Maximum Multicommodity Flow: We are given a graph $G(V,E)$ with capacities $u(e)$ on the edges, and k pairs of terminals $(s_i, t_i), i = 1, 2, \ldots, k$. The goal is to route flow d_i from s_i to t_i, so that $\sum_{i=1}^k d_i$ is maximized. (Note that the sets $\{s_i\}$ and $\{t_i\}$ might not be disjoint.) We will develop a combinatorial algorithm for this problem similar to the algorithm for maximum concurrent flow. If $f(P)$ denotes the flow along path P, and Q_i denotes the set of paths from s_i to t_i, we can formulate the following positive linear program:

$$\text{Maximize } \sum_{i=1}^k d_i$$

$$\sum_{P \in Q_i} f(P) \geq d_i \quad \forall i$$

$$\sum_{P, e \in P} f(P) \leq u(e) \quad \forall e \in E$$

$$f(P) \geq 0 \quad \forall P \in \bigcup_{i=1}^k Q_i$$

$$d_i \geq 0 \quad \forall i$$

Problem 3-1. Dual Problem: Formulate the dual of this problem. Use the variables $l(e)$ for the edge constraints, and the variables dist_i for the terminal constraints. Define the volume $D(l)$ of the system as $\sum_e l(e)u(e)$.

1. Show that for the optimal solution, the function $l(e)$ is a metric (in the sense that it is non-negative and, for all $x, y, z \in V$ such that $xy \in E$, $l(xy) \leq c_l(xz) + c_l(zy)$, where $c_l(vw)$ denotes the length of the shortest path from v to w when edge lengths are defined by l).

2. Show that for the optimal solution, dist_i can be set to the shortest path length from s_i to t_i under the metric l without changing the value of the optimum.

3. Given a metric l, let $\alpha(l)$ denote the minimum distance between terminal pairs. Show that the dual is effectively minimizing $\frac{D(l)}{\alpha(l)}$ over all length metrics l.

4. Suppose the variables $l(e)$ were constrained to be either 0 or 1. In this case, what problem is the dual program solving?

Problem 3-2. Complementary Slackness: Write down the primal and dual complementary slackness constraints. Consider the optimal primal and dual solutions.

1. Show that for $P \in Q_i$, where Q_i is the set of paths from s_i to t_i, if $f(P) > 0$, then the length of P in metric l is one.

2. Show that if $l(e) > 0$, then edge e is saturated.

Problem 3-3. The Algorithm: We will solve this problem for the case of unit capacities $u(e) = 1$. The algorithm proceeds in iterations. Let l_{i-1} be the length function at the beginning of the i^{th} iteration, and f_{i-1} denote the flow routed so far. Let $\alpha(i - 1)$ denote the minimum distance between terminals in metric l_{i-1}, and $D(i - 1)$ denote the volume of the system. Let P be a path of length
α(i − 1) connecting some terminal pair. We push one unit of flow along P, and for edge e ∈ P, set \(l_i(e) = l_{i-1}(e)(1 + \epsilon) \). We stop at the first time \(t \) such that \(\alpha(t) \geq 1 \).

Essentially, the algorithm finds the path with minimum capacity violation and pushes one unit of flow along it. This path is the shortest path using a length function which is exponential in the violation. Note that \(f_t \) does not satisfy capacity constraints and is therefore infeasible.

Initially, we set \(l_0(e) = \delta \) for all edges. We will choose \(\delta \) later. Let \(\beta \) denote the optimal value of the dual.

Note that \(\alpha(0) \leq \delta n \). Also note that \(f_i = i \).

1. Show that \(D(i) = D(0) + \epsilon \sum_{j=1}^{i} \alpha(j-1) \).
2. Consider the length function \(l_i - l_0 \), and let \(\alpha(l_i - l_0) \) denote the length of the shortest path from any source to the corresponding sink under this length function. Show that \(\beta \leq \frac{D(i)-D(0)}{\alpha(l_i - l_0)} \), and conclude that \(\alpha(i) \leq \delta n + \frac{D(i)-D(0)}{\beta} \).
3. Now show that \(\alpha(i) \leq \delta n(1 + \epsilon/\beta)^i \). Conclude that \(\alpha(i) \leq \delta ne^{\epsilon i/\beta} \).
4. Finally, show that \(f_t = t \geq \frac{\beta \ln(\delta n)^{-1}}{\epsilon} \).

Problem 3-4. Feasible Flow: The algorithm described above could easily violate capacities. Note that whenever we route one unit of demand through an edge \(e \), we increase its length by a factor of \(1 + \epsilon \).

1. Using the fact that \(l_0(e) = \delta \), and \(t \) is the first time instant for which \(\alpha(t) \geq 1 \), show that the total flow through \(e \) is at most \(\log_{1+\epsilon} \frac{1+\epsilon}{\delta} \).
2. Show that \(\frac{f_t}{\log_{1+\epsilon} \frac{1+\epsilon}{\delta}} \) is a feasible flow.

Problem 3-5. Approximation Ratio: Let \(\gamma \) denote the ratio between the optimal dual solution and the flow we obtain, that is \(\gamma = \frac{\beta}{f_t} \log_{1+\epsilon} \frac{1+\epsilon}{\delta} \). Show that for \(\delta = (1+\epsilon)((1+\epsilon)n)^{-1/\epsilon} \), \(\gamma \leq (1-\epsilon)^{-2} \).

Problem 3-6. Running Time: Show that the algorithm described above computes a \((1-\epsilon)^{-2} \) approximation to max multicommodity flow in time \(O((\frac{m}{\epsilon^2} \log n)kT_{SP}) \), where \(T_{SP} \) is the time taken to compute single source shortest paths.

Problem 3-7. Optional: Suppose we remove the unit capacity assumption. We modify the algorithm as follows. As before, let \(P \) be the shortest path in metric \(l_{i-1} \). Let \(u \) denote the minimum capacity edge along this path. We push \(u \) units of flow along this path, and for edge \(e \) along this path, set \(l_i(e) = l_{i-1}(e)(1 + \epsilon u/u(e)) \). We terminate at the first time \(t \) such that \(\alpha(t) \geq 1 \). The values \(l_0(e) \) are set as before. Note that \(f_i \) is no longer equal to \(i \). Show that after appropriate scaling of the flow and choice of \(\delta \), this algorithm produces a \((1-\epsilon)^{-2} \) approximation to maximum multicommodity flow.