
1!

Profs. Aiken, Barrett & Dill     CS 357     Lecture 16 1 

Abstract Interpretation 
 

Lecture 16 

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

2 

History 

•  One breakthrough paper 
–  Cousot & Cousot ‘77 (?) 

•  Inspired by 
–  Dataflow analysis 
–  Denotational semantics 

•  Enthusiastically embraced by the community 
–  At least the functional community . . . 
–  At least the first half of the paper . . . 

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

3 

A Tiny Language 

•  Consider a language with only integers and 
multiplication. 

1 2 1 2

|

:
( )

( ) ( ) ( )

e i e e

Exp Int
i i

e e e e

µ

µ

µ µ µ

= ∗

→

=

∗ = ×

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

4 

An Abstraction 

•  Define an abstract semantics that computes only 
the sign of the result. 

{ }

1 2 1 2

 :Exp ,-,0

if 0 0
( ) 0 if 0 0            if 0 0 0 0 0
( ) ( ) ( ) 0

i
i i

i
e e e e

σ

σ

σ σ σ

→ +

+ >⎛ ⎞ × + −
⎜ ⎟= = + + −⎜ ⎟
⎜ ⎟− <⎝ ⎠

∗ = × − − +

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

5 

Soundness 

•  We can show that this abstraction is correct in the 
sense that it correctly predicts the sign of an 
expression. 

•  Proof is by structural induction on e. 

( ) 0 ( )
( ) 0 ( ) 0
( ) 0 ( )

e e
e e
e e

µ σ

µ σ

µ σ

> ⇔ = +

= ⇔ =

< ⇔ = −
Profs. Aiken, Barrett & Dill     CS 357     

Lecture 16 
6 

Another View of Soundness 

•  The soundness proof is clunky 
–  each case repeats the same idea. 

•  Instead, directly associate each abstract value with 
the set of concrete values it represents. 

{ }
{ }

{ }

: { ,0, } 2

( ) | 0
(0) 0
( ) | 0

Int

i i

i i

γ

γ

γ

γ

+ − →

+ = >

=

− = <



2!

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

7 

Another View (Cont.) 

•  The concretization function 
–  Mapping from abstract values to (sets of) concrete 

values  
•  Let  

–  D be the concrete domain,  
–  A the abstract domain. 

( ) ( ( ))e eµ γ σ∈

γ
σ

µ∈

Exp

A

2D
Profs. Aiken, Barrett & Dill     CS 357     

Lecture 16 
8 

Abstract Interpretation 

•  This is an abstract interpretation. 
–  Computation in an abstract domain  
–  In this case {+,0,-}. 

•  The abstract semantics is sound 
–   approximates the standard semantics. 

•  The concretization function establishes the 
connection between the two domains. 

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

9 

Adding - 

•  Extend our language with unary - 

( ) ( ) 0            
0( ) ( )

e e
e e

µ µ

σ σ

− = − − + −

− +− = −

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

10 

Adding + 

•  Adding addition is not so easy. 
•  The abstract values are not closed under addition. 

1 2 1 2

1 2 1 2

0
( ) ( ) ( ) ?  
( ) ( ) ( ) 0 0

       

?

   
e e e e
e e e e

µ µ µ

σ σ σ

+ + −
+ = + + + +

+ = + + −

− − −

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

11 

Solution 

•  We need another abstract value to represent a result 
that can be any integer. 

•  Finding a domain closed under all the abstract 
operations is often a key design problem. 

0 T
T T

(T) Int            0 0 T
T T

T T T T T

γ

+ + −

+ + +
= + −

− − −

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

12 

Extending Other Operations 

•  We also need to extend the other abstract operations 
to work with T. 

0 T
0 T 0 T                  0 0 0 0 0 0 T
0 T

T T 0 T T

× + −

+ + −
− + −

− +
− − +



3!

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

13 

Examples 

((1 2) 3) 0
((1 2) 3) ( ) ( ) T

((5 5) 6) 31
((5 5) 6) ( )

µ

σ

µ

σ

+ + − =

+ + − = + + + + −+ =

∗ + =

∗ + = + × + + + = +

Abstract computation loses information 

No loss of information 

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

14 

Adding / (Integer Division) 

•  Adding / is straightforward except for the case of 
division by 0. 

•  If we divide each integer in a set by 0, what set of 
integers results?  The empty set. 

/ 0 T
0 T

0( )             
0 T

T T 0 T T

γ

+ − ⊥

+ + − ⊥

⊥ ⊥ ⊥ ⊥ ⊥⊥ = ∅
− − + ⊥

⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

15 

Adding / (Cont.) 

•  As before we need to extend the other abstract 
operations. 

•  In this case, every entry involving bottom is bottom 
–  all operations are strict in bottom 

x
x
⊥ + = ⊥

× ⊥ = ⊥

− ⊥ = ⊥

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

16 

The Abstract Domain 

•  Our abstract domain forms a lattice. 
–  A partial order 
–  Every finite subset has a least upper bound (lub) & 

greatest lower bound (glb). 
•  We write A for an abstract domain  

–  a set of values + an ordering 

( ) ( )x y x yγ γ≤ ⇔ ⊆

+ −0

⊥

T

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

17 

Lattice Lingo 

•  A lattice is complete if every subset (finite or 
infinite) has lub’s and glb’s. 
–  Every finite lattice is complete 

•  Thus every lattice has a top/bottom element. 
–  Usually needed in abstract interpretations. 

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

18 

The Abstraction Function 

•  The abstraction function maps concrete values to 
abstract values. 
–  The dual of concretization. 
–  The smallest value of A that is the abstraction of a set of 

concrete values. 

{ } { } { }( )

Int: 2 A

( ) lub | 0 , 0|0 , | 0S i i S S i i S
α

α

→

= − < ∧ ∈ ∈ + > ∧ ∈



4!

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

19 

A General Definition 

•  An abstract interpretation consists of 
–  An abstract domain A and concrete domain D 
–  Concretization and abstraction functions forming a Galois 

insertion. 
–  A (sound) abstract semantic function. 

2 . ( ( ))
. ( ( ))

Dx x x
a A x x

γ α

α γ

∀ ∈ ⊆

∀ ∈ =

id
id

γ α

α γ

≤ °
= °

Galois insertion: 

or 

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

20 

Galois Insertions 

•  The abstract domain can be thought of as dividing the 
concrete domain into subsets (not disjoint). 

•  The abstraction function maps a subset of the domain 
to the smallest containing abstract value. 

id
id

γ α

α γ

≤ °
= °

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

21 

Picture 

•  In correct abstract interpretations, we expect the 
following diagram to commute. 

γ
σ

µ ∈

αExp

A

2D

≤

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

22 

General Conditions for Correctness 

1 1

    
         ,

   
         ( ) (

and form a Galois insertion

and are monotonic

Abstract operations are locally
)

 op 
         (op( ,..., )) op( ( ),..., (

 corr
))

ect:

n n

id id

x y x y

s s s s

α γ

γ α α γ

α γ

α α

γ γ γ

≤ =

≤ ⇒ ≤

⊇

o o

Three conditions guarantee correctness in 
general: 

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

23 

Generic Correctness Proof 

1 2

1 2

1 2

1 2

1 2

( )
( ) ( ) def. of 
( ( )) ( ( )) by induction
( ( ) ( )) local correctness
( ( )) def of 

e op e
e op e

e op e
e op e
e op e

µ

µ µ µ

γ σ γ σ

γ σ σ

γ σ σ

=

∈

⊆

=

Proof by induction on the structure of e: ( ) ( ( ))e eµ γ σ∈

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

24 

A Second Notion of Correctness 

•  We can define correctness using abstraction instead 
of concretization. 

( ) ( ( )) ({ ( )}) ( )

( ) ( ( ))
({ ( )}) ( ( ( ))) monotonicity
({ ( )})

 direc

)

ti

(

on

e e e e

e e
e e
e e id

µ γ σ α µ σ

µ γ σ

α µ α γ σ

α µ σ α γ

∈ ≡ ≤

≤

≤

⇒

∈

=o



5!

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

25 

Correctness (Cont.) 

•  The other direction . . . 

( ) ( ( )) ({ ( )}) ( )

 direction
({ ( )}) ( )
( ({ ( )})) ( ( )) monotonicity
( ) ( ( ))

e e e e

e e
e e

e e id

µ γ σ α µ σ

α µ σ

γ α µ γ σ

µ γ σ γ α

∈ ≡ ≤

⇐

≤

≤

∈ ≤ o

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

26 

A Language with Input 

•  The next step is to add language features besides new 
operations. 

•  We begin with input, modeled as a single free variable 
x in expressions. 

| | | ... |e i e e e x= ∗ −

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

27 

Semantics 

•  The meaning function now has type 

•  We write the function curried with the expression as 
a subscript. 

:  Exp  Int  Intµ → →

1 2 1 2

1 2 1 2

( )
( )
( ) ( ) ( )
( ) ( ) ( )

... ...

i

x

e e e e

e e e e

j i
j j
j j j
j j j

µ

µ

µ µ µ

µ µ µ
∗

+

=

=

= ∗

= +

=

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

28 

Abstract Semantics 

•  Abstract semantic function: 

•  Also write this semantics curried. 
:  Exp  A  Aσ → →

1 2 1 2

1 2 1 2

( )
( )

( ) ( ) ( )
( ) ( )  ( )

... ...
({ })

i

x

e e e e

e e e e

j i
j j

j j j
j j j

i i

σ

σ

σ σ σ

σ σ σ

α

∗

+

=

=

= ∗

= +

=

=

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

29 

Correctness 

•  The correctness condition needs to be generalized. 
•  This is the first real use of the abstraction function. 
•  The following are all equivalent: 

γ

eσ

eµ

α

A

2D

≤
A
α

. ( ) ( ( ({ })))e e

e eD

e eA

i i iµ γ σ α

µ γ σ α

α µ σ α

∀ ∈

≤

≤

o o
o o

2D ∈
Profs. Aiken, Barrett & Dill     CS 357     

Lecture 16 
30 

Local Correctness 

•  We also need a modified local correctness condition. 

( ) ( )1 1
( ( )),..., ( ( )) ( ( ),..., ( ))

n ne e e eop j j op j jγ σ γ σ γ σ σ⊆



6!

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

31 

Proof of Correctness 

1

1

1

( ,..., )

Thm  ( ) ( ( ))

Proof (by induction)
Basis.     ( ) ( ) ( ( ))
             ( ) ( ) ( ( ))
Step

( )
( ( ),..., ( )) def. of 
( ( ( )),..., ( ( )) induction

( (

n

n

n

e e

i i

x x

op e e

e e

e e

j j

j i i j
j j j j

j
op j j
op j j

op

µ γ σ

µ γ γ σ

µ γ γ σ

µ

µ µ µ

γ σ γ σ

γ σ

∈

= ∈ =

= ∈ =

=

∈

⊆
1

1( ,..., )

( ),..., ( ))) local correctness
( ( )) def. of 

n

n

e e

op e e

j j
j

σ

γ σ σ=

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

32 

If-Then-Else 

3 1 2

1 2 3 4
1 24

3 41 2 3 4

if  then  else 

if  then  else 

...  |  if  then  else   | ...

( ) if ( ) ( )
( ) ( ) if ( ) ( ) 

( ) ( )  ( )

e e e
e e e e

e e e

e ee e e e

e e e e e

i i i
i i i i

i i i

µ µ µ
µ

µ µ µ

σ σ σ

=

=

= =

=⎛ ⎞
= ⎜ ⎟⎜ ⎟≠⎝ ⎠

= 7

•  Note the lub operation in the abstract function; 
this is why we need lattices as domains. 

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

33 

Correctness of If-Then-Else 

( )

3

3

3 4

3 4

( )
( ( )) by induction
( ( )) ( ( ))

( ) ( ) monotonicity of 

e

e

e e

e e

i
i
i i
i i

µ

γ σ

γ σ γ σ

γ σ σ γ

∈

⊆

⊆

7 	
  

7 	
  

•  Assume the true branch is taken. 
•  (The argument for the false branch is symmetric.) 

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

34 

Recursion 

•  Add recursive definitions  
–  of a single variable for simplicity 

•  The semantic function is 

    def ( )
... | ( )

program f x e
e f e
= =

=

:  Exp Int Intµ ⊥→ →

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

35 

Revised Meaning Function 

•  Define an auxiliary semantics taking  a function (for 
the free variable f) and an integer (for x). 

1 2 1 2

( )

:  Exp (Int Int ) Int Int

( )( ) ( ( )( ))
( )( )

( )( ) ( )( ) ( )( )

ef e

x

e e e e

g j g g j
g j j

g j g j g j

µ

µ µ

µ

µ µ µ

⊥ ⊥

+

ʹ′ → → → →

ʹ′ ʹ′=

ʹ′ =

ʹ′ ʹ′ ʹ′= +
Profs. Aiken, Barrett & Dill     CS 357     

Lecture 16 
36 

Meaning of Recursive Functions 

0 1

0

1

f

Consider a function    

Define an ascending chain

:  Exp Int Int
:  Exp (Int  Int ) Int Int

def f  e

, ,... Int Int  in 

Define

( )

 

.

e ii

i
i

f f
f x
f f

f

µ

µ

λ

µ

µ

⊥

⊥ ⊥

⊥

+

→ →

ʹ′ → → → →

=

→

= ⊥

ʹ′=

=U



7!

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

37 

Abstract Semantics Revised 

•  Define an analogous auxiliary function for the 
abstract semantics. 

1 2 1 2

( )

:  Exp (A A) A A

( )( ) ( ( )( ))

( )( )
( )( ) ( )( ) ( )( )

ef e

x

e e e e

g i g g i
g i i

g i g i g i

σ

σ σ

σ

σ σ σ+

ʹ′ → → → →

ʹ′ ʹ′=

ʹ′ =

ʹ′ ʹ′ ʹ′= +
Profs. Aiken, Barrett & Dill     CS 357     

Lecture 16 
38 

Abstract Semantics Revised II 

•  We need one more condition for the abstract 
semantics. 

•  All abstract functions are required to be 
monotonic. 

•  Thm.  Any monotonic function on a complete 
lattice has a least fixed point. 

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

39 

Abstract Meaning of Recursion 

0 1

0

1

f

Consider a function    

Define an ascendin

:  Exp A A
':  Exp (

g chain

A A) A A

def f  e

,  in 

Defi

,... A

.

(

n  

A

)

e

i ie

i
i

f f
f a
f f

f

σ

σ

λ

σ

σ

+

→ →

→ → → →

=

→

= ⊥

ʹ′=

=U
Profs. Aiken, Barrett & Dill     CS 357     

Lecture 16 
40 

Correctness 

0( )f j

1( )f j

2( )f j

γ

γ

γ

0( )f j

1( )f j

2( )f j

≤ ≤

≤≤

Corresponding elements of the chain stand in the correct relationship. 

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

41 

Correctness (Cont.) 

0 0

0 0

. ( ) ( ( ))

( ) ( ( )) chains stabilize

( ) ( ) monotonicity of 

( ) ( ( )) by definition

ii

ii
i i

ii
i i

f f

i f j f j
f j f j

f j f j

j j

γ

γ

γ γ

µ γ σ

≥ ≥

≥ ≥

∀ ∈

⇒ ∈

⎛ ⎞
⇒ ∈ ⎜ ⎟

⎝ ⎠

⇒ ∈

U U

U U

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

42 

Example 

( )( )

( )( )

def f(x)    if x  0 then 1 else x  f(x -1)

lfp if x  0 then 1 else x  f(x -1)

lfp f. x. x f(x )

σ

λ λ

= = ∗ +

ʹ′ = ∗ +

+ ∪ × + −

Abstraction: 

Simplified: 



8!

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

43 

Strictness 

•  We will assume our language is strict. 
–  Makes little difference in quality of analysis for 

this example. 
•  Assume that 
•  Therefore it is sound to define   

( )f ⊥ =⊥
( )f ⊥ =⊥

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

44 

Calculating the LFP 

( )( )

0

1

2

3

lfp f. x. x f(x )

0 T

0 T

0 T
T T T

0 T
T T T T

f

f

f

f

λ λ + ∪ × + −

⊥ − +
=

⊥ ⊥ ⊥ ⊥ ⊥

⊥ − +
=

⊥ + + + +

⊥ − +
=

⊥ +

⊥ − +
=

⊥

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

45 

Notes 

•  In this case, the abstraction yields no 
useful information! 

•  Note that sequence of functions forms a 
strictly ascending chain until stabilization 

•  But the sequence of values at particular 
points may not be strictly ascending: 

0 1 2 3 54 ...f f f f f f< < < = = =

0 1 2 3 54( ) ( ) ( ) ( ) ( ) ( ) ...f f f f f f+ < + = + < + = + = + =

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

46 

Notes (Cont.) 

•  Lesson: The fixed point is being computed in 
the domain 

•  The fixed point is not being computed in  

•  Make sure you check the domain of the fixed 
point operator. 

(A A) A A→ → →

A A→

Profs. Aiken, Barrett & Dill     CS 357     Lecture 16 47 

Strictness Analysis 

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

48 

Strictness Analysis Overview 

•  In lazy functional languages, it may be desirable to 
change call-by-need (lazy evaluation) to call-by-value. 

•  CBN requires building “thunks” (closures) to capture 
the lexical environment of unevaluated expressions. 

•  CBV evaluates its argument immediately, which is 
wasteful (or even wrong) if the argument is never 
evaluated under CBN. 



9!

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

49 

Correctness 

•  Substituting CBV for CBN is always correct if we 
somehow know that a function  evaluates its 
argument(s). 

•  A function f is strict if 

•  Observation: if f is strict, then it is correct to pass 
arguments to f by value. 

( )f ⊥ =⊥

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

50 

Outline 

•  Deciding whether a function is strict is undecidable. 

•  Mycroft’s idea: Use abstract interpretation. 

•  Correctness condition: If f is non-strict, we must 
report that it is non-strict. 

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

51 

The Abstract Domain 

•  Continue working with the same language (1 recursive 
function of 1 variable). 

•  New abstract domain 2: 

0

1

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

52 

Concretization/Abstraction 

•  The concretization/abstraction functions say 
–  0 means the computation definitely diverges 
–  1 means nothing is known about the computation 
–  D is the concrete domain 

{ } { }
{ }

(0) ( ) 0
(1) ( ) 1  if  D S S
γ α

γ α

= ⊥ ⊥ =

= = ≠ ⊥

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

53 

Abstract Semantics 

•  Next step is to define an abstract semantics 

•  Transform                         to  

•  Transform values             to  

•  To test strictness check if    

f:Int Int→ f:2 2→

v : 2v:Int

f(0) 0=

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

54 

Abstract Semantics (Cont.) 

1 2 1 2

( )

( )( )
( )( ) 1
( )( ) ( )( )
( )( ) ( )( ) ( )( )

' ( )( ) ( ( )( ))

x

i

e e

e e e e

ef e

g a a
g a
g a g a
g a g a g a
g a g g a

σ

σ

σ σ

σ σ σ

σ σ

−

∗

ʹ′ =

ʹ′ =

ʹ′ ʹ′=

ʹ′ ʹ′ ʹ′= ∧

ʹ′=

•  An a stands for an abstract value (0 or 1). 
•  Treat 0,1 as false, true respectively. 



10!

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

55 

The Rest of the Rules 

( )

1 2 1 2

1 21 2

1 2 3 41 2 3 4

/

if  then  else 

def f  

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( ) ( )( )
lfp 

e e e e

e ee e

e e e ee e e e

ee

g a g a g a
g a g a g a

g a g a g a g a g a

σ σ σ

σ σ σ

σ σ σ σ σ

σ σ

+

=

=

ʹ′ ʹ′ ʹ′= ∧

ʹ′ ʹ′ ʹ′= ∧

ʹ′ ʹ′ ʹ′ ʹ′ ʹ′= ∧ ∧ ∨

ʹ′=

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

56 

An Example 

( )( )

( )

def f(x)    if x  0 then 1 else x  f(x -1)

lfp if x  0 then 1 else x  f(x -1)

lfp f. x.x .

( . ) 0 0      The function is strict in x.

a a

a a

σ

λ λ λ

λ

= = ∗ +

ʹ′ = ∗ +

=

=

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

57 

Calculating the LFP 

( )( )

0

1

2

lfp f. x.x 1 1 (x f(x 1))

0 1
0 0

0 1
0 1

0 1
0 1

f

f

f

λ λ ∧ ∧ ∨ ∧ ∧

=

=

=

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

58 

Another Example 

•  Generalize to recursive functions of two variables. 

( )( )
def f(x,y)    if x  0 then 0 else f(x -1,f(x,y))
lfp if x  0 then 0 else f(x -1,f(x,y))

lfp( f. (x, y). x 1 (1 ...))
(x, y). x

σ

λ λ

λ

= = +

ʹ′ = + =

∧ ∧ ∨ =

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

59 

Example (Cont.) 

•  For multi-argument functions, check each argument 
combination of the form (1,…,1,0,1,…,1). 

( )
( )

(x, y). x (0,1) 0

(x,y). x (1,0) 1

λ

λ

=

=

X can be passed by value. 

Unsafe to pass Y by value. 

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

60 

Summary of Strictness Analysis 

•  Mycroft’s technique is sound and practical. 
–  Widely implemented for lazy functional languages. 
–  Makes modest improvement in performance (a few %). 
–  The theory of abstract interpretation is critical here. 

•  Mycroft’s technique treats all values as atomic. 
–  No refinement for components of lists, tuples, etc. 

•  Many research papers take up improvements for data 
types, higher-order functions, etc. 
–  Most of these are very slow. 



11!

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

61 

Conclusions 

•  The Cousot&Cousot paper(s) generated an 
enormous amount of other research. 

•  Abstract interpretation as a theory and abstract 
interpretation as a method of constructing tools 
are often confused. 

•  Slogan of most researchers: 

Finite Lattices + Monotonic Functions = 
Program Analysis  

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

62 

Where is Abstract Interpretation Weak? 

•  Theory is completely general 

•  The part of the original paper people 
understand is limited 
–  Finite domains + monotonic functions 

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

63 

Data Structures and the Heap 

•  Requires a finite abstraction 
–  Which may be tuned to the program 
–  More often is “empty list, list of length 1, unknown 

length” 

•  Similar comments apply to analyzing heap 
properties 
–  E.g., a cell has 0 references, 1 references, many 

references 
 

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

64 

Size of Domains 

•  Large domains = slow analysis 

•  In practice, domains are forced to be small 
–  Chain height is the critical measure 

•  The focus in abstract interpretation is on 
correctness 
–  Not much insight into efficient algorithms 

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

65 

Context Sensitivity 

•  No particular insight into context senstivity 

•  Any reasonable technique is an abstract 
interpretation 

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

66 

Higher-Order Functions 

•  Makes clear how to handle higher-order 
functions 
–  Model as abstract, finite functions 
–  Ordering on functions is pointwise 

•  Problem: huge domains 

•  Break with the dependence on control-flow 
graphs 



12!

Profs. Aiken, Barrett & Dill     CS 357     
Lecture 16 

67 

Forwards vs. Backwards 

•  The forwards vs. backwards mentality 
permeates much of the abstract 
interpretation literature 

•  But nothing in the theory says it has to be 
that way 


