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Overview

• CRaft: a multi-leader extension to Raft enabled by accurate clocks
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Better performanceExisting protocol Synchronized clocks



State Machines

• Maintain internal states

• Respond to external requests

• Examples: databases, storage systems

• How do we make them reliable?
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Replicated State Machines
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• Consensus: ensures all servers agree on the same log

• Continues to operate if at least a majority of servers are up

4Diego Ongaro and John Ousterhout. The Raft consensus algorithm. https://raft.github.io



The Raft Consensus Protocol

• A widely used consensus protocol

• Leader-based

• Benefits: simple and efficient

• Limitation: leader is the bottleneck for 
throughput and scalability
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Diego Ongaro and John Ousterhout. 2014. In search of an understandable consensus 
algorithm. In USENIX Annual Technical Conference. 305–319.
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Limitations with Single Leader

• Single leader limits throughput and scalability
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Performance degrades with high load

Decreasing throughput with larger cluster sizes

Load increases



Challenge in a Multi-Leader Protocol
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Replicate my log I have a log

I have a log I have a logok ok

Single leader Multiple leaders

• Challenge: how to coordinate leaders?

• Solution: agreement on time => agreement on order



Clock Synchronization

Percentile 90th 99th 99.9th max 
Clock offset 7us 11us 15us 26us 

Distribution of clock offsets between servers

(20 machines on CloudLab)

• Achieving agreement on time is not trivial in a distributed system

• Huygens: a software clock synchronization system
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Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel 
Rosenblum, and Amin Vahdat. Exploiting a natural network effect for 
scalable, fine-grained clock synchronization. In NSDI 2018. 81–94.  

Huygens precision: ~20us

NTP precision: ~20ms



Our Approach: CRaft
Raft CRaft (Clocks + Raft)

Scalability

Output A replicate log A replicated log

Safety & Consistency ✓ ✓
Same guarantee as Raft

Practicability ✓ ✓
A simple add-on to Raft; easy to implement
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The CRaft Consensus Protocol



CRaft Overview
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Life of a Request
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Replicate Commit Merge Execute

• Replicated on a majority of servers
• Safe and durable



Timestamp Management

• CRaft guarantees monotonically increasing timestamps in each log

• Safe time: indicates how up-to-date a log is 
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Safe Times
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1 4 6 17 18Log
Safe time = 20 23 …25

Current entries: 
timestamps <= 
safe time

No entries come in 
with a timestamp 
smaller than safe time

NowHow up-to-date is this log?



Merging
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• Merge up to the smallest safe time

• CRaft ensures merged log in monotonically increasing timestamp order
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Optimization: Fast Path

• Fast path: respond to clients early for certain write operations
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Replicate Commit Merge Execute

Normal path: respond 

after execution

Fast path: respond 

before execution



Evaluation



Experiment Setup

• Implementation
• Based on HashiCorp Raft – a popular and well-optimized implementation

• Environment
• CloudLab, single data center

• Workload
• In-memory key-value store
• Multiple clients send get or set requests concurrently
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Throughput vs Cluster Size

• Up to ~2x  read and ~2.5x write throughput compared to Raft
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Latency vs Throughput

Average latency vs throughput (3 servers) 99th percentile latency vs throughput (3 servers)

• CRaft improves throughput and latency under high load
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Performance gain under high load

Load increases

Load increases



Average Latency

Performance vs Number of Clients
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Latency is bounded by clock difference

Throughput

2x

2x

2x

• NTP precision: ~20ms, Huygens: ~20us



Conclusion
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Better performance

Stronger consistencyExisting systems Synchronized clocks

• Accurate clocks enable better performance and/or consistency



Thank you!


