Abstract Interpretation

Lecture 16

Profs. Aiken, Barrett & Dill CS 357 Lecture 16

History

* One breakthrough paper
- Cousot & Cousot ‘77 (?)

+ Inspired by
- Dataflow analysis
- Denotational semantics

+ Enthusiastically embraced by the community
- At least the functional community . . .
- At least the first half of the paper . ..

Profs. Aiken, Barrett & Dill CS 357 2
Lecture 16

A Tiny Language

+ Consider a language with only integers and
multiplication.

e=/ilexe
w:Exp — Int
wii)y = i

we e) = we) xule)

Profs. Aiken, Barrett & Dill ~ CS 357 3
Lecture 16

An Abstraction

Define an abstract semantics that computes only
the sign of the result.

o:Exp = {+-0}

+ if7i>0 x|+ 0 -
o(r) = |0 if/=0 1+ 0
- if/<0 olo o
olg+e) = oleg) x ofe) -1-0
Profs. Aiken, Barrett & Dill CS 357 4

Lecture 16

Soundness

+ We can show that this abstraction is correct in the
sense that it correctly predicts the sign of an
expression.

+ Proof is by structural induction on e.

u(e)>0 = ofe) = +
we)=0<=o(e)=0
we)<0 < o(e) =-

Profs. Aiken, Barrett & Dill ~ CS 357 5
Lecture 16

Another View of Soundness

+ The soundness proof is clunky
- each case repeats the same idea.

+ Instead, directly associate each abstract value with
the set of concrete values it represents.

v {+,0,-} = 2™
y#+) = {ili>0}

y(0) = {0}
7O = {ili<0}

Profs. Aiken, Barrett & Dill ~ CS 357 6
Lecture 16

Another View (Cont.)

The concretization function
- Mapping from abstract values to (sets of) concrete
values

Let
- D be the concrete domain,
- A the abstract domain.

Ex
ue)ey(ole))

Profs. Aiken, Barrett & Dill ~ CS 357 Al’l E 2 7

Lecture 16

Abstract Interpretation

+ This is an abstract interpretation.
- Computation in an abstract domain
- In this case {+0,-}.

* The abstract semantics is sound
- approximates the standard semantics.

+ The concretization function establishes the
connection between the two domains.

Profs. Aiken, Barrett & Dill ~ CS 357 8
Lecture 16

Adding -

Extend our language with unary -

Adding +

Adding addition is not so easy.
The abstract values are not closed under addition.

+l+ 0 -

ulg+e) = ulg)+ue) |+ + ?
olg+e) = ofg) + ole) 0|+ 0 -
_l? - -

Profs. Aiken, Barrett & Dill CS 357 10

Lecture 16

u(-e) = -u(e) |+ 0 -
o(-e) = -o(e) - 0 +
Profs. Aiken, Barrett & Dill ~ CS 357 9
Lecture 16
Solution

We need another abstract value to represent a result
that can be any integer.

Finding a domain closed under all the abstract
operations is of ten a key design problem.

O + | +I
o +|O

|
= =+ 4|+
|
|

y(T) =Int

I
B I I

Profs. Aiken, Barrett & Dill ~ CS 357 1
Lecture 16

Extending Other Operations

We also need to extend the other abstract operations
to work with T.

x|+ 0 - T
00000 Tt
-0+ T
-- 0+ T
TITOTT
Profs. Aiken, Barrett & Dill ~ CS 357 12

Lecture 16

Examples

Abstract computation loses information
w(@+2)+-3) 0
o((1+2)+-3) (++4) + (-9)=T

No loss of information

wu((5=5)+6) = 31
o((5%5)+6) = (+ x +) + +=+

Lecture 16

Adding / (Integer Division)

Adding / is straightforward except for the case of
division by O.

+ If we divide each integer in a set by O, what set of
integers results? The empty set.

/l+ 0 - T 1
+(+ 0 - T L
oL 1L 1L 1 1
HL)-2 -|- 0 + T L
T|ITOTT 1L
I N R S
Profs. Aiken, Barrett & Dill ~ CS 357 14

Lecture 16

Adding / (Cont.)

As before we need to extend the other abstract
operations.

+ In this case, every entry involving bottom is bottom
- all operations are strict in bottom

1+ x = 1
X x 1L = 1
-1 = 1

Profs. Aiken, Barrett & Dill ~ CS 357 15

Lecture 16

The Abstract Domain

Our abstract domain forms a /attice.

- Anpartial order x <y < y(x)Cy(y)

- Every finite subset has a least upper bound (lub) &
greatest lower bound (glb).

We write A for an abstract domain
- aset of values + an ordering T

+ 0 -

1

Profs. Aiken, Barrett & Dill CS 357 16
Lecture 16

Lattice Lingo

* A lattice is complete if every subset (finite or
infinite) has lub’s and glb’s.
- Every finite lattice is complete

+ Thus every lattice has a top/bottom element.
- Usually needed in abstract interpretations.

Profs. Aiken, Barrett & Dill ~ CS 357 17
Lecture 16

The Abstraction Function

The abstraction function maps concrete values to
abstract values.
- The dual of concretization.

- The smallest value of A that is the abstraction of a set of
concrete values.

@i 2™ A

a(s)=lub({-1i<0nries}foloes}{+|i>0nri€s}))

Profs. Aiken, Barrett & Dill ~ CS 357 18
Lecture 16

A General Definition

+ An abstract interpretation consists of
- Anabstract domain A and concrete domain O

- Concretization and abstraction functions forming a Galois
insertion.

- A (sound) abstract semantic function.

Galois insertion:

Vx €2 x Cy(a(x)) id < yoa
VYaeA x=a(y(x)) or id = acy
Profs. Aiken, Barrett & Dill ~ CS 357 19

Lecture 16

Galois Insertions

+ The abstract domain can be thought of as dividing the
concrete domain into subsets (not disjoint).

+ The abstraction function maps a subset of the domain
to the smallest containing abstract value.

id < yox /q

id = aoy

Profs. Aiken, Barrett & Dill CS 357 20
Lecture 16

Picture

+ Incorrect abstract interpretations, we expect the
following diagram to commute.

A
o =
Vo
Exp
we b
Profs. Aiken, Barrett & Dill ~ CS 357 21

Lecture 16

General Conditions for Correctness

Three conditions guarantee correctness in
general:

a and y form a Galois insertion
id <yoa, id =aoy

a and y are mohotonic
xsy=ax)saly)

Abstract operations op are locally correct:
7(0p(s;.....5,)) 2 0p(¥(5,),.... 7(5,))

Profs. Aiken, Barrett & Dill CS 357 22
Lecture 16

Generic Correctness Proof

Proof by induction on the structure of e: ﬂ(e) S)/(G(e))

ulg op &)

u(g) op ule) def. of u
y(o(g)) op y(o(e)) by induction
y(o(eg) ap o(e)) local correctness
r(oleg op &)) def of o

N M

Profs. Aiken, Barrett & Dill ~ CS 357 23
Lecture 16

A Second Notion of Correctness

We can define correctness using abstraction instead
of concretization.

u(e)ey(o(e)) = al{u(e)}) = o(e)

= direction

u(e)Ey(o(e))

a{u(e)) = a(y(o(e))) monotonicity
a({u(e)}) = o(e) aoy =id

Lecture 16

Correctness (Cont.)

+ The other direction . ..

u(e)ey(o(e)) = al{u(e)}) = o(e)

A Language with Input

+ The next step is to add language features besides new
operations.

+ We begin with input, modeled as a single free variable
X in expressions.

e=/|exe|-el|..|x

Profs. Aiken, Barrett & Dill ~ CS 357 26
Lecture 16

<« direction
a{u(e)}) = ole)
y(a({u(e)})) < y(o(e)) monotonicity
u(e)Ey(o(e) id <yoa
Profs. Aiken, Barrett & Dill ~ CS 357 25
Lecture 16
Semantics

+ The meaning function now has type
w: Exp — Int — Int
+ We write the function curried with the expression as
a subscript.

w(J) i
() J
Uoooy () = 1, (J) #14,(f)
Uooe, () = 1, () +12,(f)

Profs. Aiken, Barrett & Dill ~ CS 357 27
Lecture 16

Abstract Semantics

+ Abstract semantic function:
o Exp = A = A

+ Also write this semantics curried.

a,()) =7

o) =1J

Ogee (j) = O, (;) * g, (.7)
o0 () = 0,()) +0,())
i = a{/})

Lecture 16

Correctness

+ The correctness condition needs to be generalized.
+ This is the first real use of the abstraction function.
+ The following are all equivalent:

e
Vi, u (NEy(o, (i) |5,
H, Sp ¥ 00, 0a
aou, <, 0,00
e e 20 ‘Lle E ZD
Profs. Aiken, Barrett & Dill ~ CS 357 29

Lecture 16

Local Correctness

- We also need a modified local correctness condition.

op(1(0, .- 10, () € ¥ (0P, (), 00, ()

Profs. Aiken, Barrett & Dill ~ CS 357 30
Lecture 16

Proof of Correctness

Thm u(/)Er(o.(/)

Proof (by induction)
Basis. () =/ €y(7) = r(0,()))
w () = JEY() = r(0.()))

Step

Hapte,...ep(J)
= op(u, (/)i () def. of 1
€ op(y(o,(/)...r(0. () induction
C yop(o,()).-..0, (7)) local correctness
= y(aop(%‘ 2)(7)) def. of o

Profs. Aiken, Barrett & Dill ~ CS 357 31
Lecture 16

If-Then-Else

e=.. | ife=etheneelsee | ..

. o[F D=0
if ¢=¢, then ¢; else e, = , (/) if u, (I) =, (/)

Tif e, then e, else ¢, ()= e, 07 o, 6]
+ Note the lub operation in the abstract function;
this is why we need lattices as domains.

Profs. Aiken, Barrett & Dill ~ CS 357 32
Lecture 16

Correctness of If-Then-Else

+ Assume the true branch is taken.
+ (The argument for the false branch is symmetric.)

e, (1)

(o, () by induction
(o, (N 7 7o, (7))

y(0,()7 0,(7)) monotonicity of y

N 1N m

Profs. Aiken, Barrett & Dill ~ CS 357 33
Lecture 16

Recursion

+ Add recursive definitions
- of asingle variable for simplicity
+ The semantic function is

u: Exp —Int —Int,

program = def f(x)=e
e=..|7(e)

Profs. Aiken, Barrett & Dill CS 357 34
Lecture 16

Revised Meaning Function

Define an auxiliary semantics taking a function (for
the free variable f) and an integer (for x).

u'+ Exp — (Int — Int) — Int — Int,

tee(9)J) = 91 (9)()))
w(9)J) =J
Heoe, (9 = 1, (9)(J) + 1, (9)())

Profs. Aiken, Barrett & Dill -~ CS 357 35
Lecture 16

Meaning of Recursive Functions

wu: Exp —Int —Int,
' Exp—(Int — Int,) —Int —Int,

Consider a function def f = e
Define an ascending chain £,7,... in Int — Int,
fo=Ax. L

T = 1 (f)

Define u, = U £

Profs. Aiken, Barrett & Dill ~ CS 357 36
Lecture 16

Abstract Semantics Revised

+ Define an analogous auxiliary function for the
abstract semantics.

o Exp—=(A=A)=-A—=A

(9N = 9(0L(G))
TP =7
O OFTAC GIAO) G

Profs. Aiken, Barfett & Dill
Lecture 16

Abstract Semantics Revised IT

+ We need one more condition for the abstract
semantics.

+ All abstract functions are required to be
monotonic.

+ Thm. Any monotonic function on a complete
lattice has a least fixed point.

Profs. Aiken, Barrett & Dill ~ CS 357 38
Lecture 16

Abstract Meaning of Recursion

o Exp—~A—=A
g Exp=(A-A) A=A

Consider a function deff = e

Define an ascending chain fo,71,...in A — A
?o =Aa. L
Fia=0l(f)

Define o, = U7,

Profs. Aiken, Barrett & Dill ~ CS 357 39
Lecture 16

Correctness

WD —— ()

) e—r 170y

£()) —L—Fo())

Corresponding elements of the chain stand in the correct relationship.

Profs. Aiken, Barrett & Dill CS 357 40
Lecture 16

Correctness (Cont.)

Vi, FNEVF))
= U EU(F(J) chains stabilize

7=0 /=0

= Uﬁ(j)Ey(Uf/(j)) monotonicity of y

i=0 /=0

= w())Er(o()) by definition

Profs. Aiken, Barrett & Dill ~ CS 357 41
Lecture 16

Example

def f(x) = if x = Othenlelse x = f(x+-1)

Abstraction:

Ifp(o'(if x = Othenlelse x * f(x+-1)))

Simplified.:
Ifp(Afax.+U(x x f(x +)

Profs. Aiken, Barrett & Dill ~ CS 357 42
Lecture 16

Strictness

*+ We will assume our language is strict.

- Makes little difference in quality of analysis for
this example.

+ Assume that (1) =1
- Therefore it is sound to define #(L)=L

Profs. Aiken, Barrett & Dill ~ CS 357 43
Lecture 16

Calculating the LFP

Ifp(#F.2x +U(x X FX ¥ 9))

Profs. Aiken, Barrett & Dill CS 357 44
Lecture 16

Notes

+ In this case, the abstraction yields no
useful information!
* Note that sequence of functions forms a
strictly ascending chain until stabilization
hefi<fi<fi=fi=fi=..
* But the sequence of values at particular
points may not be strictly ascending:

K(+) <(+) = £(+) < A(+) = A(+) = £(+) = ..

Profs. Aiken, Barrett & Dill ~ CS 357 45
Lecture 16

Notes (Cont.)

+ Lesson: The fixed point is being computed in
the domain (A — A) A=A

- The fixed point is not being computed in A — A

+ Make sure you check the domain of the fixed
point operator.

Profs. Aiken, Barrett & Dill CS 357 46
Lecture 16

Strictness Analysis

Profs. Aiken, Barrett & Dill CS 357 Lecture 16

Strictness Analysis Overview

+ Inlazy functional languages, it may be desirable to
change call-by-need (lazy evaluation) to call-by-value.

+ CBN requires building “thunks” (closures) to capture
the lexical environment of unevaluated expressions.

+ CBV evaluates its argument immediately, which is
wasteful (or even wrong) if the argument is never
evaluated under CBN.

Profs. Aiken, Barrett & Dill ~ CS 357 48
Lecture 16

Correctness

Outline

+ Substituting CBV for CBN is always correct if we
somehow know that a function evaluates its
argument(s).

* A function fis strict if f(L) =L

+ Observation: if fis strict, then it is correct to pass
arguments to f by value.

Profs. Aiken, Barrett & Dill ~ CS 357 49
Lecture 16

Deciding whether a function is strict is undecidable.
+ Mycroft’s idea: Use abstract interpretation.

« Correctness condition: If fis non-strict, we must
report that it is non-strict.

Profs. Aiken, Barrett & Dill ~ CS 357 50
Lecture 16

The Abstract Domain

Concretization/Abstraction

+ Continue working with the same language (1 recursive
function of 1 variable).

+ New abstract domain 2:

Profs. Aiken, Barrett & Dill ~ CS 357 51
Lecture 16

+ The concretization/abstraction functions say
- 0 means the computation definitely diverges
- 1 means nothing is known about the computation
- Dis the concrete domain

y(0)={L} a({1})=0
YD =D a(S)=1if S={L}

Profs. Aiken, Barrett & Dill CS 357 52
Lecture 16

Abstract Semantics

Abstract Semantics (Cont.)

* Next step is to define an abstract semantics
« Transform f:Int — Int to ?:2 —2

- Transform values V:Int to v:2

- To test strictness check if £(0)=0

Profs. Aiken, Barrett & Dill ~ CS 357 53
Lecture 16

+ An astands for an abstract value (O or 1).
+ Treat 0,1 as false, true respectively.

o(g)a) = a

o(gla) =1

od.(g9)a) = o.(g)a)

0.0 (gla) = o,(g)a)ro,(g)a)
uo(9la) = g(o.(g)a)

Lecture 16

The Rest of the Rules

0,..,(9)a) = o,(9)a)r o, (g)a)
0,,,(9)a) = o,(9)a)r o, (g)a)
T o theney e, (9)@) = 0L (g)a) a0, (g)a) n (0, (g)a) v 0, (9)(a))
Taeff-e = Ifpo,
Profs. Aiken, Barrett & Dill ~ CS 357 55
Lecture 16

An Example

def f(x) = if x = Othenlelsex = f(x+-1)
Ifp(o’(if x = Othenlelsex = f(x+-1)))
lfp(l?‘j&,}) = iaa

(Aa.a) 0=0 The function is strict in x.

Profs. Aiken, Barrett & Dill ~ CS 357 56
Lecture 16

Calculating the LFP

Ifp(AF.AxX a1 A (1v (x F(x A 1))

- [o71
fo-roT0
— [oTt
fi=tott
- [o]1]
fa= o1
Profs. Aiken, Barrett & Dill ~ CS 357 57

Lecture 16

Another Example

+ Generalize to recursive functions of two variables.
def f(xyy) = if x = Othen O else f(x +-1,f(x,y))
Ifp(c’(if x = O then O else f(x +-1,f(xy)))) =
IFp(AFAX,Y). X Ala(lv..)) =
AX,y). x

Profs. Aiken, Barrett & Dill CS 357 58
Lecture 16

Example (Cont.)

For multi-argument functions, check each argument
combination of the form (1,..,1,0,1,..,1).

(/1(;(,;/) §) (0,1) =0 X can be passed by value.

(/l(},;/) >_<) (1,0) =1 Unsafe to pass ¥ by value.

Profs. Aiken, Barrett & Dill ~ CS 357 59
Lecture 16

Summary of Strictness Analysis

+ Mycroft’s technique is sound and practical.
- Widely implemented for lazy functional languages.
- Makes modest improvement in performance (a few %).
- The theory of abstract interpretation is critical here.

+ Mycroft’s technique treats all values as atomic.
- No refinement for components of lists, tuples, efc.

*+ Many research papers take up improvements for data
types, higher-order functions, etfc.
- Most of these are very slow.

Profs. Aiken, Barrett & Dill ~ CS 357 60
Lecture 16

Conclusions

+ The Cousot&Cousot paper(s) generated an
enormous amount of other research.

+ Abstract interpretation as a theory and abstract
interpretation as a method of constructing tools
are often confused.

+ Slogan of most researchers:

Finite Lattices + Monotonic Functions =
Program Analysis

Profs. Aiken, Barrett & Dill ~ CS 357 61
Lecture 16

Where is Abstract Interpretation Weak?

* Theory is completely general

* The part of the original paper people
understand is limited
- Finite domains + monotonic functions

Profs. Aiken, Barrett & Dill CS 357 62
Lecture 16

Data Structures and the Heap

* Requires a finite abstraction
- Which may be tuned to the program

- More often is “empty list, list of length 1, unknown
length”

+ Similar comments apply to analyzing heap
properties
- E.g., a cell has O references, 1 references, many
references

Profs. Aiken, Barrett & Dill CS 357 63
Lecture 16

Size of Domains

+ Large domains = slow analysis

+ In practice, domains are forced to be small
- Chain height is the critical measure

+ The focus in abstract interpretation is on
correctness
- Not much insight into efficient algorithms

Profs. Aiken, Barrett & Dill CS 357 64
Lecture 16

Context Sensitivity

* No particular insight into context senstivity

* Any reasonable technique is an abstract
interpretation

Profs. Aiken, Barrett & Dill ~ CS 357 65
Lecture 16

Higher-Order Functions

* Makes clear how to handle higher-order
functions
- Model as abstract, finite functions
- Ordering on functions is poinfwise
+ Problem: huge domains

* Break with the dependence on control-flow
graphs

Profs. Aiken, Barrett & Dill ~ CS 357 66
Lecture 16

11

Forwards vs. Backwards

* The forwards vs. backwards mentality
permeates much of the abstract
interpretation literature

* But nothing in the theory says it has to be
that way

Profs. Aiken, Barrett & Dill ~ CS 357 67
Lecture 16

12

