CRaft: Building High-Performance
Consensus Protocols with Accurate Clocks

Feiran Wang®*, Balaji Prabhakar*, Mendel Rosenblum®*, Gene Zhangt
*Stanford University, TeBay Inc.

Overview

* CRaft: a multi-leader extension to Raft enabled by accurate clocks

S O = [d

Existing protocol Synchronized clocks Better performance

State Machines

* Maintain internal states
* Respond to external requests
* Examples: databases, storage systems

)))
State xe—1 State yeX State
X: 2 x: 1 x:1
y:3 y: 3 y: 1

— — —

* How do we make them reliable?

Replicated State Machines
[Client]]

A

Servers X1 —

g — N [— N O
- N (o) - N (o) ([N (o)
Consensus State Consensus State Consensus State
1 Machine 1 Machine 1 Machine
o8 X: 2 o8 X: 2 o8 X: 2
x<1 |yl ... > y: 3 x<1 |yl ... > y: 3 x<1 |yl ... > y: 3
O - —) U S —) S

* Consensus: ensures all servers agree on the same log
* Continues to operate if at least a majority of servers are up

Diego Ongaro and John Ousterhout. The Raft consensus algorithm. https://raft.github.io 4

The Raft Consensus Protocol

* A widely used consensus protocol
* Leader-based
* Benefits: simple and efficient

* Limitation: leader is the bottleneck for
throughput and scalability

7K

x<1 |yl ...

[Lezhé'lJJ — LLl;ollower]

x<1

y<1l| ..

Diego Ongaro and John Ousterhout. 2014. In search of an understandable consensus

algorithm. In USENIX Annual Technical Conference. 305-319.

x<1

y<1l| ..

Limitations with Single Leader

* Single leader limits throughput and scalability

Latency vs Throughput Throughput vs Cluster Size
8 T 80 _ 77
Perfarmance degrades with high load @ ’\,Gi 63 50
E6- 2 60 - e —e
2 ° ~
S 3
4 2 40 | | |
o & |Decreasing throughput with larger cluster size$
o o
22- S 20
Load ingreases
0 1 T 1 1 O T T T T
0 20 40 60 80 100 3 5 7 9

Throughput (k ops/s) Number of servers

Challenge in a Multi-Leader Protocol

Single leader Multiple leaders

@ate my log J | | have a log I

=
o)/ \ (2 L] 0N L]
E = B — B

* Challenge: how to coordinate leaders?
 Solution: agreement on time => agreement on order

Clock Synchronization

* Achieving agreement on time is not trivial in a distributed system
* Huygens: a software clock synchronization system

Max Clock Offsets over Time

25000 A

Distribution of clock offsets between servers
(20 machines on CloudLab) 20000 4

Percentile | 90th _|99th | 99.9th | max _

Clock offset 7us 11us 15us 26uUs

NTP precision: ~20ms

15000 +

Max Clock Offset (us)

10000 +

Huygens precision: ~20us

5000 A

0 250 500 750 1000 1250 1500 1750 2000

Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel teration
Rosenblum, and Amin Vahdat. Exploiting a natural network effect for
scalable, fine-grained clock synchronization. In NSDI 2018. 81-94.

Our Approach: CRaft

Raft CRaft (Clocks + Raft)
Scalability g g
a2 a3 303 302

The CRaft Consensus Protocol

CRaft Overview

[Client } [Client] [Client }
f.--------!\./"ie_r_g_@sﬂ_l_qg___
Group 1 ;_Ffl_l?_vy_e_r_:_ _____ |
Group 2 Crollower M|
=)

Server1 Server 2 Server 3

11

Life of a Request

Replicated on a majority of servers
Safe and durable

CIientJ Replicate = Commit m» Merge =) Execute

Server 1

Server 2

Server 3

12

Timestamp Manhagement

Log

/ Merged Iog\ Safe time = 20
\ 1 2 3 4 5 index

1 4 6 17 18 [+ timestamp

| Follower | x<1 | ye1 | yex | X2 | X5 [«— command

\:Follower | /

Server

e CRaft guarantees monotonically increasing timestamps in each log
 Safe time: indicates how up-to-date a log is

13

Safe Times

How up-to-date is this log?

Now

y

Log
Safe time = 20 L] & b

18

23 | 25

\)

Y

Current entries:

timestamps <=
safe time

Y

No entries come in
with a timestamp
smaller than safe time

14

Merging

index 1 2 3 4 5

Log 1 1|14 |6 17|18 | ts=18
T \ merged log

log2 | 2|5 |12 ts=12 ——> | 5|6l 8l10l12
log3 | 3| 8 |10/ 15 ts =19 /

* Merge up to the smallest safe time
* CRaft ensures merged log in monotonically increasing timestamp order

15

Optimization: Fast Path

Replicate == Commit == Merge =) Execute

Fast path: respond Normal path: respond
before execution after execution

* Fast path: respond to clients early for certain write operations

16

Evaluation

Experiment Setup

* Implementation
* Based on HashiCorp Raft — a popular and well-optimized implementation

* Environment
* CloudLab, single data center

* Workload

* In-memory key-value store
* Multiple clients send get or set requests concurrently

18

Throughput vs Cluster Size

N
~
o

m CRaft - read 2.5x 25
1 2.9% OX
[CRaft - write

n
o

- A
oS N
o O

~
(&)

Throughput (k ops/s)

N O
o O

o

Number of servers

* Up to ~2x read and ~2.5x write throughput compared to Raft

19

Latency vs Throughput

Average latency vs throughput (3 servers) 99th percentile latency vs throughput (3 servers)
35 —o— Raft __ 357 —— Raft
30 CRaft - read é 30 - CRaft - read
2 CRaft - write > CRaft - write %
%’ 25 A E 25 -
c ©
% 20 A . : EIJ 20 -
i Performance gain under high load =
® 15 S 15 -
o O
2 10 A % & 10 A
< < 7
5 - "9 8 5 g :
PR . -—=t= Load ipcreases
0 1 — T — 1 T T T 0 T T T 1 1 T
0 20 40 60 80)39/120 0 20 40 60 80 100 120
Throughput (k ops/s) Load increases Throughput (k ops/s)

* CRaft improves throughput and latency under high load

20

Performance vs Number of Clients

Throughput (k ops/s)

* NTP precision: ~20ms, Huygens: ~20us

1 Bl Raft

Throughput

I CRaft - Huygens
[CRaft - NTP

10 50
Number of clients

100

Average Latency (ms)

Average Latency

Bl Raft

I CRaft - Huygens

[CRaft- NTP

50 100
Number of clients

21

Conclusion

/n
o[11
5

+ @ ‘ Better performance

’—]
V- ’—
V— v—
Existing systems Synchronized clocks Stronger consistency

 Accurate clocks enable better performance and/or consistency

22

Thank youl!

