1 Lower bounds for existence of triangles [25 points]

Consider a graph stream describing an unweighted, undirected n-vertex graph G. Prove that $\Omega(n^2)$ space is required to determine, in one pass, whether or not G contains a triangle, even with randomization allowed.

2 Lower bounds for exact computation of F_2 [20 points]

Prove that computing F_2 exactly, in one pass with randomization allowed, requires $\Omega(\min\{m,n\})$ space. Construct an appropriate “hard stream” of length m with universe size n, where $m = \Theta(n)$, and show that $\Omega(n)$ space is required on this stream. Then extend the result to multiple passes, with randomization allowed. The lower bound for p passes should be $\Omega(\min\{m,n\}/p)$.

3 Spanners for Weighted Graphs [45 points]

Recall that the distance estimation problem asks us to process a streamed graph G so that, given any $x, y \in V(G)$, we can return a t-approximation of $d_G(x, y)$, i.e., an estimate $\hat{d}(x, y)$ with the property:

$$d_G(x, y) \leq \hat{d}(x, y) \leq t \cdot d_G(x, y).$$
Here, t is a fixed integer known beforehand. In class, we solved this using space $\tilde{O}(n^{1+2/t})$ by computing a subgraph H of G that happened to be a t-spanner.

(a) \textbf{[20 points]} Now suppose that the input graph is edge-weighted, with weights being integers in $[W]$. Each token in the input stream is of the form (u, v, w_{uv}), specifying an edge (u, v) and its weight $w_{uv} \in [W]$. Distances in G are defined using weighted shortest paths, i.e.,

$$d_{G,w}(x, y) := \min \left\{ \sum_{e \in \pi} w_e : \pi \text{ is a path from } x \text{ to } y \right\}.$$

Give an algorithm that processes G using space $\tilde{O}(n^{1+2/t} \log W)$ so that, given $x, y \in V(G)$, we can then return a $(2t)$-approximation of $d_{G,w}(x, y)$. Give careful proofs of the quality and space guarantees of your algorithm.

(b) \textbf{[25 points]} In class, we saw that even for the unweighted case, space $\Omega(n^{1+2/t})$ is necessary to preserve all distances up to a factor of t. What if we only care about the max distance of a connected graph? The diameter of a graph $G = (V, E)$ is defined as $\text{diam}(G) = \max\{d_G(x, y) : x, y \in V\}$, i.e., the largest vertex-to-vertex distance in the graph. A real number \hat{d} satisfying $\text{diam}(G) \leq \hat{d} \leq \alpha \cdot \text{diam}(G)$ is called an α-approximation to the diameter. Suppose that $1 \leq \alpha < 1.5$. Prove that, in the vanilla graph streaming model, a 1-pass randomized algorithm that α-approximates the diameter of a connected graph must use $\Omega(n)$ space. How does the result generalize to p passes?

4 \hspace{1cm} \textbf{L_0 Sampling with Pairwise Independent Hash Functions [45 points]}

We revisit the problem of L_0 sampling in which we uniformly sample an element l from the support S of an input vector x. Recall, we are in the general framework of sketching where we maintain a sketch Ax under increments and decrements of coordinates of x where x is a n-dimensional vector and estimate some desired function from the sketch. Formally, we want the probability $\Pr(l = i)$ that i is returned satisfy

$$\Pr(l = i) \in \left((1 - O(\epsilon)) \frac{|x_i|^0}{\|x\|_0}, (1 + O(\epsilon)) \frac{|x_i|^0}{\|x\|_0} \right),$$

where $|x_i|^0 = 0$ if $x_i = 0$ and $|x_i|^0 = 1$ otherwise. Note $|S| = \|x\|_0$.

In class, we saw an L_0 sampling sketch using fully random hash functions. In this problem, we consider another L_0 sampling sketch using a family H of pairwise independent hash functions $h : [n] \to [m]$. Recall that pairwise independence means for any $x_1, x_2 \in [n]$ and values $y_1, y_2 \in [m],

$$\Pr_{h \in H}(h(x_1) = y_1 \land h(x_2) = y_2) = \Pr_{h \in H}(h(x_1) = y_1) \Pr_{h \in H}(h(x_2) = y_2),$$

and, also, for any $x \in [n]$ and $y \in [m], \Pr_{h \in H}(h(x) = y) = \frac{1}{m}$.

Consider the following algorithm for a large enough constant c and a constant c' to be chosen. Assume $\epsilon \in (0, \frac{1}{2})$ and $S \neq \emptyset$.

2
Algorithm 1

Input: $\epsilon \in (0, \frac{1}{2})$

1. For $j = 1, \ldots, \log \frac{c_0}{\epsilon}$ and $k = 1, \ldots, \ell$, let $h_j^k : [n] \rightarrow \{0, \ldots, 2^j - 1\}$ be hash functions drawn from a pairwise independent hash family.

2. As we read input x (its increments/decrements), maintain the following for each h_j^k:

\[
D_j^k \in (1 \pm 0.1)\|x_{S_j^k}\|_0 \text{ for } S_j^k = \{i \in S : h^k_j(i) = 0\} \\
C_j^k = \sum_{i \in S_j^k} x_i \\
T_j^k = \sum_{i \in S_j^k} ix_i
\]

3. Let j^* be the largest j for which $\#\{k : D_j^k \in 1 \pm 0.1\} \geq 1$.

4. Output $T_j^{k^*}/C_j^{k^*}$ for an arbitrary k for which $D_j^k \in 1 \pm 0.1$.

Strictly speaking, hash functions in Step 1 are being drawn from different hash families with corresponding ranges for different values of j. For simplicity, assume each D_j^k in Step 2 is exactly in the interval $(1 \pm 0.1)\|x_{S_j^k}\|_0$ with error probability of 0. Note 1 ± 0.1 denotes the interval $[0.9, 1.1]$, so $(1 \pm 0.1)\|x_{S_j^k}\|_0$ denotes the interval $[0.9 \cdot \|x_{S_j^k}\|_0, 1.1 \cdot \|x_{S_j^k}\|_0]$.

(a) [15 points] Fix arbitrary j and k. For any $i \in S$, note that $\Pr(h^k_j(i) = 0) = \frac{1}{2^j}$. Show that $\Pr(h^k_j(i) = 0 \land |S_j^k| = 1) \geq \frac{1}{2^j} \left(1 - \frac{\|x\|_0}{2^j}\right)$. Conclude that $\Pr(h^k_j(i) = 0 \land |S_j^k| = 1) \in \left[\frac{1}{2^j} \left(1 - \frac{\|x\|_0}{2^j}\right), \frac{1}{2^j}\right]$. The wedge operator \land denotes logical and. Hint: use the union bound and pairwise independence.

(b) [10 points] Let \hat{j} be the unique integer j such that $\frac{\|x\|_0}{2^j} \in \left(\frac{\ell}{2}, \epsilon\right]$. For any $j \geq \hat{j}$ and any $i \in S$, show that $\Pr(h^k_j(i) = 0 \mid |S_j^k| = 1) \in \left((1 - O(\epsilon))\frac{1}{\|x\|_0}, (1 + O(\epsilon))\frac{1}{\|x\|_0}\right)$. Note this is a conditional probability.

(c) [10 points] For an appropriately chosen c', show that the above algorithm solves the L_0 sampling problem with some constant error probability strictly less than $\frac{1}{2}$.

(d) [10 points] Using a well-known technique, design an algorithm that solves the L_0 sampling problem with the error probability at most δ for any $\epsilon \in (0, \frac{1}{2})$ and $\delta > 0$. What is the overall space requirement in terms of ϵ and δ?

5 Extra Problem: Bipartite Graphs (Do not turn in!)

A graph G is called bipartite if $V(G)$ can be partitioned into two sets S and S^C such that all edges lie between vertices of those two sets, that is, $|E_G(S, S^C)| = |E(G)|$. Equivalently, there exists a valid two coloring of the vertices, where a coloring is valid if there is no monochromatic edge (i.e., with endpoints of the same color). Consider the vanilla graph streaming model (with edge insertions only).
(a) [15 points] Give a deterministic algorithm that uses $O(n \log n)$ space and decides whether a graph is bipartite. Give a proof of correctness.

(b) [20 points] Show that any randomized one-pass streaming algorithm that decides whether a graph is bipartite requires $\Omega(n)$ space.

(c) [25 points] Given an undirected graph G, we define its bipartite double cover $\tilde{G} = (\tilde{V}, \tilde{E})$ where \tilde{V} is a vertex set containing two copies v_1, v_2 of every vertex $v \in V(G)$, and \tilde{E} is an edge set containing the edges $\{u_1, v_2\}$ and $\{v_1, u_2\}$ for all edges $\{u, v\} \in E(G)$. Prove that the graph G being bipartite is equivalent to

$$\text{#Connected Components}(\tilde{G}) = 2 \cdot \text{#Connected Components}(G).$$

Show how to use this fact to design a streaming algorithm to test whether a graph is bipartite. Give the space requirements of your algorithm.

References