
CS 354: Unfulfilled Algorithmic Fantasies April 17, 2019

Lecture 6: Complexity Class PWPP

Lecturer: Aviad Rubinstein Scribe: Mingda Qiao

1 Definition of PWPP

In the last lecture, we briefly introduced most of the following complexity classes, especially the
complexity class PPAD and its complete problem of finding Nash equilibria.

Figure 1: PWPP and its relation to other complexity classes.

In this lecture, we study PWPP (Polynomial Weak Pigeon Principle), a subclass of PPP, and
also introduce a complete problem for PWPP that naturally arises in lattice-based cryptography.

Definition 1.1 ([1]). The class PWPP is the set of all problems that is polynomial-time reducible
to the following problem: given a circuit 𝐶 : {0, 1}𝑚 → {0, 1}𝑛 where 𝑚 > 𝑛, find 𝑥, 𝑥′ ∈ {0, 1}𝑚
such that 𝑥 ̸= 𝑥′ and 𝐶(𝑥) = 𝐶(𝑥′).

By the weak pigeonhole principle, any function from a finite set to a smaller set has a collision, so
the problem in the above definition always has a solution. The statement of the problem resembles
the definition of collision-resistant hash functions.

2 Weak Constrained SIS Problem

We first define the Shortest Integer Solution (SIS) problem.

Definition 2.1 (SIS). The Shortest Integer Solution problem is defined as follows:

∙ Input: Matrix 𝐴 ∈ Z𝑟×𝑡
𝑞 , where 𝑞 is a power of two and 𝑡 > 𝑟 log 𝑞.

∙ Output: Distinct vectors 𝑥, 𝑥′ ∈ {0, 1}𝑡 such that 𝐴𝑥 = 𝐴𝑥′.

1

Again, since 2𝑡 > 𝑞𝑟, the weak pigeonhole principle guarantees the existence of a collision in the
function 𝑥 ↦→ 𝐴𝑥.

It is unknown whether SIS is PWPP-complete; instead, we focus on a constrained version of SIS
defined as follows:

Definition 2.2 (Weak Constrained SIS (wc-SIS) [2]). The Weak Constrained SIS problem is defined
as follows:

∙ Input: Matrices 𝐴 ∈ Z𝑟×𝑡
𝑞 and 𝐺 ∈ Z𝑑×𝑡

𝑞 , where 𝑞 is a power of two and 𝑡 > (𝑟 + 𝑑) log 𝑞.
Moreover, 𝐺 is guaranteed to be of the following form for 𝑙 = log 𝑞:

𝐺 =

⎡⎢⎢⎣
20 21 · · · 2𝑙−1 · · · · · · · · · · · ·

0 20 21 · · · 2𝑙−1 · · · · · · · · ·
· · · · · · · · · · · · · · ·
0 0 · · · 20 21 · · · 2𝑙−1 · · ·

⎤⎥⎥⎦
In words, the 𝑖-th row of 𝐺 always starts with (𝑖 − 1)𝑙 zeroes and then the first 𝑙 powers of
two, i.e., 20, 21, . . . , 2𝑙−1.

∙ Output: Distinct vectors 𝑥, 𝑥′ ∈ {0, 1}𝑡 such that 𝐴𝑥 = 𝐴𝑥′ and 𝐺𝑥 = 𝐺𝑥′ = 0.

Note that the promise of matrix 𝐺 guarantees that we can satisfy the constriant 𝐺𝑥 = 0 in the
following way: First, choose the last (𝑡 − 𝑑𝑙) bits of 𝑥 arbitrarily. Then, using the fact that any
integer between 0 and 2𝑙 − 1 can be uniquely written as the sum of a subset of {20, 21, . . . , 2𝑙−1},
we can determine the first 𝑑𝑙 bits uniquely, 𝑙 bits at a time.

3 wc-SIS is PWPP-complete

We prove the main result of this lecture: wc-SIS is PWPP-complete.

Lemma 3.1 ([2, Lemma 5.2]). wc-SIS ∈ PWPP.

Proof. The goal is to define a circuit 𝐶 : {0, 1}𝑡−𝑑𝑙 → Z𝑟
𝑞, where the co-domain can be equivalently

viewed as {0, 1}𝑟𝑙. Since the wc-SIS instance guarantees 𝑡 − 𝑑𝑙 > 𝑟𝑙, the resulting circuit will be
a valid instance for the PWPP problem. Based on the previous observation, we can construct 𝐶
using the following two parts:

∙ 𝐶1 maps 𝑥 ∈ {0, 1}𝑡−𝑑𝑙 to the unqiue vector

[︂
𝑢
𝑥

]︂
∈ {0, 1}𝑡 such that 𝐺

[︂
𝑢
𝑥

]︂
= 0.

∙ 𝐶2 simply maps

[︂
𝑢
𝑥

]︂
∈ {0, 1}𝑡 to 𝐴

[︂
𝑢
𝑥

]︂
∈ Z𝑟

𝑞.

Let 𝐶 = 𝐶2 ∘ 𝐶1. If 𝐶(𝑥) = 𝐶(𝑥′) for 𝑥 ̸= 𝑥′,

[︂
𝑢
𝑥

]︂
and

[︂
𝑢′

𝑥′

]︂
give a solution to the original wc-SIS

instance.

In the following, we give a reduction in the other direction.

Theorem 3.2 ([2, Lemma 5.4]). wc-SIS is PWPP-hard.

2

Proof. We aim to design matrices 𝐴 and 𝐺 for given circuit 𝐶, such that for any vector

⎡⎣𝑦ℎ
𝑥

⎤⎦, where

𝑦 and ℎ aim to simulate the outputs and the values on the hidden gates of 𝐶 when feeding 𝑥 as
input:

∙ The constraint 𝐺

⎡⎣𝑦ℎ
𝑥

⎤⎦ = 0 verifies that the computation is correct.

∙ Matrix 𝐴 maps

⎡⎣𝑦ℎ
𝑥

⎤⎦ to 𝑦, so that we can check the collision in the output.

If the above two conditions hold, we know that a solution 𝐴

⎡⎣𝑦ℎ
𝑥

⎤⎦ = 𝐴

⎡⎣𝑦′ℎ′
𝑥′

⎤⎦ to wc-SIS immediately

implies a desired collision 𝐶(𝑥) = 𝐶(𝑥′).
For simplicity, we assume that circuit 𝐶 only contains XOR and OR gates, denoted by ⊕ and

∨ respectively.1 Moreover, we construct 𝐴 and 𝐺 over the ring 𝑍4 (i.e., 𝑙 = 2).2

The following claim allows us to simulate XOR and OR gates using a single row in 𝐺:

Claim 3.3. For 𝑎, 𝑏, 𝑐, 𝑑 ∈ {0, 1}, 𝑎 + 2𝑏 + 𝑐 + 𝑑 ≡ 0 (mod 4) holds if and only if 𝑎 = 𝑐 ⊕ 𝑑 and
𝑏 = 𝑐 ∨ 𝑑.

Using the above claim, we demonstrate how we transform a circuit into a matrix 𝐺 by the
following example:

1This is actually a cheat since {⊕,∨} is not a complete set of gates. We will fix this in Homework 3.
2Technically this is not a cheat: showing that wc-SIS is hard for 𝑙 = 2 suffices to prove the hardness of wc-SIS.

However, proving the hardness of wc-SIS for larger values of 𝑙 does require some more tricks.

3

For the above circuit, we first do a topological sort on the dependency graph of the gates
(starting from the outputs) and obtain (𝑦1, ℎ1). Then we construct the following matrix 𝐺, where
the rows corresponds to the gates (in the topological order), and each column correponds to either
an input bit, an output bit of a hidden gate, or its “companion” output bit:

𝐺 =
𝑦1 𝑦1 ℎ1 ℎ̂1 𝑥1 𝑥2 𝑥3

𝑦1 1 2 1 1
ℎ1 1 2 1 1

Then, the first line of 𝐺 guarantees that 𝑦1 = ℎ1 ∨ 𝑥3, and the second line guarantees that ℎ1 =

𝑥1 ⊕ 𝑥2. Thus, the constraint 𝐺

⎡⎢⎢⎢⎢⎣
𝑦1
𝑦1
ℎ1
ℎ̂1
𝑥

⎤⎥⎥⎥⎥⎦ = 0 indeed verifies that 𝐶(𝑥) = 𝑦.

Note that in the above construction, we need to compute 𝑦1 = ℎ1 ⊕ 𝑥3 and ℎ̂1 = 𝑥1 ∨ 𝑥2 even
though they are never used as inputs. This is because Claim 3.3 only holds if we compute both
operations at the same time. Moreover, we put 𝑦1 before 𝑦1 and ℎ1 before ℎ̂1 to make sure that
the first two non-zero entries in each row are 1 and 2 in order, so that the promise of the wc-SIS
instance is satisfied.

It remains to design the matrix 𝐴. A näıve approach is to choose 𝐴 such that 𝐴

⎡⎣𝑦ℎ
𝑥

⎤⎦ = 𝑦. This

requires 𝐴 to have 𝑛 rows (𝑛 is the number of output bits in 𝐶), which may result in an invalid
wc-SIS instance (see the calculation in the next paragraph). Instead, we compress two bits in 𝑦
into a single element in 𝑍4, which allows us to design an 𝐴 with only 𝑛/2 rows.3

Finally, we show that the constructed instance (𝐴,𝐺) satisfies the assumption that 𝑡 > (𝑟 +
𝑑) log 𝑞 in the definition of wc-SIS. Let |𝐶| denote the number of gates in 𝐶 and recall that 𝑚 is the
number of input bits. Then, both 𝐴 and 𝐺 have 𝑡 = 2|𝐶| + 𝑚 columns. Moreover, 𝐴 has 𝑟 = 𝑛/2
rows (thanks to the compression trick) and 𝐺 has 𝑑 = |𝐶| rows. Since the promise of the PWPP
instance guarantees that 𝑚 > 𝑛, we have

𝑡 = 2|𝐶| + 𝑚 > 2|𝐶| + 𝑛 = (𝑟 + 𝑑) log 𝑞

as desired.

References

[1] Emil Jeřábek. Integer factoring and modular square roots. Journal of Computer and System
Sciences, 82(2):380–394, 2016.

[2] Katerina Sotiraki, Manolis Zampetakis, and Giorgos Zirdelis. PPP-completeness with connec-
tions to cryptography. In Foundations of Computer Science (FOCS), pages 148–158, 2018.

3We can assume that 𝑛 is even without loss of generality: if 𝑛 is odd, we simply add a dummy input bit that
directly goes to the output. This increases both 𝑛 and 𝑚 by 1 (so that the promise 𝑚 > 𝑛 still holds) and the
resulting instance is equivalent to the original one.

4

