Who am I?

Reynold Xin

PMC member, Apache Spark
Cofounder & Chief Architect, Databricks

PhD on leave (ABD), UC Berkeley AMPLab

Today’s Talk

1. MapReduce review
2. Spark and RDDs
3. Structure and DataFrames
4. Project Tungsten execution engine

MapReduce review
Google Datacenter

How do we program this thing?

Traditional Network Programming

Message-passing between nodes (MPI, RPC, etc)

Really difficult to do:

- How to split problem across nodes?
 - Important to consider network and data locality
- How to deal with failures?
 - If a typical server fails every 3 years, a 10,000-node cluster sees 10 faults/day!
- Even without failures: stragglers (a node is slow)

Almost nobody does this by hand!

Data-Parallel Models

Restrict the programming interface so that the system can do more automatically

“Here’s an operation, run it on all of the data”

- I don’t care where it runs (you schedule that)
- In fact, feel free to run it twice on different nodes

MapReduce Programming Model

Data type: key-value records

Map function:

\[(K_{in}, V_{in}) \rightarrow \text{list}(K_{inter}, V_{inter}) \]

Reduce function:

\[(K_{inter}, \text{list}(V_{inter})) \rightarrow \text{list}(K_{out}, V_{out}) \]
MapReduce Programmability

Most real applications require multiple MR steps
- Google indexing pipeline: 21 steps
- Analytics queries (e.g. count clicks & top K): 2 – 5 steps
- Iterative algorithms (e.g. PageRank): 10’s of steps

Multi-step jobs create spaghetti code
- 21 MR steps -> 21 mapper and reducer classes
- Lots of boilerplate code per step

Higher Level Frameworks

SELECT count(*) FROM users

In reality, 90+% of MR jobs are generated by Hive SQL

A = load 'foo';
B = group A all;
C = foreach B generate COUNT(A);

Spark and RDDs
A Large Community

Most active open source project in big data

“Spark is the Taylor Swift of big data software.”
- Derrick Harris, Fortune

V. Top Paying Tech

<table>
<thead>
<tr>
<th>Top Paying Tech in US</th>
<th>Top Paying Tech Worldwide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spark</td>
<td>$125,000</td>
</tr>
<tr>
<td>Scala</td>
<td>$125,000</td>
</tr>
<tr>
<td>Cassandra</td>
<td>$115,000</td>
</tr>
<tr>
<td>Python</td>
<td>$115,000</td>
</tr>
<tr>
<td>Hadoop</td>
<td>$115,000</td>
</tr>
<tr>
<td>Cloud (AWS, GAE, Azure, etc.)</td>
<td>$105,000</td>
</tr>
<tr>
<td>Redis</td>
<td>$105,000</td>
</tr>
</tbody>
</table>

IBM calls Apache Spark “most important new open source project in a decade”

IBM said it will throw its weight behind Apache Spark, an open source community developing a processing engine for large-scale datasets, putting thousands of internal developers to work on Spark related projects and contributing its machine learning technology to the code ecosystem.

Spark, an Apache-open source project born in 2009, is essentially an engine that can process vast amounts of data very quickly. It runs in Hadoop clusters through YARN or as a standalone deployment and can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat; it currently supports Scala, Java and Python.

IBM is throwing its weight behind Apache Spark in a bid to bolster its IoT strategy.

It is designed to transform raw data.
On-Disk Sort Record:
Time to sort 100TB

2013 Record: Hadoop
- 2100 machines
- 72 minutes

2014 Record: Spark
- 207 machines
- 23 minutes

Also sorted 1PB in 4 hours

Programmability

WordCount in 3 lines of Spark

WordCount in 50+ lines of Java MR

Apache Spark Stack

Spark SQL + DataFrames
- Streaming
- MLlib Machine Learning
- GraphX Graph Computation

Spark Core API
- R
- SQL
- Python
- Scala
- Java

A slide from 2013...

Spark
Fast and expressive cluster computing system interoperable with Apache Hadoop
Improves efficiency through:
- In-memory computing primitives
- General computation graphs
Up to 100x faster (2-10x on disk)

Improves usability through:
- Rich APIs in Scala, Java, Python
- Interactive shell
Often 5x less code
RDD

Resilient Distributed Datasets are the primary abstraction in Spark – a fault-tolerant collection of elements that can be operated on in parallel.

Two types:
- parallelized collections – take an existing single-node collection and parallel it
- Hadoop datasets: files on HDFS or other compatible storage

Operations on RDDs

Transformations f(RDD) => RDD
- Lazy (not computed immediately)
- E.g. “map”

Actions:
- Triggers computation
- E.g. “count”, “saveAsTextFile”

Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns.
Example: Log Mining
Load error messages from a log into memory, then interactively search for various patterns

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[-2])
messages.cache()
messages.filter(lambda s: "mysql" in s).count()
```
Example: Log Mining
Load error messages from a log into memory, then interactively search for various patterns

```
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
```
Example: Log Mining
Load error messages from a log into memory, then interactively search for various patterns

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[-2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
messages.filter(lambda s: "php" in s).count()
```

Example: Log Mining
Load error messages from a log into memory, then interactively search for various patterns

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[-2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
messages.filter(lambda s: "php" in s).count()
```
What Spark RDDs are vs MapReduce?

Functional APIs that generalize MapReduce
- Arbitrary DAG of tasks rather than simply map -> reduce

A better engineering implementation
- Faster scheduling (ms vs secs to launch tasks)
- Eliminate shuffle whenever possible
Original Spark Vision

1) Unified engine for big data processing
 • Combines batch, interactive, iterative, streaming

2) Concise, language-integrated API
 • Functional programming in Scala/Java/Python

Motivation: Unification

<table>
<thead>
<tr>
<th>MapReduce</th>
<th>Pregel</th>
<th>Giraph</th>
<th>Drill</th>
<th>Impala</th>
<th>Storm</th>
<th>Presto</th>
<th>S4</th>
</tr>
</thead>
</table>

General batch processing

Specialized systems for new workloads

Motivation: Concise API

Much of data analysis is exploratory / interactive

Spark solution: Resilient Distributed Datasets (RDDs)

- “Distributed collection” abstraction with simple functional API

``` scala
lines = spark.textFile("hdfs://...")
points = lines.map(line => parsePoint(line))
points.filter(p => p.x > 100).count()
```
How Did the Vision Hold Up?

Mostly well!

Users really appreciate unification

Functional API causes some challenges, which we are tackling

Libraries Built on Spark

- SQL
- Streaming
- MLlib
- GraphX

Spark Core (RDDs)

Largest integrated standard library for big data

Which Libraries Do People Use?

- Spark SQL: 69%
- DataFrames: 62%
- Spark Streaming: 58%
- MLlib + GraphX: 58%

75% of users use more than one component

Which Languages Do People Use?

2014 Languages Used

- Scala: 84%
- Java: 38%
- Python: 38%

2015 Languages Used

- Scala: 71%
- Java: 31%
- Python: 58%
- R: 18%
Main Challenge: Functional API

Looks high-level, but hides many semantics of computation from engine
- Functions are arbitrary blocks of code
- Data stored is arbitrary Java/Python objects

Users can mix APIs in suboptimal ways

Scaling Spark users

Early adopters
Users Understands MapReduce & functional APIs

Data Scientists
Statisticians
R users
PyData

Structure

verb
1. construct or arrange according to a plan; give a pattern or organization to.

```scala
 pdata.map(lambda x: (x.dept, [x.age, 1])) 
  .reduceByKey(lambda x, y: [x[0] + y[0], x[1] + y[1]], lambda x[0], x[1][0] / x[1][1]) 
  .collect()

data.groupBy("dept").avg("age")
```
Why Structure?

By definition, structure will limit what can be expressed.
In practice, we can accommodate the vast majority of computations.

Limiting the space of what can be expressed enables optimizations.

DataFrames in Spark

Distributed data frame abstraction for Java, Python, R, Scala

Similar APIs as single-node tools (Pandas, dplyr), i.e. easy to learn

DataFrames hold rows with a known schema and offer relational operations on them through a DSL

```
val c = new HiveContext()
val users = c.sql("select * from users")
val massUsers = users(users("state") === "MA")
massUsers.count()
massUsers.groupBy("name").avg("age")
```
What Structured APIs Enable

1. Compact binary representation
 - Columnar, compressed format for caching, rows for processing
2. Optimization across operators (join ordering, pushdown, etc)
3. Runtime code generation

```
joined = users.join(events, users.id == events.uid)
filtered = joined.filter(events.date >= '2015-01-01')
```

Logical plan

```
filter
join
scan (users)
scan (events)
```

Physical plan

```
join
filter
scan (users)
scan (events)
```

this join is expensive

Hardware Trends

- Storage
- Network
- CPU
Hardware Trends

<table>
<thead>
<tr>
<th></th>
<th>2010</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage</td>
<td>50+MB/s (HDD)</td>
<td>500+MB/s (SSD)</td>
</tr>
<tr>
<td>Network</td>
<td>1Gbps</td>
<td>10Gbps</td>
</tr>
<tr>
<td>CPU</td>
<td>~3GHz</td>
<td>~3GHz</td>
</tr>
</tbody>
</table>

Demo

Going back to the fundamentals

Difficult to get order of magnitude performance speed ups with profiling techniques

- For 10x improvement, would need to find top hotspots that add up to 90% and make them instantaneous
- For 100x, 99%

Instead, look bottom up, how fast should it run?

Volcano Iterator Model

Standard for 30 years: almost all databases do it

Each operator is an “iterator” that consumes records from its input operator

```java
class Filter {
    def next(): Boolean = {
        var found = false
        while (!found && child.next()) {
            found = predicate(child.fetch())
        }
        return found
    }

    def fetch(): InternalRow = {
        child.fetch()
    }

    ...
}
```

What if we hire a college freshman to implement this query in Java in 10 mins?

```java
select count(*) from store_sales
where ss_item_sk = 1000

var count = 0
for (ss_item_sk in store_sales) {
    if (ss_item_sk == 1000) {
        count += 1
    }
}
Volcano model vs college freshman hand-written code in 10 mins

How does a student beat 30 years of research?

Volcano
1. Many virtual function calls
2. Data in memory (or cache)
3. No loop unrolling, SIMD, pipelining

hand-written code
1. No virtual function calls
2. Data in CPU registers
3. Compiler loop unrolling, SIMD, pipelining

Tungsten Phase 2: Spark as a “Compiler”

```java
long count = 0;
for (ss_item_sk in store_sales) {
 if (ss_item_sk == 1000) {
 count += 1;
 }
}
```

Functionality of a general purpose execution engine; performance as if hand built system just to run your query.
Performance of Core Primitives

<table>
<thead>
<tr>
<th>Primitive</th>
<th>Spark 1.6</th>
<th>Spark 2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>filter</td>
<td>15 ns</td>
<td>1.1 ns</td>
</tr>
<tr>
<td>sum w/o group</td>
<td>14 ns</td>
<td>0.9 ns</td>
</tr>
<tr>
<td>sum w/ group</td>
<td>79 ns</td>
<td>10.7 ns</td>
</tr>
<tr>
<td>hash join</td>
<td>115 ns</td>
<td>4.0 ns</td>
</tr>
<tr>
<td>sort (8 bit entropy)</td>
<td>620 ns</td>
<td>5.3 ns</td>
</tr>
<tr>
<td>sort (64 bit entropy)</td>
<td>620 ns</td>
<td>40 ns</td>
</tr>
<tr>
<td>sort-merge join</td>
<td>750 ns</td>
<td>700 ns</td>
</tr>
</tbody>
</table>

Intel Haswell i7 4960HQ 2.6GHz, HotSpot 1.8.0_60-b27, Mac OS X 10.11

Today’s Talk

1. MapReduce review
2. Spark and RDDs
3. Structure and DataFrames
4. Project Tungsten execution engine

Takeaway: evolution (MR->RDD->DF) reflects making data processing easier, faster, and smarter.

Want to Learn Apache Spark?

Databricks Community Edition offers free hands-on tutorials

databricks.com/ce

20% Discount code: reynold16
Thank you.

@rxin