Notes 3: Query Processing
Query Processing

Decomposition
Localization
Optimization
Decomposition

Same as in centralized system

1. Normalization
2. Eliminating redundancy
3. Algebraic rewriting
Normalization

Convert from general language to a *standard* form
E.g., relational algebra
Normalization

Example:

select R.A, R.C
from R, S
where R.A = S.A and
((R.B = 1 and S.D = 2) or
(R.C > 3 and S.D = 2))

conjunctive normal form
Normalization

Also detect invalid expressions

select *
from R
where R.D = 3
✓ R does not have D attribute
Eliminating Redundancy

E.g., in conditions

\[(S.A = 1) \land (S.A > 5) \Rightarrow \text{false}\]

\[(S.A < 10) \land (S.A < 5) \Rightarrow S.A < 5\]
Eliminating Redundancy

E.g., sharing common sub-expressions
Algebraic Rewriting

E.g., pushing conditions down

\[
\sigma_{\text{cond}} \bowtie R \bowtie S \\
\sigma_{\text{cond}2} \bowtie \sigma_{\text{cond}3} \\
\sigma_{\text{cond}1} \bowtie R \bowtie S
\]
Query Processing

Decomposition ✔
→ One or more algebraic query trees on relations

Localization
Replacing relations by corresponding fragments
Localization

Steps

(1) Start with query

(2) Replace relations by fragments

(3) Push \cup up and \prod, σ down (apply CS 245 rules)

(4) Simplify \sim eliminate unnecessary operations
Localization

Notation for fragment

\[[R : \text{cond}] \]

fragment

conditions its tuples satisfy
Example A

(1)

\[\sigma_{E=3} \]

| R |
Example A

(2)

\[
\sigma_{E=3} \cup [R_1: E<10] \cup [R_2: E\geq10]
\]
Example A

(3)

\[\sigma_{E=3} \bigcup \sigma_{E=3} \]

\[
\begin{align*}
\sigma_{E=3} & \quad [R_1: E<10] \\
\sigma_{E=3} & \quad [R_2: E\geq10]
\end{align*}
\]
Example A

(3)

\[\sigma_{E=3} \cup \begin{cases} R_1: E < 10 \\ R_2: E \geq 10 \end{cases} \implies \emptyset \]
Example A

(4)

\[\sigma_{E=3} \]

[\[R_1: E<10]\]
Localization

Rule 1

\[\sigma_{c_1}[R: c_2] \implies \sigma_{c_1}[R: c_1 \land c_2] \]

\[[R: \text{false}] \implies \emptyset \]
Example A

\[\sigma_{E=3} \left[R_2 : E \geq 10 \right] \Rightarrow \sigma_{E=3} \left[R_2 : E=3 \land E \geq 10 \right] \]
\[\Rightarrow \sigma_{E=3} \left[R_2 : \text{false} \right] \]
\[\Rightarrow \emptyset \]
Example B

(1)

\[
\begin{array}{c}
\bowtie \\
A \\
\Lambda \\
R \\
\Lambda \\
S
\end{array}
\]

A = common attribute
Example B

(2)
(3)

Example B
Example B

(4)

\[R_1: A < 5 \quad S_1: A < 5 \]

\[R_2: 5 \leq A \leq 10 \quad S_2: A \geq 5 \]

\[R_3: A > 10 \quad S_2: A \geq 5 \]
Localization

Rule 2

\[[R: c_1] \bowtie_A [S: c_2] \implies [R \bowtie_A S: c_1 \land c_2 \land R.A = S.A] \]

\[[R: \text{false}] \implies \emptyset \]
Example B

\[R_1: A < 5 \] \bowtie_A \ [S_2: A \geq 5] \]

\[\Rightarrow [R_1 \bowtie_A S_2: R_1.A < 5 \land S_2.A \geq 5 \land R_1.A=S_2.A] \]

\[\Rightarrow [R_1 \bowtie_A S_2: \text{false}] \]

\[\Rightarrow \emptyset \]
Example C

(2)

\[R_1: A < 10 \]
\[R_2: A \geq 10 \]
\[S_1: K = R.K \land R.A < 10 \]
\[S_2: K = R.K \land R.A \geq 10 \]

derived fragmentation
Example C

(3)

\[R_1 \bowtie K \bowtie K \bowtie K \bowtie K \cup S_1 \]

\[[R_1] \bowtie [S_1] \bowtie [R_1] \bowtie [S_2] \bowtie [R_2] \bowtie [S_1] \bowtie [R_2] \bowtie [S_2] \]
Example C

(3)

\[
\left\{ K \right\} \bowtie \left\{ K \right\} \bowtie \left\{ K \right\} \bowtie \left\{ K \right\} \cup \\
\left\{ S_1 \right\} \bowtie \left\{ S_1 \right\} \bowtie \left\{ S_2 \right\} \bowtie \left\{ S_2 \right\}
\]
Example C

(4)

\[R_1: A < 10 \]
\[S_1: K = R.K \land R.A < 10 \]
\[R_2: A \geq 10 \]
\[S_2: K = R.K \land R.A \geq 10 \]
Example C

\[R_1: A < 10 \] \bowtie_K \ [S_2: K = R.K \land R.A \geq 10] \]

\[\Rightarrow [R_1 \bowtie_K S_2: R_1.A < 10 \land S_2.K = R.K \land R.A \geq 10 \land R_1.K = S_2.K] \]

\[\Rightarrow [R_1 \bowtie_K S_2: \text{false}] \]

\[\Rightarrow \emptyset \]
Example D

(1) \[\Pi_A \quad \begin{cases} R1 (K, A, B) \\ R2 (K, C, D) \end{cases} \]

vertical fragmentation
Example D

(2) \[\prod_A \]

\[\bowtie K \]

\[R_1 \quad R_2 \]

(K,A,B) (K,C,D)
Example D

(2) \[\prod_A \bowtie_K \prod_{K,A} R_1 \bowtie_K \prod_{K,A} R_2 \]

\[(K,A,B) \bowtie (K,C,D) \]
Example D

(4) \[\Pi_A \]

\[\text{R}_1 \]

(K, A, B)
Rule 3

Consider the vertical fragmentation

\[R_i = \prod_{A_i}(R), A_i \subseteq A \]

Then for any \(B \subseteq A \)

\[\prod_B(R) = \prod_B(\bowtie_i R_i \mid B \cap A_i \neq \emptyset) \]
Query Processing

Decomposition ✔
Localization ✔

Optimization
Overview
Joins and other operations
Inter-operation parallelism
Optimization strategies
Overview

Optimization process
1. Generate query plans
2. Estimate size of intermediate results
3. Estimate cost of plan
4. Pick minimum

$P_1 \rightarrow P_2 \rightarrow P_3 \rightarrow P_n$

$C_1 \rightarrow C_2 \rightarrow C_3 \rightarrow C_n$

4. Pick minimum
Overview

Differences from centralized optimization

New strategies for some operations
- Parallel/distributed sort
- Parallel/distributed join
 - Semi-join
 - Privacy preserving join
- Duplicate elimination
- Aggregation
- Selection

Many ways to assign and schedule processors
Parallel/Distributed Sort

Input
a) Relation R on single site/disk
b) Relation R fragmented/partitioned by sort attribute
c) Relation R fragmented/partitioned by another attribute
Parallel/Distributed Sort

Output

a) Sorted R on single site/disk
b) Sorted R fragments/partitions

\[\begin{array}{c|c}
5 & \ldots \\
6 & \\
10 & \\
\hline
12 & \ldots \\
15 & \\
\hline
19 & \ldots \\
20 & \\
21 & \\
50 & \\
\end{array} \]

F_1 F_2 F_3
Basic Sort

\[R(K, \ldots) \text{ to be sorted on } K \]
Horizontally fragmented on \(K \) using vector \((k_0, k_1, \ldots, k_n)\)
Basic Sort

Algorithm
1. Sort each fragment independently
2. Ship results if necessary
Basic Sort

Same idea on different architectures

Shared nothing

Shared memory
Range-Partition Sort

\(R(\text{K, ...}) \) to be sorted on \(\text{K} \)

\(R \) located at one or more site/disk, **not** fragmented on \(\text{K} \)
Range-Partition Sort

Algorithm
1. Range partition on K
2. Basic sort
Partition Vectors

Problem
Select a good partition vector given fragments

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[R_a \]
\[R_b \]
\[R_c \]
Partition Vectors

Example approach

Each site sends to coordinator
- MIN sort key
- MAX sort key
- Number of tuples

Coordinator
- Computes vector and distributes to sites
- Decides the number of sites to perform local sorts
Partition Vectors

Sample scenario
Coordinator receives

\[S_A: \quad \text{MIN} = 5 \quad \text{MAX} = 9 \quad \# \text{of tuples} = 10 \]

\[S_B: \quad \text{MIN} = 7 \quad \text{MAX} = 16 \quad \# \text{of tuples} = 10 \]
Sample scenario

Coordinator receives

S_A: MIN = 5 MAX = 9 # of tuples = 10

S_B: MIN = 7 MAX = 16 # of tuples = 10

Expected tuples

\[k_0 = \frac{10}{16 - 7 + 1} \]

\[2 = \frac{10}{9 - 5 + 1} \]

assuming we want to sort at 2 sites
Partition Vectors

Sample scenario

Expected tuples

Expected tuples with key < \(k_0 \) = half of total tuples

\[
2(k_0 - 5) + (k_0 - 7) = 10
\]

\[
k_0 = (10 + 10 + 7) / 3 = 9
\]
Partition Vectors

Variations
Send more info to coordinator:
a) Partition vector for local site

\[\begin{array}{cccccc}
3 & 3 & 3 & \text{# of tuples} \\
5 & 6 & 8 & 10 & \text{local vector}
\end{array}\]

b) Histogram

\[\begin{array}{cccccc}
5 & 6 & 7 & 8 & 9 & 10
\end{array}\]
Partition Vectors

Variations
Multiple rounds

1. Sites send range and # of tuples to coordinator
2. Coordinator distributes preliminary vector V_0
3. Sites send coordinator # of tuples in each V_0 range
4. Coordinator computes and distributes final vector V_f
Partition Vectors

Variations
Distributed algorithm that does not require a coordinator?
Parallel External Sort-Merge

Same as range-partition sort except does sorting first

\[R_a \xrightarrow{\text{local sort}} R'_a \]
\[R_b \xrightarrow{\text{local sort}} R'_b \]

\[R'_1 \]
\[R'_2 \]
\[R'_3 \]

result

in order

merge
Parallel/Distributed Join

Input
Relations R, S
May or may not be fragmented

Output
$R \bowtie S$
Result at one or more sites
Partitioned Join (Equijoin)

\[\text{local join} \]

\[\text{result} \]

\[f(A) \]

\[R_A \quad R_B \quad R_1 \quad R_2 \quad R_3 \]

\[S_1 \quad S_2 \quad S_3 \]

\[S_A \quad S_B \quad S_C \]
Partitioned Join (Equijoin)

Same partition function f is used for both R and S

f can be range or hash partitioning

Local join can be of any type (use any CS 245 optimization)

Various scheduling options, e.g.,

a) Partition R; partition S; join
b) Partition R; build local hash table for R; partition S and join
Partitioned Join (Equijoin)

We already know why it works

Sometimes we partition just to make this join possible
Partitioned Join (Equijoin)

Selecting a good partition function f is very important.

Goal is to make all $|R_i| + |S_i|$ the same size.
Asymmetric Fragment + Replicate Join
Asymmetric Fragment + Replicate Join

Can use any partition function f for R (even round robin)

Can do any join, not just equijoin (e.g., $R \bowtie_{R.A < S.B} S$)
General Fragment + Replicate Join

partition
→ 3 fragments

n copies of each fragment
General Fragment + Replicate Join

S is partitioned in similar fashion
General Fragment + Replicate Join

\[R_1 \times S_1 \]
\[R_2 \times S_1 \]
\[R_3 \times S_1 \]
\[R_1 \times S_2 \]
\[R_2 \times S_2 \]
\[R_3 \times S_2 \]

n × m pairings of R, S fragments

result
General Fragment + Replicate Join

The asymmetric F+R join is special case of the general F+R

Asymmetric F+R may be good if S is small

Also works on non-equijoins
Semi-Join

Goal: reduce communication traffic

\[R_A \bowtie S \Rightarrow (R_A \bowtie S) \bowtie S \text{ or } \]
\[R_A (S_A \bowtie R) \text{ or } \]
\[(R_A \bowtie S) \bowtie (S_A \bowtie R) \]
Semi-Join

$R \bowtie S$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>d</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>z</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>w</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>
Semi-Join

\[R \bowtie S \]

\[
\begin{array}{c|c}
A & B \\
2 & a \\
10 & b \\
25 & c \\
30 & d \\
\end{array}
\]

\[
\begin{array}{c|c}
A & C \\
3 & x \\
10 & y \\
15 & z \\
25 & w \\
32 & x \\
\end{array}
\]

\[\Pi_A R = [2, 10, 25, 30] \]
Semi-Join

\(R \bowtie S \)

\[
\begin{array}{c|c}
A & B \\
\hline
2 & a \\
10 & b \\
25 & c \\
30 & d \\
\end{array}
\hspace{1cm}
\begin{array}{c|c}
A & C \\
\hline
3 & x \\
10 & y \\
15 & z \\
25 & w \\
32 & x \\
\end{array}
\]

\(\prod_A R = [2, 10, 25, 30] \)

\(R \bowtie S \)

\(S \bowtie R = \begin{array}{c|c}
10 & y \\
25 & w \\
\end{array} \)
Semi-Join

Transmitted data
With semi-join $R \bowtie (S \bowtie R)$: $T = 4 |A| + 2 |A + C| + \text{result}$
With join $R \bowtie S$: $T = 4 |A + B| + \text{result}$

better if $|B|$ is large
Semi-Join

Assume R is the smaller relation

Then, in general,

$\left(R \times^A S \right) \bowtie^A S$ is better than $\left(R \times^A S \right)$ if

$\text{size}(\prod_A S) + \text{size}(R \times^A S) < \text{size}(R)$

Can do similar comparison for other joins

→ Only taking into account transmission cost
Semi-Join

Trick: encode $\prod_A S$ (or $\prod_A R$) as a bit vector

keys in S → 001101000010100

← one bit/possible key →

CS 347 Notes 3
Semi-Join

Useful for three way joins $R \bowtie S \bowtie T$
Semi-Join

Useful for three way joins \(R \bowtie S \bowtie T \)

Option 1: \(R' \bowtie S' \bowtie T \) where \(R' = R \bowtie S \)
\[
S' = S \bowtie T
\]
Semi-Join

Useful for three way joins $R \bowtie S \bowtie T$

Option 1: $R' \bowtie S' \bowtie T$ where $R' = R \bowtie S$
$S' = S \bowtie T$

Option 2: $R'' \bowtie S' \bowtie T$ where $R'' = R \bowtie S'$
$S' = S \bowtie T$
Semi-Join

Useful for three way joins $R \bowtie S \bowtie T$

Option 1: $R' \bowtie S' \bowtie T$ where $R' = R \bowtie S$
$S' = S \bowtie T$

Option 2: $R'' \bowtie S' \bowtie T$ where $R'' = R \bowtie S'$
$S' = S \bowtie T$

...
→ Many options ~ exponential in # of relations
Privacy Preserving Join

Site 1 has $R(A, B)$
Site 2 has $S(A, C)$

Want to compute $R \bowtie S$

Site 1 should **not** discover any S info not in the join
Site 2 should **not** discover any R info not in the join
Privacy Preserving Join

Semi-join won’t work
If site 1 sends $\prod_A R$ to site 2, site 2 learns all keys of R
Privacy Preserving Join

Fix: send hash keys only

Site 1 hashes each value of A before sending
Site 2 hashes its own A values (same h) to see what tuples match

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>a₁</td>
<td>b₁</td>
</tr>
<tr>
<td></td>
<td>a₂</td>
<td>b₂</td>
</tr>
<tr>
<td></td>
<td>a₃</td>
<td>b₃</td>
</tr>
<tr>
<td></td>
<td>a₄</td>
<td>b₄</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>a₁</td>
<td>c₁</td>
</tr>
<tr>
<td></td>
<td>a₃</td>
<td>c₂</td>
</tr>
<tr>
<td></td>
<td>a₅</td>
<td>c₃</td>
</tr>
<tr>
<td></td>
<td>a₇</td>
<td>c₄</td>
</tr>
</tbody>
</table>

\[
\Pi_A R = (h(a₁), h(a₂), h(a₃), h(a₄))
\]

Site 2 sees it has $h(a₁), h(a₃)$
(a₁, c₁), (a₃, c₃)
Privacy Preserving Join

What is the problem?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>a₁</td>
<td>b₁</td>
</tr>
<tr>
<td></td>
<td>a₂</td>
<td>b₂</td>
</tr>
<tr>
<td></td>
<td>a₃</td>
<td>b₃</td>
</tr>
<tr>
<td></td>
<td>a₄</td>
<td>b₄</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>a₁</td>
<td>c₁</td>
</tr>
<tr>
<td></td>
<td>a₃</td>
<td>c₂</td>
</tr>
<tr>
<td></td>
<td>a₅</td>
<td>c₃</td>
</tr>
<tr>
<td></td>
<td>a₇</td>
<td>c₄</td>
</tr>
</tbody>
</table>

\[\Pi_A R = (h(a_1), h(a_2), h(a_3), h(a_4)) \]

site 2 sees it has \(h(a_1), h(a_3) \)

(a₁, c₁), (a₃, c₃)

site 1

site 2
Privacy Preserving Join

What is the problem?

\[
\begin{array}{|c|c|}
\hline
A & B \\
\hline
a_1 & b_1 \\
a_2 & b_2 \\
a_3 & b_3 \\
a_4 & b_4 \\
\hline
\end{array}
\quad \rightarrow \quad
\begin{array}{|c|c|}
\hline
A & C \\
\hline
a_1 & c_1 \\
a_3 & c_2 \\
a_5 & c_3 \\
a_7 & c_4 \\
\hline
\end{array}
\]

\[\Pi_A R = (h(a_1), h(a_2), h(a_3), h(a_4))\]

site 2 sees it has \(h(a_1), h(a_3)\)

\[\text{site 1} \quad (a_1, c_1), (a_3, c_3)\]

\[\text{site 2}\]

Dictionary attack
Site 2 can take all keys \(a_1, a_2, a_3, ...\) and checks if \(h(a_1), h(a_2), h(a_3), ...\) matches what site 1 sent
Privacy Preserving Join

Our adversary model: honest but curious

Dictionary attack is possible (cheating is internal and can’t be caught)

Sending incorrect keys not possible (cheater could be caught)
Privacy Preserving Join

One solution
Information Sharing Across Private Databases. Agrawal et al., SIGMOD 2003

→ Use commutative encryption functions

\[E_i(x) = x \text{ encrypted using a key private to site } i \]
\[E_1(E_2(x)) = E_2(E_1(x)) \]

Shorthand: \(E_1(x) \) is \(\bar{x} \), \(E_2(x) \) is \(x \), \(E_1(E_2(x)) \) is \(\bar{x} \)
Privacy Preserving Join

One solution

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>a₁</td>
<td>b₁</td>
</tr>
<tr>
<td></td>
<td>a₂</td>
<td>b₂</td>
</tr>
<tr>
<td></td>
<td>a₃</td>
<td>b₃</td>
</tr>
<tr>
<td></td>
<td>a₄</td>
<td>b₄</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>a₁</td>
<td>c₁</td>
</tr>
<tr>
<td></td>
<td>a₃</td>
<td>c₂</td>
</tr>
<tr>
<td></td>
<td>a₅</td>
<td>c₃</td>
</tr>
<tr>
<td></td>
<td>a₇</td>
<td>c₄</td>
</tr>
</tbody>
</table>

site 1

Computes \((\overline{a₁}, \overline{a₃}, \overline{a₅}, \overline{a₇})\), intersects with \((\overline{a₁}, \overline{a₂}, \overline{a₃}, \overline{a₄})\)

\((a₁, b₁), (a₃, b₃)\)

site 2
Other Privacy Preserving Operations

Inequality join \(R \bowtie_{R.A > S.A} S \)

Similarity join \(R \bowtie_{\text{sim}(R.A,S.A) \leq e} S \)
Other Parallel Operations

Duplicate elimination
Sort first (in parallel) then eliminate duplicates in result
Partition tuples (range or hash) and eliminate locally

Aggregates
Partition by grouping attributes; compute aggregate locally
Parallel/Distributed Aggregates

\begin{align*}
R_a & \quad id \quad dept \quad salary \\
1 & \quad toy \quad 10 \\
2 & \quad toy \quad 20 \\
3 & \quad sales \quad 15 \\
R_b & \quad id \quad dept \quad salary \\
4 & \quad sales \quad 5 \\
5 & \quad toy \quad 20 \\
6 & \quad mgmt \quad 15 \\
7 & \quad sales \quad 10 \\
8 & \quad mgmt \quad 30 \\
\end{align*}

\text{sum (sal) group by dept}
Parallel/Distributed Aggregates

\[
\text{id} \quad \text{dept} \quad \text{salary} \\
1 \quad \text{toy} \quad 10 \\
2 \quad \text{toy} \quad 20 \\
3 \quad \text{sales} \quad 15 \\
\]

\[
\text{id} \quad \text{dept} \quad \text{salary} \\
4 \quad \text{sales} \quad 5 \\
5 \quad \text{toy} \quad 20 \\
6 \quad \text{mgmt} \quad 15 \\
7 \quad \text{sales} \quad 10 \\
8 \quad \text{mgmt} \quad 30 \\
\]

\[
\text{id} \quad \text{dept} \quad \text{salary} \\
1 \quad \text{toy} \quad 10 \\
2 \quad \text{toy} \quad 20 \\
5 \quad \text{toy} \quad 20 \\
6 \quad \text{mgmt} \quad 15 \\
8 \quad \text{mgmt} \quad 30 \\
\]

\[
\text{id} \quad \text{dept} \quad \text{salary} \\
3 \quad \text{sales} \quad 15 \\
4 \quad \text{sales} \quad 5 \\
7 \quad \text{sales} \quad 10 \\
\]

\[\text{sum (sal) group by dept}\]
Parallel/Distributed Aggregates

sum (sal) group by dept

<table>
<thead>
<tr>
<th>id</th>
<th>dept</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>toy</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>toy</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>sales</td>
<td>15</td>
</tr>
</tbody>
</table>

R_a

<table>
<thead>
<tr>
<th>id</th>
<th>dept</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>sales</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>toy</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>mgmt</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>sales</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>mgmt</td>
<td>30</td>
</tr>
</tbody>
</table>

R_b

<table>
<thead>
<tr>
<th>id</th>
<th>dept</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>toy</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>toy</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>toy</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>mgmt</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>mgmt</td>
<td>30</td>
</tr>
</tbody>
</table>

R_a + R_b

<table>
<thead>
<tr>
<th>id</th>
<th>dept</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>sales</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>sales</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>sales</td>
<td>10</td>
</tr>
</tbody>
</table>

sum (sal) group by dept

<table>
<thead>
<tr>
<th>dept</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>toy</td>
<td>50</td>
</tr>
<tr>
<td>mgmt</td>
<td>45</td>
</tr>
<tr>
<td>sales</td>
<td>30</td>
</tr>
</tbody>
</table>
Parallel/Distributed Aggregates

<table>
<thead>
<tr>
<th></th>
<th>id</th>
<th>dept</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ra</td>
<td>1</td>
<td>toy</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>toy</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>sales</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>id</th>
<th>dept</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rb</td>
<td>4</td>
<td>sales</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>toy</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>mgmt</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>sales</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>mgmt</td>
<td>30</td>
</tr>
</tbody>
</table>

\[\text{sum (sal) group by dept with less data} \]
Parallel/Distributed Aggregates

Table Ra

<table>
<thead>
<tr>
<th>id</th>
<th>dept</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>toy</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>toy</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>sales</td>
<td>15</td>
</tr>
</tbody>
</table>

Table Rb

<table>
<thead>
<tr>
<th>id</th>
<th>dept</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>sales</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>toy</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>mgmt</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>sales</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>mgmt</td>
<td>30</td>
</tr>
</tbody>
</table>

\[\text{sum (sal) group by dept with less data} \]
Parallel/Distributed Aggregates

Relation R_a

<table>
<thead>
<tr>
<th>id</th>
<th>dept</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>toy</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>toy</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>sales</td>
<td>15</td>
</tr>
</tbody>
</table>

Relation R_b

<table>
<thead>
<tr>
<th>id</th>
<th>dept</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>sales</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>toy</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>mgmt</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>sales</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>mgmt</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>dept</th>
<th>salary</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>toy</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>toy</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>mgmt</td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>dept</th>
<th>salary</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>sales</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>sales</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Sum (sal) group by dept with less data
Parallel/Distributed Aggregates

Enhancement
Perform aggregate during partition to reduce data transmitted
→ Does not work for all aggregate functions—which ones?
Preview: MapReduce

data A₁

map

data B₁

reduce

data C₁

data A₂

data B₂

data C₁

data A₃
Parallel/Distributed Selection

Straightforward if one can leverage range or hash partitioning

How do indexes work?
Parallel/Distributed Selection

Partition vector can act as the root of a distributed index
Parallel/Distributed Selection

Distributed indexes on a non-partition attributes get complicated
Parallel/Distributed Selection

Indexing schemes
Which one is better in a distributed environment?
How to make updates and expansion efficient?
Where to store the directory and set of participants?
Is global knowledge necessary?

→ If the index is not too big, it may be better to keep it whole and replicate it
Query Processing

Decomposition ✔
Localization ✔

Optimization
Overview ✔
Joins and other operations ✔
Inter-operation parallelism
Optimization strategies
Inter-Operation Parallelism

Pipelined
Independent
Pipelined Parallelism

\[\sigma_{c} \bowtie R \bowtie S \]

- Site 1: \(\sigma_{c} \)
- Site 2: \(S \)
- Site 1 joins to Site 2
- Result: tuples matching \(\sigma_{c} \)

Diagram:
- Site 1: \(R \)
- Site 2: \(S \)
- Join: \(\bowtie \)
- Probe: \(\leftarrow \)
- Result:
Pipelined Parallelism

Pipelining cannot be used in all cases

\[\text{stream of R tuples} \qquad \text{stream of S tuples} \]
Independent Parallelism

1. \(\text{temp}_1 \leftarrow R \bowtie S \)
\(\text{temp}_2 \leftarrow T \bowtie V \)
2. \(\text{result} \leftarrow \text{temp}_1 \bowtie \text{temp}_2 \)
Summary

As we consider query plans for optimization, we must consider various *new strategies* for

individual operations

scheduling operations