1 Overview

In this lecture, we first derive a concentration inequality for an algorithm for counting distinct element in a stream using pairwise independent hash functions. Then, we present a proof technique to prove lower bounds for streaming algorithms. Finally, we define the concept of a frequency moment and propose an algorithm to estimate F_2.

2 Review

Last lecture we examined the problem of estimating the number of distinct elements in a stream. We found a solution that performed better than the brute force approach of keep an enormous hash table. The solution that was presented was a probabilistic algorithm that gave an $(1 + \epsilon)$ approximation with probability $1 - \delta$. Further, the algorithm required space $O(\frac{1}{\epsilon^2} \log(\frac{1}{\delta}))$. More precisely, we defined Y as the minimum hash value of the stream. For a fully independent hash, we found that

$$E[Y] = \frac{1}{k + 1}$$

where k is the number of distinct elements. Recall that we combined many copies of Y using independent hashes to provide an estimate. In particular, we created $O(\log(\frac{1}{\delta}))$ groups of hashes where each group had $O(\frac{1}{\epsilon^2})$ hashes. For the estimate, we computed the mean of each group, then calculated the median of these means.

3 Sketches

Informally, a data sketch is a smaller description of a stream of data that enables the calculation or estimate of a property of the data. An important attribute of sketches is that they are composable. Suppose we have data streams S_1 and S_2 with corresponding sketches $sk(S_1)$ and $sk(S_2)$. We wish there to be an efficiently computable function f where

$$sk(S_1 \cup S_2) = f(sk(S_1), sk(S_2))$$
4 Bounds for Pairwise Independent Hashes

In the analysis of the distinct element sketch from last time, we relied on a fully independent family of hash functions. Unfortunately, such hash functions are not practical. Here, we examine pairwise independent hashes. Recall that a pairwise independent family of hash functions satisfies

\[P_h[h(x_1) = y_1, h(x_2) = y_2] = P_h[h(x_1) = y_1]P_h[h(x_2) = y_2] \]

(3)

4.1 Example

Choose \(p \) to be a large prime number. Let \(a, b \in [p] \). Let us define the following hash function \(h_{a,b} : [p] \rightarrow [p] \) as

\[h_{a,b}(x) = ax + b \pmod{p} \]

(4)

This family of hash functions is pairwise independent.

In particular, for this family of hash functions, we have the following bounds

\[P[Y < \frac{1}{3k}] < \frac{2}{5} \]

(5)

\[P[Y > \frac{3}{k}] < \frac{1}{3} \]

(6)

We can then make \(O(\log(\frac{1}{\delta})) \) copies of the hash and take the median to be an estimate that is within a factor of 3 of the true answer with probability \(1 - \delta \).

The first bound has an easy proof in the continuous case since we can do a union bound on the interval \([0, \frac{1}{3k}]\) among \(k \) elements to get a probabilistic bound of \(\frac{1}{3} \).

4.2 General Pairwise Independent Analysis

To get a general bound for pairwise independent hash families, we need to change the algorithm. Instead of taking the mean of the min within a group of hashes, we keep track of the smallest \(t \) hash elements. Let \(y_i \) be the \(i^{th} \) smallest element. For this setup, our estimator is \(t/y_t \).

Theorem 1. Fix \(t = c/\epsilon^2 \). With probability \(2/3 \),

\[\frac{(1 - \epsilon)t}{k} \leq y_t \leq \frac{(1 + \epsilon)t}{k} \]

Proof. Let us first prove the second inequality first.

Let \(I = [0, (1 + \epsilon)\frac{t}{k}] \). Let \(X_i \) be an indicator variable for the event \(h(x_i) \in I \). Let \(X = \sum_i X_i \).

Thus, \(X \) is the number of hash values in the interval \(I \).
Note that $E[X] = \sum_i E[X_i] = k(1+\epsilon) \frac{t}{k} = (1+\epsilon)t$.

$$P[y_t > \frac{(1+\epsilon)t}{k}] = P[X < t] = P[X - E[X] < -\epsilon t] \leq P[|X - E[X]| > \epsilon t]$$ \hspace{1cm} (7)

By Chebyshev’s inequality,

$$P[|X - E[X]| > \epsilon t] \leq \frac{Var[X]}{\epsilon^2 t^2}$$ \hspace{1cm} (8)

Let p be the probability that $X_i = 1$. Then, $E[X_i] = p$ and $Var(X_i) = p(1-p)$. By linearity of expectation, $E[X] = kp$ and by pairwise independence, $Var(X) = kp(1-p) \leq E[X] = (1+\epsilon)t$. Thus,

$$P[|X - E[X]| > \epsilon t] \leq \frac{(1+\epsilon)t}{\epsilon^2 t^2} = \frac{(1+\epsilon)}{c}$$ \hspace{1cm} (9)

We can choose the value of c so that $\frac{(1+\epsilon)}{c} \leq \frac{1}{6}$. Putting this together, we get,

$$P[y_t < \frac{(1+\epsilon)t}{k}] \leq \frac{1}{6}$$ \hspace{1cm} (10)

the proof of the other direction is the same except that the Chebyshev bound is in the other direction.

For this scheme, we need $O(\log(\frac{1}{\delta}))$ different hashes and for each hash we need to store $t = O(\frac{1}{\epsilon^2})$ values. Thus, the memory of the algorithm will be $O(\frac{1}{\epsilon^2} \log(\frac{1}{\delta}))$.

4.3 Proving Lower Bounds on Streaming Algorithms

In this section we describe a common technique for deriving bounds for streaming problems. For this technique, we specify $I_1, ..., I_N$ different streams. If we can show that the algorithm must have a unique state after processing each stream, $\Omega(\log(N))$ is lower bound on the space since the algorithm must distinguish the N different streams.

In order to show that the algorithm must have different states after processing two streams I_i and I_j, we can construct an additional stream I' such that the algorithm must give a different result for $I_i \cup I'$ than for $I_j \cup I'$.

Using this technique, we can prove a lower bound for a deterministic, approximate algorithm for the distinct element problem. Let $\{S_i\}_{i=1}^N$ be subsets of $[n]$ that satisfy

$$\forall i : |S_i| = \frac{n}{10}$$ \hspace{1cm} (11)

$$\forall i \neq j : |S_i \cap S_j| \leq \frac{n}{20}$$ \hspace{1cm} (12)
With a probabilistic construction, we can find \(2^cN\) subsets that meet these requirements.

Note that the number of distinct elements in \(S_i \cup S_i\) is \((n/10)\) while the number of distinct elements in \(S_i \cup S_j\) (for \(i \neq j\)) is at least \((3/2)(n/10)\). Thus, any deterministic, approximate algorithm must distinguish the \(N\) streams corresponding to the sets \(S_i\). Thus, \(\Omega(\log(2^cN)) = \Omega(n)\) is a lower bound on the required space.

4.4 Algorithms for Frequency Moments

Define \(f_i\) as the number of times that element \(i\) appears in a stream.

The \(t^{th}\) frequency moment is the quantity,

\[
F_t = \sum_i f_i^t
\]

Note that \(F_0\) is the number of distinct elements (assuming \(0^0 = 0\)). \(F_1\) is simply the number of elements in the stream, and thus is trivial to compute. \(F_2\) is a measure of skewness and is the problem we will next examine, which has a solution given in [1].

Suppose we have a hash function \(h : U \rightarrow \{\pm 1\}\). Let \(Y = \sum_i h(x_i)\) be a random variable. This variable is a sketch because we can simply add the sums of two different sets. Further, \(Y^2\) is an unbiased estimate of \(F_2\).

To see this, define the random variable \(X_i = h(x_i)\) and note that \(Y = \sum_i f_iX_i\)

\[
E[Y^2] = E[(\sum_i f_iX_i)^2]
\]

\[
= E[\sum_{i,j} f_if_jX_iX_j]
\]

\[
= \sum_{i,j} f_if_jE[X_iX_j]
\]

\[
= \sum_i f_i^2
\]

The last equation follows from the fact that \(E[X_iX_j] = 0\) if \(i \neq j\).

We need a bound on the variance in order to obtain a concentration inequality.

\[
E[Y^4] = E[(\sum_i f_iX_i)^4] = \sum_i f_i^4 + 6 \sum_{i,j} f_i^2 f_j^2
\]

Thus,

\[
\]
\[
= \left[\sum_i f_i^2 + 6 \sum_{i,j} f_i^2 f_j^2 \right] - \left[\sum_i f_i^2 + 2 \sum_{i,j} f_i^2 f_j^2 \right] \\
= 4 \sum_{i,j} f_i^2 f_j^2 \leq 2F_2^2 = 2E[Y^2]^2
\] (20)

Thus, we can use Chebyshev’s inequality to concentrate the mean and then use the median of means technique.

References