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Overview

* CRaft: a multi-leader extension to Raft enabled by accurate clocks
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State Machines

* Maintain internal states
* Respond to external requests
* Examples: databases, storage systems
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* How do we make them reliable?



Replicated State Machines
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* Consensus: ensures all servers agree on the same log
* Continues to operate if at least a majority of servers are up

Diego Ongaro and John Ousterhout. The Raft consensus algorithm. https://raft.github.io 4



The Raft Consensus Protocol

* A widely used consensus protocol
* Leader-based
* Benefits: simple and efficient

* Limitation: leader is the bottleneck for
throughput and scalability
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Limitations with Single Leader

* Single leader limits throughput and scalability

Latency vs Throughput Throughput vs Cluster Size
8 T 80 _ 77
Perfarmance degrades with high load @ ’\,Gi 63 50
E6- 2 60 - e —e
2 ° ~
S 3
4 2 40 | | |
o & |Decreasing throughput with larger cluster size$
o o
22- S 20
Load ingreases
0 1 T 1 1 O T T T T
0 20 40 60 80 100 3 5 7 9

Throughput (k ops/s) Number of servers



Challenge in a Multi-Leader Protocol

Single leader Multiple leaders
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* Challenge: how to coordinate leaders?
 Solution: agreement on time => agreement on order



Clock Synchronization

* Achieving agreement on time is not trivial in a distributed system
* Huygens: a software clock synchronization system
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Our Approach: CRaft
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The CRaft Consensus Protocol



CRaft Overview
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Life of a Request

Replicated on a majority of servers
Safe and durable
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Timestamp Manhagement
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e CRaft guarantees monotonically increasing timestamps in each log
 Safe time: indicates how up-to-date a log is
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Safe Times

How up-to-date is this log?
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Merging

index 1 2 3 4 5

Log 1 1|14 |6 17|18 | ts=18
T \ merged log

log2 | 2|5 |12 ts=12 ——> | 5|6l 8l10l12
log3 | 3| 8 |10/ 15 ts =19 /

* Merge up to the smallest safe time
* CRaft ensures merged log in monotonically increasing timestamp order
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Optimization: Fast Path

Replicate == Commit == Merge =) Execute

Fast path: respond Normal path: respond
before execution after execution

* Fast path: respond to clients early for certain write operations
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Evaluation



Experiment Setup

* Implementation
* Based on HashiCorp Raft — a popular and well-optimized implementation

* Environment
* CloudLab, single data center

* Workload

* In-memory key-value store
* Multiple clients send get or set requests concurrently
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Throughput vs Cluster Size
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* Up to ~2x read and ~2.5x write throughput compared to Raft
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Latency vs Throughput

Average latency vs throughput (3 servers) 99th percentile latency vs throughput (3 servers)
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* CRaft improves throughput and latency under high load
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Performance vs Number of Clients
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Conclusion

/n
o[ 11
5

+ @ ‘ Better performance

’— ]
V- ’—
V— v—
Existing systems Synchronized clocks Stronger consistency

 Accurate clocks enable better performance and/or consistency
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Thank youl!



