
1

Profs. Aiken, Barrett & Dill CS 357 Lecture 12 1

Loop Invariants

Verification

•  Consider a loop-free program P
–  With conditionals
–  Memory references
–  Data structures
–  No function calls

•  What is the computational complexity of
verifying

{ Precondition } P { Postcondition}

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

2

Loops

•  Now consider the same problem
–  Where P can have one loop
–  But still no function calls

•  What is the computational complexity of
verifying

{ Precondition } P { Postcondition}

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

3

Verification of Loops

•  Verifying properties of loops is the hard
problem

•  Solve this, and everything else is much easier

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

4

A Simple Example

X = 0
I = 0
while I < 10 do

 X = X + 1
 I = I + 1

assert(X == 10)

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

5

Loop Invariants

•  To verify loops, it suffices to find a
sufficiently strong loop invariant

•  What is a loop invariant?
–  A predicate that holds on every loop iteration
–  (at the same program point, usually at loop head)

•  What is “sufficiently strong”
–  More in a minute …

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

6

2

Loop Invariant (1)

X = 0
I = 0
while I < 10 do

 { true }
 X = X + 1
 I = I + 1

assert(X == 10)

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

7

Loop Invariant (2)

Z = 42
X = 0
I = 0
while I < 10 do

 { Z = 42 }
 X = X + 1
 I = I + 1

assert(X == 10)

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

8

Loop Invariant (3)

Z = 42
X = 0
I = 0
while I < 10 do

 { I < 4327 }
 X = X + 1
 I = I + 1

assert(X == 10)

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

9

Loop Invariant (4)

Z = 42
X = 0
I = 0
while I < 10 do

 { X < 11 }
 X = X + 1
 I = I + 1

assert(X == 10)

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

10

Loop Invariant (5)

Z = 42
X = 0
I = 0
while I < 10 do

 { X = I && I < 11 }
 X = X + 1
 I = I + 1

assert(X == 10)

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

11

Comments

•  Loop invariants aren’t hard to compute
–  If you don’t care about quality
–  true

•  What we want is to prove the assertion
–  Need an invariant strong enough to do this

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

12

3

Comments

•  But how can we prove the assertion?

•  We need a proof strategy
–  An algorithm that we can apply to any loop

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

13

Inductive Invariants

while (B)
 {

 … code …

}

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

14

Pre
I

Post

Pre)I

I Æ B
{ code }
I

I Æ¬B)
Post

Inductive Invariants

•  Pre)I
The invariant holds initially

•  I Æ B { code } I
If the invariant and loop condition hold, executing the
loop body re-establishes the invariant

•  I Æ¬B) Post
If the invariant holds and the loop terminates, then
the post-condition holds

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

15

Loop Invariant (1)

X = 0
I = 0
while I < 10 do

 { true }
 X = X + 1
 I = I + 1

assert(X == 10)

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

16

Loop Invariant (2)

Z = 42
X = 0
I = 0
while I < 10 do

 { Z = 42 }
 X = X + 1
 I = I + 1

assert(X == 10)

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

17

Loop Invariant (3)

Z = 42
X = 0
I = 0
while I < 10 do

 { I < 4327 }
 X = X + 1
 I = I + 1

assert(X == 10)

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

18

4

Loop Invariant (4)

Z = 42
X = 0
I = 0
while I < 10 do

 { X < 11 }
 X = X + 1
 I = I + 1

assert(X == 10)

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

19

Loop Invariant (5)

Z = 42
X = 0
I = 0
while I < 10 do

 { X = I && I < 11 }
 X = X + 1
 I = I + 1

assert(X == 10)

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

20

Invariant Inference

•  An old problem

•  A different approach with two ideas:
1.  Separate invariant inference from the rest of the

verification problem

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

21

Invariant Inference

•  An old problem

•  Two ideas:
1.  Separate invariant inference from the rest of the

verification problem

2.  Guess the invariant from executions

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

22

Why?

•  Complementary to static analysis
–  underapproximations
- “see through” hard analysis problems

•  functionality may be simpler than the code

•  Possible to generate many, many tests

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

23

Nothing New Under the Sun

•  Sounds like DAIKON?
–  Yes!

•  Hypothesize (many) invariants
–  Run the program
–  Discard candidate invariants that are falsified
–  Attempt to verify the remaining candidates

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

24

5

A Simple Program

•  Instrument loop head

•  Collect state of program
variables on each
iteration

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

25

s = 0;

y = 0;

while(*)

{

 print(s,y);

 s := s + 1;

 y := y + 1;

}

A DAIKON-Like Approach

•  Hypothesize
–  s = y
–  s = 2y

•  Data

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

26

s = 0;

y = 0;

while(*)

{

 print(s,y);

 s := s + 1;

 y := y + 1;

}

s y
0 0

A DAIKON-Like Approach

•  Hypothesize
–  s = y
–  s = 2y

•  Data

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

27

s = 0;

y = 0;

while(*)

{

 print(s,y);

 s := s + 1;

 y := y + 1;

}

s y
0 0
1 1

A DAIKON-Like Approach

•  Hypothesize
–  s = y
–  s = 2y

•  Data

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

28

s = 0;

y = 0;

while(*)

{

 print(s,y);

 s := s + 1;

 y := y + 1;

}

s y
0 0
1 1
2 2
3 3

Another Approach

•  Data

Profs. Aiken, Barrett & Dill CS 357

Lecture 12
29

s = 0;

y = 0;

while(*)

{

 print(s,y);

 s := s + 1;

 y := y + 1;

}

s y
0 0
1 1
2 2
3 3

Arbitrary Linear Invariant

•  Data

Profs. Aiken, Barrett & Dill CS 357

Lecture 12
30

as + by = 0
s y
0 0
1 1
2 2
3 3

6

Observation

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

31

as + by = 0

s y
0 0
1 1
2 2
3 3

w
a
b

0
0

Observation

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

32

as + by = 0

s y
0 0
1 1
2 2
3 3

w
a
b

0
0

{ w | Mw = 0 }

Observation

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

33

as + by = 0

s y
0 0
1 1
2 2
3 3

w
a
b

0
0

NullSpace(M)

Linear Invariants

•  Construct matrix M of observations of all
program variables

•  Compute NullSpace(M)

•  All invariants are in the null space

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

34

Spurious “Invariants”

•  All invariants are in the null space
–  But not all vectors in the null space are invariants

•  Consider the matrix

•  Need a check phase
–  Verify the candidate is in fact an invariant

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

35

s y
0 0

An Algorithm

•  Check candidate invariant
–  If an invariant, done

–  If not an invariant, get counterexample
•  Counterexample can be guaranteed to satisfy all invariants

•  Add new row to matrix
–  And repeat

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

36

7

Termination

•  How many times can the solve & verify loop
repeat?

•  Each counterexample is linearly independent
of previous entries in the matrix

•  So at most N iterations
–  Where N is the number of columns
–  Upper bound on steps to reach a full rank matrix

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

37

Summary

•  Superset of all linear invariants can be
obtained by a standard matrix calculation

•  Counter-example driven improvements to
eliminate all but the true invariants
–  Guaranteed to terminate

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

38

What About Non-Linear Invariants?

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

39

s = 0;

y = 0;

while(*)

{

 print(s,y);

 s := s + y;

 y := y + 1;

}

Idea

•  Collect data as before

•  But add more columns to the matrix
–  For derived quantities
–  For example, y2 and s2

•  How to limit the number of columns?
–  All monomials up to a chosen degree d

[Nguyen, Kapur, Weimer, Forrest 2012]
Profs. Aiken, Barrett & Dill CS 357

Lecture 12
40

What About Non-Linear Invariants?

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

41

s = 0;

y = 0;

while(*)

{

 print(s,y);

 s := s + y;

 y := y + 1;

}

1 s y s2 y2 sy

1 0 0 0 0 0

1 1 1 1 1 1

1 3 2 9 4 6

1 6 3 36 9 18

1 10 4 100 16 40

Solve for the Null Space

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

42

a + bs + cy+ ds2 + ey2 + fsy = 0

1 s y s2 y2 sy

1 0 0 0 0 0

1 1 1 1 1 1

1 3 2 9 4 6

1 6 3 36 9 18

1 10 4 100 16 40

w
a
b
c
d
e
f

0
0
0
0
0
0

-2s + y + y2 = 0 Candidate invariant:

8

Comments

•  Same issues as before
–  Must check candidate is implied by precondition, is

inductive, and implies the postcondition on
termination

–  Termination of invariant inference guaranteed if
the verifier can generate counterexamples

•  Experience: Solvers do well as checkers!

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

43

Experiments

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

44

Summary to This Point

•  Algorithm for algebraic invariants
–  Up to a given degree

•  Guess and Check
–  Hard part is inference done by matrix solve
–  Check part done by standard SMT solver
–  Much simpler and faster than previous approaches

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

45

What About Disjunctive Invariants?

•  Disjunctions are expensive
–  In addition to conjunctions

•  Existing techniques severely restrict
disjunctions
–  E.g., to a template

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

46

What About Non-Numeric Invariants?

•  Arrays?
•  Lists?
•  Other data structures?

•  Invariant inference techniques are very
specialized

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

47

A Search-Based Approach

•  All methods for finding invariants are
heuristics
–  Can never be complete

•  So why not use general but incomplete
techniques?

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

48

9

MCMC

•  Markov Chain Monte Carlo sampling

•  The only known tractable solution method for
high dimensional irregular search spaces

49 Profs. Aiken, Barrett & Dill CS 357
Lecture 12

MCMC Overview

50

73! 47!

42!

29!

37!

17!

23!

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

MCMC Sampling Algorithm for Invariants

 1. Select an initial candidate

2. Repeat (millions of times)
•  Propose a random modification and evaluate cost
•  If (cost decreased)
 { accept }
•  If (cost increased)

 { with some probability accept anyway }

51 Profs. Aiken, Barrett & Dill CS 357
Lecture 12

Recall

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

52

Pre)I

I(s)) I(t) if s {body} t

I Æ¬B) Post

Data

•  Good states G
–  Reachable states

•  Pairs Z
–  States (s,t) such that starting the loop body S in

state s terminates in state t.

•  Bad states B
–  States that lead to an assertion violation

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

53

Cost Function (Roughly)

•  Penalize a candidate invariant C
–  1 for each good state g in G where C(g) is false.
–  1 for each bad state b in B where C(b) is true
–  1 for each pair (s,t) in Z where C(s) and not C(t)

•  The cost of C is the sum of the penalties

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

54

10

Overall Algorithm

•  Run search until a 0-cost candidate C is found

•  Use a decision procedure to verify that C is an
invariant
–  If yes, done
–  If no, get a counterexample

•  A good state, bad state, or pair
•  Add to the data
•  Repeat

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

55

MCMC Sampling Algorithm for Invariants

 1. Select an initial candidate

2. Repeat (millions of times)
•  Propose a random modification and evaluate cost
•  If (cost decreased)
 { accept }
•  If (cost increased)

 { with some probability accept anyway }

56 Profs. Aiken, Barrett & Dill CS 357
Lecture 12

Numerical Invariants

•  Find invariants of the form

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

57

Moves

•  Replace a coefficient

•  Replace a constant on the rhs

•  Replace all coefficients and the constant in a
single inequality

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

58

Results

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

59

Arrays

•  Use the fluid updates abstraction

•  Reduce to search for numerical predicate T
–  But now involves universal quantifier
–  f,g are array variables

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

60

11

A Problem with Arrays

•  Decision procedures for arrays cannot give us
counterexamples

•  Instead use executions to generate data
–  Including bad states and pairs

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

61

Generating Data

•  Pick a number k

•  At the loop head
–  Assign all numeric variables a value <= k
–  Assign all arrays a size <= k
–  Assign all elements of arrays a value <= k

•  For experiments, we used k = 4

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

62

Results on Arrays

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

63

Strings

•  Search space is
–  Boolean combinations of predicates P
–  P consists of constants and predicates in the

program

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

64

String Results

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

65

Lists

•  Search space
–  Boolean combinations of atoms
–  Atoms are relations R(x1,…,xn)

•  Moves
–  Replace one argument of a relation
–  Replace an entire relation
–  Flip polarity of an atom

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

66

12

Lists

•  Use one reachability relation

n(x,y) = y is reachable from x in 0 or more
pointer dereferences

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

67

List Results

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

68

Summary

•  Invariant inference is a hard problem, made
easier by looking at data from executions
–  Because the executions satisfy all the invariants

•  Search-based techniques can work
–  Competitive with other methods
–  Easier to retarget to new domains

•  Still limited by decision procedures
–  But not by their ability to do inference

Profs. Aiken, Barrett & Dill CS 357
Lecture 12

69

