
CRaft: Building High-Performance
Consensus Protocols with Accurate Clocks

Feiran Wang*, Balaji Prabhakar*, Mendel Rosenblum*, Gene Zhang†

*Stanford University, †eBay Inc.

Overview

• CRaft: a multi-leader extension to Raft enabled by accurate clocks

2

Better performanceExisting protocol Synchronized clocks

State Machines

• Maintain internal states

• Respond to external requests

• Examples: databases, storage systems

• How do we make them reliable?

3

State
x: 2
y: 3

x←1 State
x: 1
y: 3

State
x: 1
y: 1

y←x

Replicated State Machines

Servers

State
Machine

x: 2
y: 3

Consensus

Log
x←1 y←1 …

ClientClient

x←1

State
Machine

x: 2
y: 3

Consensus

Log
x←1 y←1 …

State
Machine

x: 2
y: 3

Consensus

Log
x←1 y←1 …

• Consensus: ensures all servers agree on the same log

• Continues to operate if at least a majority of servers are up

4Diego Ongaro and John Ousterhout. The Raft consensus algorithm. https://raft.github.io

The Raft Consensus Protocol

• A widely used consensus protocol

• Leader-based

• Benefits: simple and efficient

• Limitation: leader is the bottleneck for
throughput and scalability

5

Diego Ongaro and John Ousterhout. 2014. In search of an understandable consensus
algorithm. In USENIX Annual Technical Conference. 305–319.

Follower Follower

Leader

Client
Client

Client

Leader

x←1 y←1 …

x←1 y←1 … x←1 y←1 …

Limitations with Single Leader

• Single leader limits throughput and scalability

6

Performance degrades with high load

Decreasing throughput with larger cluster sizes

Load increases

Challenge in a Multi-Leader Protocol

7

Replicate my log I have a log

I have a log I have a logok ok

Single leader Multiple leaders

• Challenge: how to coordinate leaders?

• Solution: agreement on time => agreement on order

Clock Synchronization

Percentile 90th 99th 99.9th max
Clock offset 7us 11us 15us 26us

Distribution of clock offsets between servers

(20 machines on CloudLab)

• Achieving agreement on time is not trivial in a distributed system

• Huygens: a software clock synchronization system

8

Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel
Rosenblum, and Amin Vahdat. Exploiting a natural network effect for
scalable, fine-grained clock synchronization. In NSDI 2018. 81–94.

Huygens precision: ~20us

NTP precision: ~20ms

Our Approach: CRaft
Raft CRaft (Clocks + Raft)

Scalability

Output A replicate log A replicated log

Safety & Consistency ✓ ✓
Same guarantee as Raft

Practicability ✓ ✓
A simple add-on to Raft; easy to implement

9

The CRaft Consensus Protocol

CRaft Overview

Follower

Server 2

Leader

Server 1

Follower

Server 3

Client

LeaderFollower Follower

FollowerFollower Leader

Group 1

Group 2

Group 3

Client Client

Merged log Merged log Merged log

11

Life of a Request

Leader

Server 1

Follower

Follower

Client

State Machine

log Follower

Server 2

Leader

Follower

State Machine

log Follower

Server 3

Follower

Leader

State Machine

log

12

Replicate Commit Merge Execute

• Replicated on a majority of servers
• Safe and durable

Timestamp Management

• CRaft guarantees monotonically increasing timestamps in each log

• Safe time: indicates how up-to-date a log is

1
x←1

4
y←1

6
y←x

17
x←2

18
x←5

1 2 3 4 5 index

13

Leader

Server

Follower

Follower

Merged log

timestamp

command

Log
Safe time = 20

Safe Times

14

1 4 6 17 18Log
Safe time = 20 23 …25

Current entries:
timestamps <=
safe time

No entries come in
with a timestamp
smaller than safe time

NowHow up-to-date is this log?

Merging

1 4 6 17

2 5 12

18

3 8 10 15

1 2 3 4 5

Log 1

Log 2

Log 3

65 8

ts = 18

index

ts = 12

ts = 19

merged log

• Merge up to the smallest safe time

• CRaft ensures merged log in monotonically increasing timestamp order

15

10 12…

Optimization: Fast Path

• Fast path: respond to clients early for certain write operations

16

Replicate Commit Merge Execute

Normal path: respond

after execution

Fast path: respond

before execution

Evaluation

Experiment Setup

• Implementation
• Based on HashiCorp Raft – a popular and well-optimized implementation

• Environment
• CloudLab, single data center

• Workload
• In-memory key-value store
• Multiple clients send get or set requests concurrently

18

Throughput vs Cluster Size

• Up to ~2x read and ~2.5x write throughput compared to Raft

19

Latency vs Throughput

Average latency vs throughput (3 servers) 99th percentile latency vs throughput (3 servers)

• CRaft improves throughput and latency under high load

20

Performance gain under high load

Load increases

Load increases

Average Latency

Performance vs Number of Clients

21

Latency is bounded by clock difference

Throughput

2x

2x

2x

• NTP precision: ~20ms, Huygens: ~20us

Conclusion

22

Better performance

Stronger consistencyExisting systems Synchronized clocks

• Accurate clocks enable better performance and/or consistency

Thank you!

