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Loop Invariants  
 
 

Verification 

•  Consider a loop-free program P 
–  With conditionals 
–  Memory references 
–  Data structures 
–  No function calls 

•  What is the computational complexity of 
verifying 

{ Precondition } P { Postcondition} 
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Loops 

•  Now consider the same problem 
–  Where P can have one loop 
–  But still no function calls 

•  What is the computational complexity of 
verifying 

{ Precondition } P { Postcondition} 
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Verification of Loops 

•  Verifying properties of loops is the hard 
problem 

•  Solve this, and everything else is much easier 
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A Simple Example 

 
X = 0 
I = 0 
while I < 10 do 

 X = X + 1 
 I = I + 1 

 
assert(X == 10) 
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Loop Invariants 

•  To verify loops, it suffices to find a 
sufficiently strong loop invariant 

•  What is a loop invariant? 
–  A predicate that holds on every loop iteration 
–  (at the same program point, usually at loop head) 

•  What is “sufficiently strong” 
–  More in a minute … 
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Loop Invariant (1) 

 
X = 0 
I = 0 
while I < 10 do 

 { true } 
 X = X + 1 
 I = I + 1 

 
assert(X == 10) 
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Loop Invariant (2) 

Z = 42 
X = 0 
I = 0 
while I < 10 do 

 { Z = 42 } 
 X = X + 1 
 I = I + 1 

 
assert(X == 10) 
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Loop Invariant (3) 

Z = 42 
X = 0 
I = 0 
while I < 10 do 

 { I < 4327 } 
 X = X + 1 
 I = I + 1 

 
assert(X == 10) 
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Loop Invariant (4) 

Z = 42 
X = 0 
I = 0 
while I < 10 do 

 { X < 11 } 
 X = X + 1 
 I = I + 1 

 
assert(X == 10) 
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Loop Invariant (5) 

Z = 42 
X = 0 
I = 0 
while I < 10 do 

 { X = I && I < 11 } 
 X = X + 1 
 I = I + 1 

 
assert(X == 10) 
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Comments 

•  Loop invariants aren’t hard to compute 
–  If you don’t care about quality 
–  true 

•  What we want is to prove the assertion 
–  Need an invariant strong enough to do this 
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Comments 

•  But how can we prove the assertion? 

•  We need a proof strategy 
–  An algorithm that we can apply to any loop 
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Inductive Invariants 

 
while (B)  
 { 
 
  …  code … 
 
 
} 
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Pre 
I 
 
 
 

 
Post 
 
 
 

Pre )I 
 
I Æ B 
{ code } 
I 
 
I Æ¬B )  
Post  
 
 
 
 

Inductive Invariants 

•  Pre )I 
The invariant holds initially 
 

•  I Æ B { code } I 
If the invariant and loop condition hold, executing the 
loop body re-establishes the invariant 
 

•  I Æ¬B ) Post  
If the invariant holds and the loop terminates, then 
the post-condition holds 
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Loop Invariant (1) 

 
X = 0 
I = 0 
while I < 10 do 

 { true } 
 X = X + 1 
 I = I + 1 

 
assert(X == 10) 
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Loop Invariant (2) 

Z = 42 
X = 0 
I = 0 
while I < 10 do 

 { Z = 42 } 
 X = X + 1 
 I = I + 1 

 
assert(X == 10) 
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Loop Invariant (3) 

Z = 42 
X = 0 
I = 0 
while I < 10 do 

 { I < 4327 } 
 X = X + 1 
 I = I + 1 

 
assert(X == 10) 
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Loop Invariant (4) 

Z = 42 
X = 0 
I = 0 
while I < 10 do 

 { X < 11 } 
 X = X + 1 
 I = I + 1 

 
assert(X == 10) 
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Loop Invariant (5) 

Z = 42 
X = 0 
I = 0 
while I < 10 do 

 { X = I && I < 11 } 
 X = X + 1 
 I = I + 1 

 
assert(X == 10) 
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Invariant Inference 

•  An old problem 

•  A different approach with two ideas: 
1.  Separate invariant inference from the rest of the 

verification problem 
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Invariant Inference 

•  An old problem 

•  Two ideas: 
1.  Separate invariant inference from the rest of the 

verification problem 

2.  Guess the invariant from executions 
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Why? 

•  Complementary to static analysis 
–  underapproximations 
- “see through” hard analysis problems 

•  functionality may be simpler than the code 

•  Possible to generate many, many tests 
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Nothing New Under the Sun 

•  Sounds like DAIKON? 
–  Yes! 

•  Hypothesize (many) invariants 
–  Run the program 
–  Discard candidate invariants that are falsified 
–  Attempt to verify the remaining candidates 
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A Simple Program 

•  Instrument loop head 

•  Collect state of program 
variables on each 
iteration 
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s = 0;  

y = 0; 

while( * ) 

{ 

  print(s,y); 

  s := s + 1;   

  y := y + 1; 

} 

A DAIKON-Like Approach 

•  Hypothesize 
–  s = y 
–  s = 2y 

•  Data 
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s = 0;  

y = 0; 

while( * ) 

{ 

  print(s,y); 

  s := s + 1;   

  y := y + 1; 

} 

s y 
0 0 

A DAIKON-Like Approach 

•  Hypothesize 
–  s = y 
–  s = 2y 

•  Data 
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s = 0;  

y = 0; 

while( * ) 

{ 

  print(s,y); 

  s := s + 1;   

  y := y + 1; 

} 

s y 
0 0 
1 1 

A DAIKON-Like Approach 

•  Hypothesize 
–  s = y 
–  s = 2y 

•  Data 
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s = 0;  

y = 0; 

while( * ) 

{ 

  print(s,y); 

  s := s + 1;   

  y := y + 1; 

} 

s y 
0 0 
1 1 
2 2 
3 3 

Another Approach 

•  Data 
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s = 0;  

y = 0; 

while( * ) 

{ 

  print(s,y); 

  s := s + 1;   

  y := y + 1; 

} 

s y 
0 0 
1 1 
2 2 
3 3 

Arbitrary Linear Invariant 

•  Data 
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as + by = 0 
s y 
0 0 
1 1 
2 2 
3 3 
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Observation 
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as + by = 0 

s y 
0 0 
1 1 
2 2 
3 3 

w 
a 
b 

0 
0 

Observation 
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as + by = 0 

s y 
0 0 
1 1 
2 2 
3 3 

w 
a 
b 

0 
0 

 
{ w | Mw = 0 } 

Observation 
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as + by = 0 

s y 
0 0 
1 1 
2 2 
3 3 

w 
a 
b 

0 
0 

 
NullSpace(M) 

Linear Invariants 

•  Construct matrix M of observations of all 
program variables 

•  Compute NullSpace(M) 
 
•  All invariants are in the null space 
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Spurious “Invariants” 

•  All invariants are in the null space 
–  But not all vectors in the null space are invariants 

•  Consider the matrix 
 

•  Need a check phase 
–  Verify the candidate is in fact an invariant 
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s y 
0 0 

An Algorithm 

•  Check candidate invariant 
–  If an invariant, done 

–  If not an invariant, get counterexample 
•  Counterexample can be guaranteed to satisfy all invariants 

•  Add new row to matrix 
–  And repeat 
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Termination 

•  How many times can the solve & verify loop 
repeat? 

•  Each counterexample is linearly independent 
of previous entries in the matrix 

•  So at most N iterations 
–  Where N is the number of columns 
–  Upper bound on steps to reach a full rank matrix 
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Summary   

•  Superset of all linear invariants can be 
obtained by a standard matrix calculation 

•  Counter-example driven improvements to 
eliminate all but the true invariants 
–  Guaranteed to terminate 
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What About Non-Linear Invariants? 
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s = 0;  

y = 0; 

while( * ) 

{ 

  print(s,y); 

  s := s + y;   

  y := y + 1; 

} 

Idea 

•  Collect data as before 

•  But add more columns to the matrix 
–  For derived quantities 
–  For example, y2 and s2 

•  How to limit the number of columns? 
–  All monomials up to a chosen degree d 

[Nguyen, Kapur, Weimer, Forrest 2012] 
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What About Non-Linear Invariants? 
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s = 0;  

y = 0; 

while( * ) 

{ 

  print(s,y); 

  s := s + y;   

  y := y + 1; 

} 

1 s y s2 y2 sy 

1 0 0 0 0 0 

1 1 1 1 1 1 

1 3 2 9 4 6 

1 6 3 36 9 18 

1 10 4 100 16 40 

Solve for the Null Space 
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a + bs + cy+ ds2 + ey2 + fsy = 0 

1 s y s2 y2 sy 

1 0 0 0 0 0 

1 1 1 1 1 1 

1 3 2 9 4 6 

1 6 3 36 9 18 

1 10 4 100 16 40 

w 
a 
b 
c 
d 
e 
f 

0 
0 
0 
0 
0 
0 

-2s + y + y2 = 0 Candidate invariant: 
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Comments 

•  Same issues as before 
–  Must check candidate is implied by precondition, is 

inductive, and implies the postcondition on 
termination 

–  Termination of invariant inference guaranteed if 
the verifier can generate counterexamples 

•  Experience: Solvers do well as checkers! 
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Experiments 
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Summary to This Point 

•  Algorithm for algebraic invariants 
–  Up to a given degree 

•  Guess and Check 
–  Hard part is inference done by matrix solve 
–  Check part done by standard SMT solver 
–  Much simpler and faster than previous approaches 
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What About Disjunctive Invariants? 

•  Disjunctions are expensive 
–  In addition to conjunctions 

•  Existing techniques severely restrict 
disjunctions 
–  E.g., to a template 
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What About Non-Numeric Invariants? 

•  Arrays? 
•  Lists? 
•  Other data structures? 

•  Invariant inference techniques are very 
specialized 
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A Search-Based Approach 

•  All methods for finding invariants are 
heuristics 
–  Can never be complete 

•  So why not use general but incomplete 
techniques? 
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MCMC 

•  Markov Chain Monte Carlo sampling 

•  The only known tractable solution method for 
high dimensional irregular search spaces  
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MCMC Overview 
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73! 47!

42!

29!

37!

17!

23!
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MCMC Sampling Algorithm for Invariants 

 
  1. Select an initial candidate 
 

2. Repeat (millions of times) 
•  Propose a random modification and evaluate cost 
•  If ( cost decreased )  
        { accept } 
•  If ( cost increased )  

    { with some probability accept anyway } 
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Pre )I 
 
I(s) ) I(t)   if     s {body} t 
 
I Æ¬B ) Post  
 
 
 
 

Data 

•  Good states  G 
–  Reachable states 
 

•  Pairs Z 
–  States (s,t) such that starting the loop body S in 

state s terminates in state t. 

•  Bad states B 
–  States that lead to an assertion violation 
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Cost Function (Roughly) 

•  Penalize a candidate invariant C 
–  1 for each good state g in G where C(g) is false. 
–  1 for each bad state b in B where C(b) is true 
–  1 for each pair (s,t) in Z where C(s) and not C(t) 

•  The cost of C is the sum of the penalties 
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Overall Algorithm 

•  Run search until a 0-cost candidate C is found 

•  Use a decision procedure to verify that C is an 
invariant 
–  If yes, done 
–  If no, get a counterexample 

•  A good state, bad state, or pair 
•  Add to the data 
•  Repeat 
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MCMC Sampling Algorithm for Invariants 

 
  1. Select an initial candidate 
 

2. Repeat (millions of times) 
•  Propose a random modification and evaluate cost 
•  If ( cost decreased )  
        { accept } 
•  If ( cost increased )  

    { with some probability accept anyway } 
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•  Find invariants of the form 
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Moves 

•  Replace a coefficient 

•  Replace a  constant on the rhs 

•  Replace all coefficients and the constant in a 
single inequality 
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Results 
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Arrays 

•  Use the fluid updates abstraction 

•  Reduce to search for numerical predicate T 
–  But now involves universal quantifier 
–  f,g are array variables 
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A Problem with Arrays 

•  Decision procedures for arrays cannot give us 
counterexamples 

•  Instead use executions to generate data 
–  Including bad states and pairs 

Profs. Aiken, Barrett & Dill       CS 357      
Lecture 12 

61 

Generating Data 

•  Pick a number k 

•  At the loop head 
–  Assign all numeric variables a value <= k 
–  Assign all arrays a size <= k 
–  Assign all elements of arrays a value <= k 

•  For experiments, we used k = 4 
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Results on Arrays 
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Strings 

•  Search space is   
–  Boolean combinations of predicates P 
–  P consists of constants and predicates in the 

program 

Profs. Aiken, Barrett & Dill       CS 357      
Lecture 12 

64 

String Results 
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Lists 

•  Search space 
–  Boolean combinations of atoms 
–  Atoms are relations R(x1,…,xn) 

•  Moves 
–  Replace one argument of a relation 
–  Replace an entire relation 
–  Flip polarity of an atom 

Profs. Aiken, Barrett & Dill       CS 357      
Lecture 12 

66 



12 

Lists 

•  Use one reachability relation 

n(x,y) = y is reachable from x in 0 or more 
pointer dereferences 
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List Results 
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Summary 

•  Invariant inference is a hard problem, made 
easier by looking at data from executions 
–  Because the executions satisfy all the invariants 

•  Search-based techniques can work 
–  Competitive with other methods 
–  Easier to retarget to new domains 

•  Still limited by decision procedures 
–  But not by their ability to do inference 
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