Decomposition

Same as in centralized system

1. Normalization
2. Eliminating redundancy
3. Algebraic rewriting

Normalization

Convert from general language to a standard form
E.g., relational algebra
Normalization

Example:

```
select R.A, R.C
from R, S
where R.A = S.A and
  ((R.B = 1 and S.D = 2) or
   (R.C > 3 and S.D = 2))
```

Normalization

Also detect invalid expressions

```
select *
from R
```

✘ R does not have D attribute

where R.D = 3

Eliminating Redundancy

E.g., in conditions

```
(S.A = 1) \land (S.A > 5) \Rightarrow \text{false}
```

```
(S.A < 10) \land (S.A < 5) \Rightarrow S.A < 5
```

Eliminating Redundancy

E.g., sharing common sub-expressions
Algebraic Rewriting

E.g., pushing conditions down

\[\sigma_{\text{cond}} \bowtie R \bowtie \sigma_{\text{cond}1} \bowtie \sigma_{\text{cond}2} \]

Query Processing

Decomposition ✓

→ One or more algebraic query trees on relations

Localization

Replacing relations by corresponding fragments

Localization

Steps

1. Start with query
2. Replace relations by fragments
3. Push \(\cup \) up and \(\Pi \), \(\sigma \) down (apply CS 245 rules)
4. Simplify ~ eliminate unnecessary operations

Localization

Notation for fragment

\([R : \text{cond}]\)

conditions its tuples satisfy

fragment
Example A

(1) \[\sigma_{E \leq 3} \]

\[\left\{ \begin{array}{c}
R_1 : E < 10 \\
R_2 : E \geq 10 \end{array} \right. \]

Example A

(2) \[\sigma_{E \leq 3} \]

\[\left\{ \begin{array}{c}
R_1 : E < 10 \\
R_2 : E \geq 10 \end{array} \right. \]

\[\Rightarrow \emptyset \]

Example A

(3) \[\sigma_{E \leq 3} \]

\[\left\{ \begin{array}{c}
R_1 : E < 10 \\
R_2 : E \geq 10 \end{array} \right. \]

\[\Rightarrow \emptyset \]
Example A

(4)

\[\sigma_{E \geq 3} \]

\[[R: E < 10] \]

Localization

Rule 1

\[\sigma_{c1} [R: c2] \implies \sigma_{c1} [R: c1 \land c2] \]

\[[R: \text{false}] \implies \emptyset \]

Example A

\[\sigma_{E=3} [R_2: E \geq 10] \implies \sigma_{E=3} [R_2: E=3 \land E \geq 10] \]

\[\implies \sigma_{E=3} [R_2: \text{false}] \]

\[\implies \emptyset \]

Example B

(1)

\[A \]

\[R \quad S \]

\[A = \text{common attribute} \]
Localization

Rule 2

\[[R: c_1] \Join_A [S: c_2] \implies [R \Join_A S: c_1 \land c_2 \land R.A = S.A] \]

\[[R: \text{false}] \implies \emptyset \]

Example B

\[[R_1: A < 5] \Join_A [S_2: A \geq 5] \]

\[\implies [R_1 \Join_A S_2: R_1.A < 5 \land S_2.A \geq 5 \land R_1.A = S_2.A] \]

\[\implies [R_1 \Join_A S_2: \text{false}] \]

\[\implies \emptyset \]

Example C

(2)

\[[R_2: A < 10] \]

\[[R_2: A \geq 10] \]

\[[S_2: K=R.K \land R.A < 10] \]

\[[S_2: K=R.K \land R.A \geq 10] \]

\[[K: \text{derived fragmentation}] \]

Example C

(3)

\[[R_1] \]

\[[S_1] \]

\[[K] \]
Example C

(3)

Example C

(4)

Example C

Example C

\[[R_1: A < 10] \bowtie [S_2: K = R.K \land R.A \geq 10] \]

\[\Rightarrow [R_1 \bowtie S_2: R_1.A < 10 \land S_2.K = R.K \land R.A \geq 10 \land R_1.K = S_2.K] \]

\[\Rightarrow [R_1 \bowtie S_2: \text{false}] \]

\[\Rightarrow \emptyset \]

Example D

(1)

\[\Pi_A \]

\[R \]

\[\left\{ \begin{array}{l} R_1 (K, A, B) \\ R_2 (K, C, D) \end{array} \right\} \]

vertical fragmentation
Rule 3

Consider the vertical fragmentation

\[R_i = \Pi_{A_i}(R), A_i \subseteq A \]

Then for any \(B \subseteq A \)

\[\Pi_B(R) = \Pi_B(\cap \forall R_i | B \cap A_i \neq \emptyset) \]
Query Processing

Decomposition ✔
Localization ✔

Optimization
Overview
Joins and other operations
Inter-operation parallelism
Optimization strategies

Overview

Optimization process
1. Generate query plans
2. Estimate size of intermediate results
3. Estimate cost of plan
4. Pick minimum

Parallel/Distributed Sort

Differences from centralized optimization
New strategies for some operations
- Parallel/distributed sort
- Parallel/distributed join
 - Semi-join
 - Privacy preserving join
- Duplicate elimination
- Aggregation
- Selection
Many ways to assign and schedule processors

Parallel/Distributed Sort

Input
a) Relation \(R \) on single site/disk
b) Relation \(R \) fragmented/partitioned by sort attribute
c) Relation \(R \) fragmented/partitioned by another attribute
Parallel/Distributed Sort

Output
a) Sorted R on single site/disk
b) Sorted R fragments/partitions

Basic Sort

Algorithm
1. Sort each fragment independently
2. Ship results if necessary

Basic Sort

$R(K, ...) \text{ to be sorted on } K$
Horizontally fragmented on K using vector (k_0, k_1, \ldots, k_n)
Range-Partition Sort

R(K, ...) to be sorted on K
R located at one or more site/disk, not fragmented on K

Partition Vectors

Problem
Select a good partition vector given fragments

7	31	10
22	8	12
11	15	4
14	11	
52	32	
17		

R_a R_b R_c

Range-Partition Sort

Algorithm
1. Range partition on K
2. Basic sort

Example approach

Each site sends to coordinator
- MIN sort key
- MAX sort key
- Number of tuples

Coordinator
- Computes vector and distributes to sites
- Decides the number of sites to perform local sorts
Partition Vectors

Sample scenario
Coordinator receives

S_A: MIN = 5 MAX = 9 # of tuples = 10
S_B: MIN = 7 MAX = 16 # of tuples = 10

Notes 3

Expected tuples assuming we want to sort at 2 sites

$1 = \frac{10}{(16 - 7 + 1)}$
$2 = \frac{10}{(9 - 5 + 1)}$

Sample scenario
Expected tuples

Expected tuples with key < k_0 = half of total tuples
$2(k_0 - 5) + (k_0 - 7) = 10$
$k_0 = \frac{(10 + 10 + 7)}{3} = 9$

Notes 3

Variations
Send more info to coordinator:

a) Partition vector for local site

b) Histogram

Notes 3

of tuples local vector
Partition Vectors

Variations
Multiple rounds
1. Sites send range and # of tuples to coordinator
2. Coordinator distributes preliminary vector \(V_0 \)
3. Sites send coordinator # of tuples in each \(V_0 \) range
4. Coordinator computes and distributes final vector \(V_f \)

Parallel External Sort-Merge

Same as range-partition sort except does sorting first

Parallel/Distributed Join

Input
Relations \(R, S \)
May or may not be fragmented

Output
\(R \bowtie S \)
Result at one or more sites
Partitioned Join (Equijoin)

Same partition function f *is used for both* R *and* S.

f *can be range or hash partitioning.*

Local join can be of any type (use any CS 245 optimization).

Various scheduling options, e.g.,

a) Partition R; partition S; join

b) Partition R; build local hash table for R; partition S and join

Partitioned Join (Equijoin)

We already know why it works.

Goal is to make all $|R_i| + |S_i|$ the same size.

Sometimes we partition just to make this join possible.
Asymmetric Fragment + Replicate Join

Can use any partition function f for R (even round robin)

Can do any join, not just equijoin (e.g., $R \bowtie_{R.A=S.B} S$)

General Fragment + Replicate Join

f partition \rightarrow 3 fragments

n copies of each fragment

S is partitioned in similar fashion
General Fragment + Replicate Join

The asymmetric F+R join is a special case of the general F+R join. Asymmetric F+R may be good if S is small. It also works on non-equijoins.

Semi-Join

Goal: reduce communication traffic

R \bowtie S \Rightarrow (R \bowtie S) \bowtie S \\
\text{or} \\
R \bowtie (S \bowtie R) \\
\text{or} \\
(R \bowtie S) \bowtie (S \bowtie R)
Semi-Join

R ∞ S

<table>
<thead>
<tr>
<th>R</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: 2</td>
<td>3</td>
</tr>
<tr>
<td>B: 10</td>
<td>y</td>
</tr>
<tr>
<td>C: 25</td>
<td>z</td>
</tr>
<tr>
<td>D: 30</td>
<td>w</td>
</tr>
</tbody>
</table>

\(\Pi_{A,R} = \{2,10,25,30\} \)

Transmitted data

With **semi-join** \(R ∞ (S ∇ R) \): \(T = 4 |A| + 2|A + C| + \text{result} \)

With **join** \(R ∇ S \): \(T = 4 |A + B| + \text{result} \)

Assume \(R \) is the smaller relation

Then, in general,

\((R \bowtie S) \bowtie S \) is better than \((R \bowtie S) \) if

\[\text{size}(\Pi_{A,S}) + \text{size}(R \bowtie S) < \text{size}(R) \]

Can do similar comparison for other joins

→ Only taking into account transmission cost
Semi-Join

Trick: encode $\Pi_A S$ (or $\Pi_A R$) as a bit vector

Keys in S:

| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |

one bit/possible key

Semi-Join

Useful for three way joins $R \bowtie S \bowtie T$

Semi-Join

Useful for three way joins $R \bowtie S \bowtie T$

Option 1:

$R' \bowtie S' \bowtie T$ where $R' = R \bowtie S$

$S' = S \bowtie T$

Option 2:

$R'' \bowtie S'' \bowtie T$ where $R'' = R \bowtie S''$

$S'' = S \bowtie T$
Semi-Join

Useful for three way joins $R \bowtie S \bowtie T$

Option 1: $R' \bowtie S' \bowtie T$ where $R' = R \bowtie S$
 $S' = S \bowtie T$

Option 2: $R^* \bowtie S^* \bowtie T$ where $R^* = R \bowtie S'$
 $S^* = S \bowtie T$

→ Many options ~ exponential in # of relations

Privacy Preserving Join

Semi-join won’t work

If site 1 sends $\prod_A R$ to site 2, site 2 learns all keys of R

Privacy Preserving Join

Fix: send hash keys only

Site 1 hashes each value of A before sending

Site 2 hashes its own A values (same h) to see what tuples match
Privacy Preserving Join

What is the problem?

\[R = \{ h(a), h(a), h(a), h(a) \} \]

site 2 sees it has \(h(a) \), \(h(a) \)

\[(a, c), (a, c) \]

site 1

Privacy Preserving Join

Our adversary model: honest but curious

Dictionary attack is possible (cheating is internal and can’t be caught)

Sending incorrect keys not possible (cheater could be caught)

Privacy Preserving Join

What is the problem?

\[R = \{ h(a), h(a), h(a), h(a) \} \]

site 2 sees it has \(h(a) \), \(h(a) \)

\[(a, c), (a, c) \]

site 1

Dictionary attack
Site 2 can take all keys \(a_1 \), \(a_2 \), \(a_3 \), ... and checks if \(h(a_1) \), \(h(a_2) \), \(h(a_3) \), ...
matches what site 1 sent

Privacy Preserving Join

One solution

Information Sharing Across Private Databases. Agrawal et al., SIGMOD 2003

→ Use commutative encryption functions

\[E_i(x) = x \text{ encrypted using a key private to site } i \]

\[E_i(E_j(x)) = E_j(E_i(x)) \]

Shorthand: \(E_i(x) \) is \(\overline{x} \), \(E_j(x) \) is \(\overline{x} \), \(E_i(E_j(x)) \) is \(\overline{x} \)
Privacy Preserving Join

One solution

CS 347 Notes 3

Computes (a_1, a_3, a_5, a_7), intersects with (a_1, a_2, a_3, a_4)

Other Privacy Preserving Operations

Inequality join $R_{R.A > S.A}$

Similarity join $R_{sim(R.A, S.A)}$

Other Parallel Operations

Duplicate elimination
Sort first (in parallel) then eliminate duplicates in result
Partition tuples (range or hash) and eliminate locally

Aggregates
Partition by grouping attributes; compute aggregate locally

Parallel/Distributed Aggregates

\[\sum_{dept} \text{salary} \]
Parallel/Distributed Aggregates

R_a
<table>
<thead>
<tr>
<th>id</th>
<th>dept</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>toy</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>toy</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>sales</td>
<td>15</td>
</tr>
</tbody>
</table>

R_b
<table>
<thead>
<tr>
<th>id</th>
<th>dept</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>sales</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>toy</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>mgmt</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>sales</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>mgmt</td>
<td>30</td>
</tr>
</tbody>
</table>

sum (sal) group by dept

Parallel/Distributed Aggregates

R_a
<table>
<thead>
<tr>
<th>id</th>
<th>dept</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>toy</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>toy</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>sales</td>
<td>15</td>
</tr>
</tbody>
</table>

R_b
<table>
<thead>
<tr>
<th>id</th>
<th>dept</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>sales</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>toy</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>mgmt</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>sales</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>mgmt</td>
<td>30</td>
</tr>
</tbody>
</table>

sum (sal) group by dept with less data
Parallel/Distributed Aggregates

Enhancement
Perform aggregate during partition to reduce data transmitted
→ Does not work for all aggregate functions—which ones?

Parallel/Distributed Selection

Straightforward if one can leverage range or hash partitioning

How do indexes work?
Parallel/Distributed Selection
Partition vector can act as the root of a distributed index

Parallel/Distributed Selection
Distributed indexes on a non-partition attributes get complicated

Parallel/Distributed Selection
Indexing schemes
Which one is better in a distributed environment?
How to make updates and expansion efficient?
Where to store the directory and set of participants?
Is global knowledge necessary?

→ If the index is not too big, it may be better to keep it whole and replicate it

Query Processing
Decomposition ✔
Localzation ✔

Optimization
Overview ✔
Joins and other operations ✔
Inter-operation parallelism
Optimization strategies
Inter-Operation Parallelism

Pipelined
Independent

Pipelined Parallelism

Pipelining cannot be used in all cases

Independent Parallelism

1. $\text{temp}_1 \leftarrow R \bowtie S$
2. $\text{temp}_2 \leftarrow T \bowtie V$
3. result $\leftarrow \text{temp}_1 \bowtie \text{temp}_2$
Summary

As we consider query plans for optimization, we must consider various new strategies for

individual operations

scheduling operations