MLaaS in the Wild: Workload Analysis and Scheduling in Large-Scale Heterogeneous GPU Clusters

Qizhen Weng†*, Wencong Xiao*, Yinghao Yu*†, Wei Wang†, Cheng Wang*, Jian He*, Yong Li*, Liping Zhang*, Wei Lin*, and Yu Ding*

† Hong Kong University of Science and Technology *Alibaba Group
Motivation

Challenges in scheduling ML workloads
- Characteristics:
 - Heterogeneous ML workloads and GPU machines
- Problems
 - Low utilization caused by fractional GPU uses
 - Long queueing delays for short-running task instances
 - Hard to schedule high-GPU tasks
 - Load imbalance
 - Bottleneck on CPUs
Key insights

- Key insights that the paper leverages to solve the problem
 - GPU sharing
 - Predictable Duration for Recurring Tasks (Shortest Job First)

- Key contributions
 - Profiling of PAI traces
 - Temporal pattern
 - Recurring tasks
 - short-running instances usually spend a larger portion of time in queueing
 - Spatial pattern
 - Heavy tail distribution
 - CPU bottleneck
 - New scheduling algorithm
Shortest Job First scheduling

Figure 12: Percentage prediction error, i.e., \(\frac{\text{true} - \text{pred}}{\text{true}} \) in percentage, of duration estimates with different features.

Predicting duration of recurring tasks by hashing metadata

Figure 13: Average task completion time given different GPU cluster sizes and various scheduling policies in simulation.

Lower avg completion time using SJF
System

- Scheduling policy
 - Reserving-and-packing scheduling policy
 - Prioritize high-GPU tasks (by definition of computation efficiency)
 - a performance model that accounts for many task features, such as the degree of parallelism, the used ML model, the size of embedding
 - Load balancing
 - prioritizes instance scheduling to machines with low allocation rate

- Tradeoffs
 - Reserving-and-packing >> Load-balancing
 - Fairness of reserving-and-packing
Reserving-and-packing vs Load-balancing

(a) Queueing delays of all instances and tasks.
Evaluation

- Open Challenges
 - Mismatch between machine specs and instance requests (#CPUs vs #GPUs)

 Table 2: Mismatch between machine specs and instance requests, in terms of the provisioned/requested CPUs per GPU.

<table>
<thead>
<tr>
<th>vCPU cores per GPU</th>
<th>All nodes</th>
<th>8-GPU nodes</th>
<th>2-GPU nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine specs</td>
<td>23.2</td>
<td>12.0</td>
<td>38.1</td>
</tr>
<tr>
<td>Instance requests</td>
<td>21.4</td>
<td>22.8</td>
<td>18.1</td>
</tr>
</tbody>
</table>

- Overcrowded weak-GPU machines vs less crowded high-end machines
- CPU bottleneck
 - Especially for some ML workloads (CTR)

(a) CDF of machine CPU usage. (b) CDF of machine GPU usage.
Discussion

- **Strengths**
 - Comprehensive profiling of the system
 - Identified the insight of recurring tasks
 - Go into the details of recurring tasks → SJF scheduling algo
 - Prediction of task duration is accurate and well evaluated
 - Graphs show CDF of queueing delay

- **Critique**
 - Could have done more evaluation of the improved scheduling algorithm
 - Comparison of R&P vs load-balancing doesn’t show the interplay of the two
 - Missing comparison of the final algorithm vs the original
 - What are some other alternatives
 - Other ways of leveraging the properties identified
 - More details on GPU sharing
Discussion

- Clarifying questions
 - What are some intuitive reasoning on how different algorithms have different distribution of IO/GPU/CPU time
 - Details of scheduling algorithm
 - What constitutes an allocation plan? What are the buckets of machines?

- Discussion and Debate:
 - Benefits and Challenges of having heterogeneous machines
 - GPU sharing mechanism
 - How it is done, see paper 2
 - De-coupling CPU work from GPU work
 - CPU bottleneck: research to reduce CPU time in data processing