
CS349D Cloud Computing

Christos Kozyrakis

Spring 2023, MW 1.30– 2.50pm, Hewlett 101

cs349d.stanford.edu

https://cs349d.stanford.edu/

Class Staff
Christos Kozyrakis

www.stanford.edu/~kozyraki

Michael Abbott
www.linkedin.com/in/michaelabbott

Mark Zhao
www.stanford.edu/~myzhao

Franky Romero
www.stanford.edu/~faromero

http://www.stanford.edu/~kozyraki
http://www.linkedin.com/in/michaelabbott
http://www.stanford.edu/~myzhao
http://www.stanford.edu/~faromero

Student Intro

Class Topics in 2018
Storage
CAP theorem
Cloud economics
Databases
Analytics systems
Stream processing
Resource managers
Resource allocation
Serverless computing

Monitoring & debugging
Programming models
ML platforms
ML serving
Hardware
Security
Privacy
SRE / DevOps
Edge computing

Class Topics in 2023

Cloud basics
Tools for building infrastructure [management, observability]

Data infrastructure [databases and lakehouses]

Infrastructure for ML [training, serving, MLops]

Security infrastructure [Nitro, data-driven security]

Confidential computing [private analytics and ML]

Class Format
Half lectures will be a guest lecture

No video, come in person
Participate in the discussion

Half lectures will be paper discussions
Read the papers ahead of time and submit summaries
2-3 students summarize papers & lead discussion
We all participate in the discussion
1 student takes notes

What to Look for in a Paper
The challenge addressed by the paper

The key insights & original contributions
Real or claimed, you have to check

Critique: the major strengths & weaknesses
Look at the claims and assumptions, the methodology,
the analysis/evaluation, and the presentation style

Future work: extensions & improvements
Can we apply the methodology to other problems?
What are the broader implications?

Tips for Reading Papers
Read the abstract, intro, & conclusion first

Read the rest of the paper twice
First a quick pass to get rough idea then a detailed reading

Underline/highlight the important parts of the paper

Keep notes on the margins about issues/questions
Key insights, questionable claims, relevance to other topics, etc.

Look up references that seem to important or missing
You may also want to check who references this paper and how

Tips for Leading Discussion

Keep paper summary to 5min
Assume everyone has read it recently

Prepare a few questions to keep discussion going
Questions on basics, dig further into techniques, alternative approaches,

draw links to recent discussions, …
Be open to questions from the rest of the class

Moderate discussion

Research Project
Groups of 2-3 students

Topic
Address an open question in cloud computing
Suggested by staff or your own idea

Timeline (TBD)
Project proposal – around week 3
Mid-term checkpoint – around week 6
Presentation/paper – week 10

Grading

Project 65%

Participation 20%

Paper summaries/presentation: 15%

Reminders
Make sure you are registered on Axess and EdStem

Contact instructors if you need help

Fill in form with interests for discussion topics
We will assign topics for leads and note taking

Start talking about projects
Form a group

Next Meeting: Cloud Basics
Goal: get us all on the same page

Read the two white papers from AWS
AWS Overview, Well architected Framework
No summaries needed
Come prepared to discuss the state of cloud

Cloud Computing Overview

Christos Kozyrakis

cs349d.stanford.edu

https://cs349d.stanford.edu/

What is Cloud Computing?
Informal: computing with large datacenters

What is Cloud Computing?
Informal: computing with large datacenters

Our focus: computing as a utility
» Outsourced to a third party or internal org

Types of Cloud Services
Infrastructure as a Service (IaaS):

Platform as a Service (PaaS):

Software as a Service (SaaS):

Public vs private clouds:

VMs, disks

K8S, MapReduce

Email, GitHub

Shared across arbitrary orgs/customers
vs internal to one organization

Example
AWS Lambda functions-as-a-service
» Runs functions in a Linux container on events
» Used for web apps, IoT apps, stream

processing, highly parallel MapReduce and video
encoding

Cloud Economics: For Users
Pay-as-you-go (usage-based) pricing:
» Most services charge per minute, per byte, etc
» No minimum or up-front fee
» Helpful when apps have variable utilization

Cloud Economics: For Users
Elasticity:
» Using 1000 servers for 1 hour costs the same as

1 server for 1000 hours
» Same price to get a result faster!

Resources

Time Time

Resources

Cloud Economics: For Providers
Economies of scale:
» Purchasing, powering & managing machines at

scale gives lower per-unit costs than customers’
» Tradeoff: fast growth vs efficiency
» Tradeoff: flexibility vs cost

Cloud Economics: For Providers

Speed of iteration:
» Software as a service means fast time-to-market,

updates, and detailed monitoring/feedback
» Compare to speed of iteration with ordinary

software distribution

Questions

• Assume you are a cloud provider

How do you avoid having many your customers
spike at the time time?

Other Interesting Features
Spot market for preemptible machines

Wide geographic access for disaster recovery
and speed of access

Ability to quickly try exotic hardware

Ability to A/B test anything

Common Cloud Applications
1. Web and mobile applications

2. Data analytics (MapReduce, SQL, ML, etc)

3. Stream processing

4. Batch computation (HPC, video, etc)

Cloud Software Stack

Web Server
Java, PHP, JS, …

Cache
memcached, TAO, …

Other Services
model serving, search,
workflow systems, …

Analytics Engines
MapReduce, Spark,
BigQuery, Pregel, …

Message Bus
Kafka, Kinesis, …

Analytics UIs
Tableau, FBLearner, …

Distributed Storage
Amazon S3, BigTable, Hadoop FS, …

Resource Manager
EC2, Borg, Mesos, Kubernetes, …Co

or
di

na
tio

n
Ch

ub
by

, Z
K,

 …

Metadata
Hive, AWS Catalog, …

Operational Stores
SQL, Spanner, Dynamo,
Cassandra, BigTable, …

M
et

er
in

g
+

Bi
llin

g

Se
cu

rit
y

(e
.g

. I
AM

)

Datacenter Hardware

Rows of rack-mounted servers

Datacenter: 50 – 200K of servers, 10 – 100MW
Often organized as few and mostly independent clusters

Datacenter Example

Datacenter HW: Compute
The basics

Multi-core CPU servers
1 & 2 sockets

What’s new
GPUs
Custom accelerators (AI)
FPGAs

2-socket server

Nvidia GPU

Microsoft Catapult

Google TPU2

Datacenter HW: Storage
The basics

Disk trays
SSD & NVM Flash

What’s new
Non-volatile memories
New archival storage (e.g., glass)

Distributed with compute or NAS systems
Remote storage access for many use cases (why?)

NVMe Flash
JBOD disk array

NVM DIMM

Datacenter HW: Networking
The basics

40, 100, 200 GbE NICs
100GbE to 200 GbE switches
Clos topologies

What’s new
Software defined networking
In network computation
Smart NICs
FPGAs

100GbE Switch

Microsoft Catapult

Smart NIC

Performance Metrics
Throughput

Requests per second
Concurrent users
Gbytes/sec processed
...

Latency
Execution time
Per request latency

38

Tail Latency

The 95th or 99th percentile request latency
End-to-end with all tiers included

Larger scale → more prone to high tail latency

[Dean & Barroso,’13]

39

Total Cost of Ownership (TCO)
TCO = capital (CapEx) + operational (OpEx) expenses

Operators perspective
CapEx: building, generators, A/C, compute/storage/net HW
Including spares, amortized over 3 – 15 years
OpEx: electricity (5-7c/KWh), repairs, people, WAN, insurance, …

Users perspective
CapEx: cost of long term leases on HW and services
OpeEx: pay per use cost on HW and services, people

40

Operator’s TCO Example

41

Hardware dominates TCO, make it cheap
Must utilize it as well as possible

[Source: James Hamilton]

Questions
How can both providers and users benefit financially
from cloud computing

When should users consider hybrid or on-premise
computing?

Reliability
Failure in time (FIT)

Failures per billion hours of operation = 109/MTTF

Mean time to failure (MTTF)
Time to produce first incorrect output

Mean time to repair (MTTR)
Time to detect and repair a failure

Availability

Steady state availability = MTTF / (MTTF + MTTR)

Correct Failure Correct CorrectFailure

MTTR MTTRMTTF MTTF

Key Availability Techniques
Technique Performance Availability

Replication ✔ ✔

Partitioning (sharding) ✔ ✔

Load-balancing ✔

Watchdog timers ✔

Integrity checks ✔

Canaries ✔

Eventual consistency ✔ ✔

Make apps do something reasonable when not all is right
Better to give users limited functionality than an error page

Aggressive load balancing or request dropping
Better to satisfy 80% of the users rather than none

The CAP Theorem
In distributed systems, choose 2 out of 3

Consistency
Every read returns data from most recent write

Availability
Every request executes & receives a (non-error) response

Partition-tolerance
The system continues to function when network partitions
occur (messages dropped or delayed)

Useful Tips
Check for single points of failure

Keep it simple stupid (KISS)
The reason many systems use centralized control

If it’s not tested, do no rely on it

Question: how do you test availability techniques
with hundreds of loosely coupled services
running on thousands of machines?

48

Questions

Other major advantages or disadvantages of cloud
computing?

