Mining Data Streams (Part 1)
Data Streams

- In many data mining situations, we know the entire data set in advance
- Sometimes the input rate is controlled externally
 - Google queries
 - Twitter or Facebook status updates
Input tuples enter at a rapid rate, at one or more input ports.
The system cannot store the entire stream accessibly.
How do you make critical calculations about the stream using a limited amount of (secondary) memory?
Ad-Hoc Queries

Processor

Output

Streams Entering

Limited Working Storage

Archival Storage

... 1, 5, 2, 7, 0, 9, 3

... a, r, v, t, y, h, b

... 0, 0, 1, 0, 1, 1, 0

time

Standing Queries
Applications – (1)

- Mining query streams
 - Google wants to know what queries are more frequent today than yesterday
- Mining click streams
 - Yahoo wants to know which of its pages are getting an unusual number of hits in the past hour
- Mining social network news feeds
 - E.g., Look for trending topics on Twitter, Facebook
Applications – (2)

- Sensor Networks
 - Many sensors feeding into a central controller
- Telephone call records
 - Data feeds into customer bills as well as settlements between telephone companies
- IP packets monitored at a switch
 - Gather information for optimal routing
 - Detect denial-of-service attacks
Data Stream Problems

- Sampling data from a stream
- Filtering a data stream
- Queries over sliding windows
- Counting distinct elements
- Estimating moments
- Finding frequent elements
- Frequent itemsets
Since we can’t store the entire stream, one obvious approach is to store a sample.

Two different problems:

- Sample a fixed proportion of elements in the stream (say 1 in 10)
- Maintain a random sample of fixed size over a potentially infinite stream
Sampling a fixed proportion

- Scenario: search engine query stream
 - Tuples: (user, query, time)
 - Answer questions such as: how often did a user run the same query on two different days?
 - Have space to store 1/10th of query stream
- Naïve solution
 - Generate a random integer in [0..9] for each query
 - Store query if the integer is 0, otherwise discard
Consider the question: What fraction of queries by an average user are duplicates?

Suppose each user issues s queries once and d queries twice (total of $s+2d$ queries)

- Correct answer: $d/(s+2d)$
- Sample will contain $s/10$ of the singleton queries and $2d/10$ of the duplicate queries at least once
- But only $d/100$ pairs of duplicates
- So the sample-based answer is: $d/(10s+20d)$
Solution

- Pick $1/10^{th}$ of users and take all their searches in the sample
- Use a hash function that hashes the user name or user id uniformly into 10 buckets
Generalized Solution

- Stream of tuples with keys
 - Key is some subset of each tuple’s components
 - E.g., tuple is (user, search, time); key is user
 - Choice of key depends on application
- To get a sample of size \(a/b \)
 - Hash each tuple’s key uniformly into \(b \) buckets
 - Pick the tuple if its hash value is at most \(a \)
Maintaining a fixed-size sample

- Suppose we need to maintain a sample of size exactly \(s \)
 - E.g., main memory size constraint
- Don’t know length of stream in advance
 - In fact, stream could be infinite
- Suppose at time \(t \) we have seen \(n \) items
 - Ensure each item is in sample with equal probability \(s/n \)
Solution

- Store all the first s elements of the stream
- Suppose we have seen $n-1$ elements, and now the n^{th} element arrives ($n > s$)
 - With probability s/n, pick the n^{th} element, else discard it
 - If we pick the n^{th} element, then it replaces one of the s elements in the sample, picked at random
- Claim: this algorithm maintains a sample with the desired property
Proof: By Induction

- Assume that after \(n \) elements, the sample contains each element seen so far with probability \(s/n \)
- When we see element \(n+1 \), it gets picked with probability \(s/(n+1) \)
- For elements already in the sample, probability of remaining in the sample is:

\[
(1 - \frac{s}{n+1}) + \left(\frac{s}{n+1}\right)\left(\frac{s-1}{s}\right) = \frac{n}{n+1}
\]
A useful model of stream processing is that queries are about a *window* of length N – the N most recent elements received.

Interesting case: N is so large it cannot be stored in memory, or even on disk.

- Or, there are so many streams that windows for all cannot be stored.
Problem: given a stream of 0’s and 1’s, be prepared to answer queries of the form “how many 1’s in the last k bits?” where $k \leq N$.

Obvious solution: store the most recent N bits.

- When new bit comes in, discard the $N + 1^{st}$ bit.
Counting Bits – (2)

- You can’t get an exact answer without storing the entire window.
- **Real Problem**: what if we cannot afford to store \(N \) bits?
 - E.g., we’re processing 1 billion streams and \(N = 1 \) billion
- But we’re happy with an approximate answer.
DGIM* Method

- Store $O(\log^2 N)$ bits per stream.
- Gives approximate answer, never off by more than 50%.
 - Error factor can be reduced to any fraction > 0, with more complicated algorithm and proportionally more stored bits.

*Datar, Gionis, Indyk, and Motwani
Something That Doesn’t (Quite) Work

- Summarize exponentially increasing regions of the stream, looking backward.
- Drop small regions if they begin at the same point as a larger region.
Key Idea

- Summarize blocks of stream with specific numbers of 1’s.

- Block sizes (number of 1’s) increase exponentially as we go back in time
Example: Bucketized Stream

At least 1 of size 16. Partially beyond window.
Each bit in the stream has a \textit{timestamp}, starting 1, 2, \ldots

Record timestamps modulo N (the window size), so we can represent any \textit{relevant} timestamp in $O(\log_2 N)$ bits.
A bucket in the DGIM method is a record consisting of:

1. The timestamp of its end \([O(\log N)\) bits].
2. The number of 1’s between its beginning and end \([O(\log \log N)\) bits].

Constraint on buckets: number of 1’s must be a power of 2.

That explains the \(\log \log N\) in (2).
Either one or two buckets with the same power-of-2 number of 1’s.

- Buckets do not overlap in timestamps.
- Buckets are sorted by size.
 - Earlier buckets are not smaller than later buckets.
- Buckets disappear when their end-time is greater than N time units in the past.
When a new bit comes in, drop the last (oldest) bucket if its end-time is prior to N time units before the current time.

If the current bit is 0, no other changes are needed.
If the current bit is 1:

1. Create a new bucket of size 1, for just this bit.
 ◆ End timestamp = current time.
2. If there are now three buckets of size 1, combine the oldest two into a bucket of size 2.
3. If there are now three buckets of size 2, combine the oldest two into a bucket of size 4.
4. And so on ...
To estimate the number of 1’s in the most recent \(N \) bits:

1. Sum the sizes of all buckets but the last.
2. Add half the size of the last bucket.

Remember: we don’t know how many 1’s of the last bucket are still within the window.
Example: Bucketized Stream

At least 1 of size 16. Partially beyond window.
Suppose the last bucket has size 2^k.
Then by assuming 2^{k-1} of its 1’s are still within the window, we make an error of at most 2^{k-1}.
Since there is at least one bucket of each of the sizes less than 2^k, the true sum is at least $1 + 2 + .. + 2^{k-1} = 2^k - 1$.
Thus, error at most 50%.
Extensions

- Can we use the same trick to answer queries “How many 1’s in the last k?” where $k < N$?

- Can we handle the case where the stream is not bits, but integers, and we want the sum of the last k?
Reducing the Error

- Instead of maintaining 1 or 2 of each size bucket, we allow either $r - 1$ or r for $r > 2$
 - Except for the largest size buckets; we can have any number between 1 and r of those
- Error is at most by $1/(r-1)$
- By picking r appropriately, we can tradeoff between number of bits and error