
Note that ADT failed to find some registers.

—Figure 24 shows BEG chain-rules and rules for arithmetic and branches.
Four points are noteworthy:
(1) The ADT has discovered that branch instructions take a delay slot. This

information is acquired through yet another mutation analysis during
the preprocessing stage.

(2) The ADT has discovered the 13-bit ranges of the SPARC’s cmp- and add-
immediate instructions. This is done through an assembler error anal-
ysis: Each instruction that takes a literal argument is submitted to the
assembler with increasingly larger constants. When the constant is out
of range the assembler will emit an error message. We continue this pro-
cess using a binary-search-type algorithm, homing in on the upper and
lower limits of each constant argument.

(3) The ADT has computed a constant cost for each instruction. We use a
simplistic algorithm which executes and times each instruction (with
each allowable combination of arguments) a large number of times, and
computes the instructions’ relative execution time costs.

9This is somewhat akin to Massalin’s [1987] superoptimizer. The difference is that the superop-
timizer attempts to find a smallest program, whereas the Combiner looks for any combination of
instructions with the required behavior. The back-end generator is then responsible for selecting
the best (cheapest) instruction sequence at compile-time.
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Fig. 22. First part of the BEG specification for the SPARC. The OPERATOR section is hard-coded by
ADT and provides an interface (the intermediate code) by which the compiler front-end communi-
cates with the ADT/BEG-generated back-end.

(4) The ADT has discovered the implicit input (%o0 and %o1) and output
arguments (%o0) to the SPARC’s pcall .mulq instruction.

—Figure 25, finally, gives rules that handle procedure calls on the SPARC.
ConsArg and NullArg are used to build up lists of actual arguments. Note
that the ADT has discovered that the first six arguments should be passed
in registers, and the remaining ones on the stack.

7. DISCUSSION AND SUMMARY

It is interesting to note that many of the techniques presented here have al-
ways been used manually by compiler writers. The fastest way to learn about
code-generation techniques for a new architecture is to compile some small C
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Fig. 23. BEG definitions of SPARC registers and addressing modes. Note that register %g0has been
included in the list of registers available to the compiler for allocation. This is due to a limitation
of the current implementation which does not include a test for registers with hardwired values.

or FORTRAN programs and examine the resulting assembly code. The ADT
automates this task.

One of the major sources of problems when writing machine descriptions
by hand is that the documentation describing the ISA, the implementation
of the ISA, the assembler syntax, etc., is notoriously unreliable. Our system
bypasses these problems by dealing directly with the hardware and system
software. Furthermore, our system makes it cheap and easy to keep machine
descriptions up to date with hardware and system software updates.

We will conclude this paper with a discussion of the generality, completeness,
and implementation status of the ADT.

7.1 Generality

What range of architectures can an architecture discovery system possibly sup-
port? Under what circumstances might it fail?

As we have seen, our analyzer consists of three major modules: the Lexer,
the Preprocessor, and the Extractor. Each of them may fail when attempting
to analyze a particular architecture. The Lexer assumes a relatively standard
assembly language, and will, of course, fail for unusual languages such as the
one used for the Tera. The extractor may fail to analyze instructions with very
complex semantics, since the reverse interpreter is worst-case exponential.

The Preprocessor’s task is essentially to determine how pairs of instructions
communicate with each other within a sample. Should it fail to do so for a
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Fig. 24. Some of the BEG rules generated by the ADT for the SPARC. (a) and (b) are chain-rules
that describe how to turn a register+ offset addressing mode into a register (when the offset is 0),
and vice versa. In (c) a comparison and a branch instruction have been combined to match the
semantics of the intermediate code instruction BranchEQ. Rule (d), describes the SPARC’s software
multiplication routine .mul. Rules (e) and (f ), finally, show the SPARC’s two instructions for integer
addition.

particular sample, the data-flow graph cannot be built, and that sample cannot
be further analyzed. There are four basic ways for two instructions A and B to
communicate:

Explicit registers. A assigns a value to a general-purpose register R. B reads
this value.

Implicit registers. A assigns a value to a general purpose register R which
is hardwired into the instruction. B reads this value.

Hidden registers. A and B communicate by means of a special-purpose reg-
ister which is “hidden” within the CPU and not otherwise available to the user.
Examples include condition codes and the lo and hi registers on the MIPS.
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Fig. 25. BEG specification generated by ADT for SPARC procedure calls. Rules (a) and (b) are
used to build up a list of actual arguments. Rules (c) through (h) handle the first six arguments
to a function (which are passed in registers %o0–%o5), and rule (i) handles any further arguments
which are passed on the stack. Rules ( j) and (k), finally, are the top-level rules for procedure calls.

Memory. A and B communicate via the stack or main memory. Examples
include stack-machines such as the Burroughs B6700.

The current implementation handles the first two, some special cases (such
as condition codes) of the third, but not the last. For this reason, we are not cur-
rently able to analyze extreme stack-machines such as the Burroughs B6700.

There is no guarantee that either C Code Code Generation or Specification-
Driven Code Generation will work for all combinations of architectures, compil-
ers, and languages. We have already seen that some C compilers will be unsafe
as back-ends for languages with garbage collection. Specification-Driven Code
Generation-based compilers will also fail if a new ISA has features unantici-
pated when the back-end generator was designed. Version 1 of BEG, for exam-
ple, did not support the passing of actual parameters in registers, and hence
was unable to generate code for RISC machines. Version 1.5 rectified this.
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7.2 Completeness and Code Quality

The quality of the code generated by a Self-Retargeting Code Generation-based
compiler will depend on a number of issues:

The quality of the C compiler. Obviously, if the C compiler does not generate
a particular instruction, then the ADT never find out about it.

The semantic gap between C and the target language. The architecture may
have instructions that directly support a particular target language feature,
such as exceptions or statically nested procedures. Since C lacks these features,
the C compiler will never produce the corresponding instructions, and no Self-
Retargeting Code Generation compiler will be able to make use of them. Note
that this is no different from a C Code Code Generation-based compiler which
will have to synthesize its own static links, exceptions, etc., from C primitives.

The completeness of the sample set. There may be instructions which are
part of the C compiler’s vocabulary, but which it does not generate for any
of our simple samples. Consider, for example, an architecture with long and
short branch instructions. Since our branching samples are currently very small
(typically, pmain(){int a,b,c; if (b<c) a=9;}q), it is unlikely that a C compiler
would ever produce any long branches.

The power of the ADT. If a particular sample is too complex for us to analyze,
we will fail to discover instructions present only in that sample.

The quality of the back-end generator. A back-end generated by BEG will
perform no optimization, not even local common subexpression elimination.
Regardless of the quality of the machine descriptions we produce, the code
generated by a BEG back-end will not be comparable to that produced by a
production compiler.

It is important to note that we are not trying to reverse engineer the C com-
piler’s code generator. This is a task that would most likely be beyond au-
tomation. In fact, if the C compiler’s back-end and the back-end generator use
different code generation algorithms, the codes they generate may bear no re-
semblance to each other.

A somewhat surprising consequence is that we may be able to produce a
correct back-end using input from an incorrect C compiler, provided that

(1) the compiler generates correct code for the trivial examples that we feed it,
and

(2) the back-end generator that we use generates correct back-ends from correct
specifications.

In other words, a compiler that generates the wrong code when optimizing
complex expressions such as p(a*5+t/9)%r+x[66]q will work perfectly well for
us, as long as it generates correct, unoptimized, code for simple samples such
as pa=b+cq.

One potential problem with the ADT is that instructions are tested mostly
in isolation. It is therefore conceivable that we would not pick up on complex
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interactions between pairs of instructions, particularly for pairs that do not oc-
cur in any of our samples. To deal with this and similar issues, it is our intention
to include an extensive testing phase in a future version of ADT. Since all of the
information we collect is in a machine-readable form, such an implementation
would be straight-forward. The idea would be to generate intermediate code for
the back-end that would exercise every generated code-generation rule, and any
combination of rules. The testing phase would potentially be able to discover
that “the rule for mulx seems to work and the rule for divx seems to work, but
when mulx is generated immediately after a divx the code no longer executes
correctly.”

7.3 Related Work

Many programs are distributed with “automatic configuration scripts” that run
at installation time to provide the program with information about the envi-
ronment in which it is running. AUTOCONF [MacKenzie and Elliston 1998], for
example, generates configuration scripts that check for the presence of certain
programs, libraries, header files, system services, and compiler characteristics
that are necessary for a successful installation.

The work presented here is, in some sense, the ultimate extension of such
programs. The ADT could be run as part of the installation of a compiler, de-
termining not only aspects of the operating environment, but every important
charcteristic of the underlying hardware as well.

There has been much work in the past on automatically determining the
runtime characteristics of an architecture implementation. This information
can be used to guide a compiler’s code generation and optimization passes.
Baker [1991] described a technique (“scheduling through self-simulation”), in
which a compiler determines a good schedule for a basic block by executing
and timing a few alternative instruction sequences. Rumor [Keppel 1995] has
it that SunSoft uses a compiler-construction time variant of this technique to
tune it schedulers. The idea is to derive a good scheduling policy by running
and timing a suite of benchmarks. Each benchmark is run several times, each
time with a different set of scheduling options, until a good set of options has
been found.

In a similar vein, McVoy’s lmbench [McVoy 1995] program measures the
sizes of instruction and data caches. This information can be used to guide
optimizations that increase code size, such as inline expansion and loop
unrolling.

Pemberton’s enquire [Pemberton 1991] program (which determines byte or-
der and sizes and alignment of data types) is already in use by compiler writers.
Parts of enquire have been included in our system.

Finally, Engler and Hsieh [2000] presented a natural extension to ADT,
namely a tool (DERIVE) that derives instruction encodings. A user provides
DERIVE with the assembler syntax of instructions, and DERIVE will return a C
struct that specifies this encoding. In a vein similar to ADT, DERIVE extracts this
information by exercising the native assembler with generated assembly-code
samples.
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7.4 Implementation Status

The current version of the prototype implementation of the ADT is general
enough to discover the instruction sets of common RISC and CISC architec-
tures. It has been tested on the integer instruction sets of five machines (Sun
SPARC, Digital Alpha, MIPS, DEC VAX, and Intel x86), and has been shown
to generate (almost) correct machine specifications for the BEG back-end gen-
erator. The areas in which the system is deficient relate to modules that are
not yet implemented. For example, we currently do not test for registers with
hardwired values (register %g0 is always 0 on the SPARC), and so the BEG spec-
ification fails to indicate that such registers are not available for allocation.

In this paper we have described algorithms which deduce the register sets,
addressing modes, and instruction sets of a new architecture. Obviously, there
is much additional information needed to make a complete compiler, informa-
tion which the algorithms outlined here are not designed to obtain. For ex-
ample, consider the symbol table information needed by symbolic debuggers
(.stabs entries), alignment directives (.align), and compiler hints (.livereg in
Figure 3).

The implementation consists of 10,000 nonblank, noncomment lines of Pro-
log, 900 lines of shell scripts, 1500 lines of AWK (for generating the C code
samples and parsing the resulting assembly code), and 800 lines of make-
files (to integrate the different phases). It is available for download from
http://www.cs.arizona.edu/ ˜collberg/Research/AutomaticRetargeting.
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