

Lecture 6: Complexity Class PWPP

Lecturer: Aviad Rubinstein

Scribe: Mingda Qiao

1 Definition of PWPP

In the last lecture, we briefly introduced most of the following complexity classes, especially the complexity class PPAD and its complete problem of finding Nash equilibria.

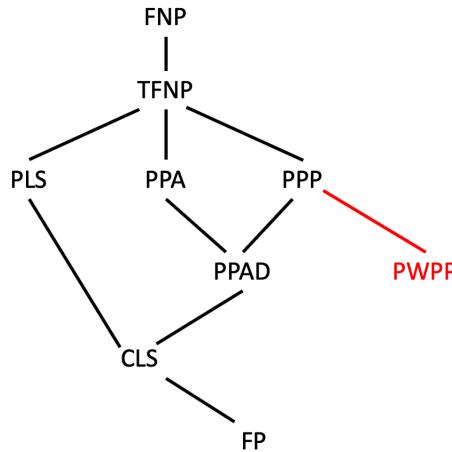


Figure 1: PWPP and its relation to other complexity classes.

In this lecture, we study PWPP (Polynomial Weak Pigeon Principle), a subclass of PPP, and also introduce a complete problem for PWPP that naturally arises in lattice-based cryptography.

Definition 1.1 ([1]). The class PWPP is the set of all problems that is polynomial-time reducible to the following problem: given a circuit $C : \{0, 1\}^m \rightarrow \{0, 1\}^n$ where $m > n$, find $x, x' \in \{0, 1\}^m$ such that $x \neq x'$ and $C(x) = C(x')$.

By the weak pigeonhole principle, any function from a finite set to a smaller set has a collision, so the problem in the above definition always has a solution. The statement of the problem resembles the definition of collision-resistant hash functions.

2 Weak Constrained SIS Problem

We first define the Shortest Integer Solution (SIS) problem.

Definition 2.1 (SIS). The Shortest Integer Solution problem is defined as follows:

- **Input:** Matrix $A \in \mathbb{Z}_q^{r \times t}$, where q is a power of two and $t > r \log q$.
- **Output:** Distinct vectors $x, x' \in \{0, 1\}^t$ such that $Ax = Ax'$.

Again, since $2^t > q^r$, the weak pigeonhole principle guarantees the existence of a collision in the function $x \mapsto Ax$.

It is unknown whether **SIS** is PWPP-complete; instead, we focus on a constrained version of **SIS** defined as follows:

Definition 2.2 (Weak Constrained SIS (wc-SIS) [2]). The Weak Constrained SIS problem is defined as follows:

- **Input:** Matrices $A \in \mathbb{Z}_q^{r \times t}$ and $G \in \mathbb{Z}_q^{d \times t}$, where q is a power of two and $t > (r + d) \log q$. Moreover, G is guaranteed to be of the following form for $l = \log q$:

$$G = \begin{bmatrix} 2^0 & 2^1 & \dots & 2^{l-1} & \dots & \dots & \dots & \dots \\ 0 & & 2^0 & 2^1 & \dots & 2^{l-1} & \dots & \dots \\ \dots & & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & & 0 & & \dots & 2^0 & 2^1 & \dots & 2^{l-1} & \dots \end{bmatrix}$$

In words, the i -th row of G always starts with $(i-1)l$ zeroes and then the first l powers of two, i.e., $2^0, 2^1, \dots, 2^{l-1}$.

- **Output:** Distinct vectors $x, x' \in \{0, 1\}^t$ such that $Ax = Ax'$ and $Gx = Gx' = 0$.

Note that the promise of matrix G guarantees that we can satisfy the constraint $Gx = 0$ in the following way: First, choose the last $(t - dl)$ bits of x arbitrarily. Then, using the fact that any integer between 0 and $2^l - 1$ can be uniquely written as the sum of a subset of $\{2^0, 2^1, \dots, 2^{l-1}\}$, we can determine the first dl bits uniquely, l bits at a time.

3 wc-SIS is PWPP-complete

We prove the main result of this lecture: wc-SIS is PWPP-complete.

Lemma 3.1 ([2, Lemma 5.2]). *wc-SIS \in PWPP.*

Proof. The goal is to define a circuit $C : \{0, 1\}^{t-dl} \rightarrow \mathbb{Z}_q^r$, where the co-domain can be equivalently viewed as $\{0, 1\}^{rl}$. Since the wc-SIS instance guarantees $t - dl > rl$, the resulting circuit will be a valid instance for the PWPP problem. Based on the previous observation, we can construct C using the following two parts:

- C_1 maps $x \in \{0, 1\}^{t-dl}$ to the unique vector $\begin{bmatrix} u \\ x \end{bmatrix} \in \{0, 1\}^t$ such that $G \begin{bmatrix} u \\ x \end{bmatrix} = 0$.
- C_2 simply maps $\begin{bmatrix} u \\ x \end{bmatrix} \in \{0, 1\}^t$ to $A \begin{bmatrix} u \\ x \end{bmatrix} \in \mathbb{Z}_q^r$.

Let $C = C_2 \circ C_1$. If $C(x) = C(x')$ for $x \neq x'$, $\begin{bmatrix} u \\ x \end{bmatrix}$ and $\begin{bmatrix} u' \\ x' \end{bmatrix}$ give a solution to the original wc-SIS instance. \square

In the following, we give a reduction in the other direction.

Theorem 3.2 ([2, Lemma 5.4]). *wc-SIS is PWPP-hard.*

Proof. We aim to design matrices A and G for given circuit C , such that for any vector $\begin{bmatrix} y \\ h \\ x \end{bmatrix}$, where y and h aim to simulate the outputs and the values on the hidden gates of C when feeding x as input:

- The constraint $G \begin{bmatrix} y \\ h \\ x \end{bmatrix} = 0$ verifies that the computation is correct.
- Matrix A maps $\begin{bmatrix} y \\ h \\ x \end{bmatrix}$ to y , so that we can check the collision in the output.

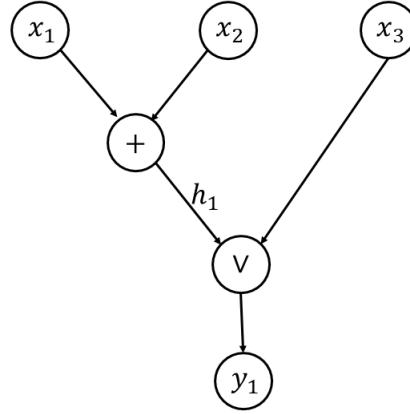
If the above two conditions hold, we know that a solution $A \begin{bmatrix} y \\ h \\ x \end{bmatrix} = A \begin{bmatrix} y' \\ h' \\ x' \end{bmatrix}$ to wc-SIS immediately implies a desired collision $C(x) = C(x')$.

For simplicity, we assume that circuit C only contains XOR and OR gates, denoted by \oplus and \vee respectively.¹ Moreover, we construct A and G over the ring Z_4 (i.e., $l = 2$).²

The following claim allows us to simulate XOR and OR gates using a single row in G :

Claim 3.3. *For $a, b, c, d \in \{0, 1\}$, $a + 2b + c + d \equiv 0 \pmod{4}$ holds if and only if $a = c \oplus d$ and $b = c \vee d$.*

Using the above claim, we demonstrate how we transform a circuit into a matrix G by the following example:



¹This is actually a cheat since $\{\oplus, \vee\}$ is not a complete set of gates. We will fix this in Homework 3.

²Technically this is not a cheat: showing that wc-SIS is hard for $l = 2$ suffices to prove the hardness of wc-SIS . However, proving the hardness of wc-SIS for larger values of l does require some more tricks.

For the above circuit, we first do a topological sort on the dependency graph of the gates (starting from the outputs) and obtain (y_1, h_1) . Then we construct the following matrix G , where the rows corresponds to the gates (in the topological order), and each column correponds to either an input bit, an output bit of a hidden gate, or its “companion” output bit:

$$G = \left[\begin{array}{c|ccccccc} & \hat{y}_1 & y_1 & h_1 & \hat{h}_1 & x_1 & x_2 & x_3 \\ \hline y_1 & 1 & 2 & 1 & & & & 1 \\ h_1 & & & 1 & 2 & 1 & 1 & \end{array} \right]$$

Then, the first line of G guarantees that $y_1 = h_1 \vee x_3$, and the second line guarantees that $h_1 =$

$x_1 \oplus x_2$. Thus, the constraint $G \begin{bmatrix} \hat{y}_1 \\ y_1 \\ h_1 \\ \hat{h}_1 \\ x \end{bmatrix} = 0$ indeed verifies that $C(x) = y$.

Note that in the above construction, we need to compute $\hat{y}_1 = h_1 \oplus x_3$ and $\hat{h}_1 = x_1 \vee x_2$ even though they are never used as inputs. This is because Claim 3.3 only holds if we compute both operations at the same time. Moreover, we put \hat{y}_1 before y_1 and h_1 before \hat{h}_1 to make sure that the first two non-zero entries in each row are 1 and 2 in order, so that the promise of the **wc-SIS** instance is satisfied.

It remains to design the matrix A . A naïve approach is to choose A such that $A \begin{bmatrix} y \\ h \\ x \end{bmatrix} = y$. This requires A to have n rows (n is the number of output bits in C), which may result in an invalid **wc-SIS** instance (see the calculation in the next paragraph). Instead, we compress two bits in y into a single element in Z_4 , which allows us to design an A with only $n/2$ rows.³

Finally, we show that the constructed instance (A, G) satisfies the assumption that $t > (r + d) \log q$ in the definition of **wc-SIS**. Let $|C|$ denote the number of gates in C and recall that m is the number of input bits. Then, both A and G have $t = 2|C| + m$ columns. Moreover, A has $r = n/2$ rows (thanks to the compression trick) and G has $d = |C|$ rows. Since the promise of the **PWPP** instance guarantees that $m > n$, we have

$$t = 2|C| + m > 2|C| + n = (r + d) \log q$$

as desired. □

References

- [1] Emil Jeřábek. Integer factoring and modular square roots. *Journal of Computer and System Sciences*, 82(2):380–394, 2016.
- [2] Katerina Sotiraki, Manolis Zampetakis, and Giorgos Zirdelis. PPP-completeness with connections to cryptography. In *Foundations of Computer Science (FOCS)*, pages 148–158, 2018.

³We can assume that n is even without loss of generality: if n is odd, we simply add a dummy input bit that directly goes to the output. This increases both n and m by 1 (so that the promise $m > n$ still holds) and the resulting instance is equivalent to the original one.