1 Overview

In this lecture, we will review the sketch for F_p estimation when $0 < p \leq 2$. We will show that this algorithm could be implemented with small space via Nisan’s pseudorandom generator [1].

Next, we will present Andoni’s algorithm [2] for estimating the $p > 2$ frequency moment. The algorithm approximates an n-dimensional l_p norm with l_∞ of an m-dimensional vector, where $m = O(n^{\frac{1}{p} \cdot \log n})$.

2 Recap for F_p when $0 < p \leq 2$

Recall that in the last lecture, we construct the linear sketch for $0 < p \leq 2$ frequency moment based on p-stable distribution \mathcal{D}_p. A distribution \mathcal{D}_p is said to be p-stable if the following property holds: Let Y_1, \ldots, Y_n be independent random variables drawn from \mathcal{D}_p, then $\sum_i x_i Y_i$ has the same distribution as $||x||_p Y$, $Y \sim \mathcal{D}_p$. In the last lecture we presented the following algorithm to estimate the p-th frequency moment.

\textbf{Algorithm 1: F_p estimate where $0 < p \leq 2$}

\begin{itemize}
 \item $x \leftarrow (x_1, \ldots, x_n)$;
 \item $k \leftarrow \Theta(\frac{1}{\epsilon^2 \log \frac{1}{\delta}})$;
 \item Let M be a $k \times n$ matrix where each $M_{ij} \sim \mathcal{D}_p$;
 \item $y \leftarrow M x$;
 \item return $Y \leftarrow \left[\begin{array}{c}
 \text{median}(|y_1|, |y_2|, \ldots, |y_k|)
 \end{array} \right]$;
\end{itemize}

Remark: Note that the matrix multiplication could be done in a streaming fashion. We start with all-zero y, and for each x_i take the i^{th} column of M and update $y \leftarrow y + \sum_{j=1}^{k} M_{ij} x_i$.

By the p-stability property we see that each $y_i \sim ||x||_p Y$ where $Y \sim \mathcal{D}_p$. The following lemma shows that the median of $|y_i|$’s has good concentration properties.

\textbf{Lemma 1.} Let $\epsilon > 0$ and \mathcal{D}_p be a p-stable distribution. Let $F(t)$ be the probability density function of $|\mathcal{D}_p|$, μ be the median of $|\mathcal{D}_p|$, and $\alpha = \min_{t \in [\mu(1-\epsilon), \mu(1+\epsilon)]} F(t)$. Denote $y = \text{median}(|y_1|, |y_2|, \ldots, |y_k|)$, where y_i are independent random variables drawn from \mathcal{D}_p. Then

\[Pr(y \leq (1-\epsilon)\mu) \leq \frac{\delta}{2} \]
holds when \(k = \Theta \left(\frac{1}{\epsilon^2 \log \frac{1}{\delta}} \right) \)

Proof. Let \(F(t) \) be the density function of \(|D_p|\), then \(F(t) \) is the density function of \(D_p \) scaled by 2 if \(t \geq 0 \) and \(F(t) = 0 \) if \(t < 0 \). \(|y_1|, ..., |y_k| \sim |D_p|\). The median \(\mu \) is uniquely defined and it satisfies

\[
\int_0^\mu F(t) dt = \frac{1}{2}
\]

\(F(t) \) is continuous on \([(1 - \epsilon)\mu, (1 + \epsilon)\mu] \).

\[
Pr(|y| \leq \mu(1 - \epsilon)) = \frac{1}{2} - \int_{\mu(1-\epsilon)}^{\mu} F(t) dt \leq \frac{1}{2} - \alpha \mu \epsilon
\]

Let \(\gamma = \alpha \mu \epsilon \), \(L \) be the number of \(|y_i|\)'s that fall in the range of \([0, \mu(1 - \epsilon)]\).

\[
L = |\{ i : |y_i| \leq \mu(1 - \epsilon) \}|
\]

\[
E[L] \leq k \left(\frac{1}{2} - \gamma \right) = \frac{k}{2} (1 - 2\gamma)
\]

Since \(y \) is the median of \(|y_i|\), \(y \leq (1 - \epsilon)\mu \) only if more than half of \(|y_i|\) are low, which is the same as \(L > k/2 \).

Let \(1 + \delta = \frac{1}{1 - 2\gamma} \).

\[
Pr(y \leq (1 - \epsilon)\mu) = Pr \left(L > \frac{k}{2} \right) = Pr \left(L > \frac{1}{1 - 2\gamma} E(L) \right) = Pr(L > (1 + \delta) E(L))
\]

Using Chernoff bound,

\[
Pr(y \leq (1 - \epsilon)\mu) \leq e \frac{-\epsilon^2 E(L)}{4} \leq e \frac{-\epsilon^2 E(L)}{4} \leq e \frac{-\epsilon^2 \mu^2 (1 - 2\alpha \mu)}{4} = e^{-\epsilon \mu^2 k} \leq \frac{\delta}{2}
\]

\[
k = O \left(\frac{1}{\epsilon^2 \log \frac{1}{\delta}} \right)
\]

\[\square\]

3 Derandomization of space bounded computation

In the algorithm described above we have to keep the entire matrix \(M \) around which is often too expensive for streaming applications. However, given that the algorithm only needs to operate on \(S = O \left(\frac{1}{\epsilon^2 \log 1/\delta} \right) \) bits, one can use pseudorandom generators instead of truly random bits to reduce the required storage.
3.1 Nisan’s Pseudorandom Generator

Theorem 2. Let \(U_n \) denote a uniformly random string in \(\{0, 1\}^n \). There exists \(h : \{0, 1\}^t \rightarrow \{0, 1\}^{SR}, \) \(t = S \log R \).

\[
Pr(f(U_n) = 1) - Pr(f(h(U_m)) = 1) \leq 2^{-O(S)}
\]
for any function \(f : \{0, 1\}^S \rightarrow \{0, 1\} \).

In other words, the distribution of \(2^S \) states generated by a truly random string is indistinguishable from the distribution of a Nisan pseudorandom generator.

The way Nisan works is as follows: Assume we have \(h_1, \ldots, h_{\log n} \), where \(h_i : [2^S] \rightarrow [2^S] \) are pairwise independent hash functions. We choose a random sample \(x \in \{0, 1\}^S \), place it at the root and repeat the following procedure: on level \(i \), create the left child as the same as its parent \(p \) and the right child as \(h_i(p) \). Using Nisan, we can take the seed of \(S \log R \) bits, expand it to \(SR \) bits such that any chunk of \(S \) bits can be generated in \(S \log R \) time.

![Figure 1: Nisan’s pseudorandom generator](image)

4 \(p > 2 \) Frequency Moments via Max-stability

Andoni proposed an algorithm \([2]\) to estimate \(F_p \) when \(p > 2 \) using space \(O(n^{1-\frac{2}{p}} \log n) \). The algorithm consists of two-step mapping. Let \(x \in \mathbb{R}^n \) be the input vector. Let \(u_i \)'s be random variables drawn from an exponential distribution with density \(e^{-t} \), in the first step we scale each \(x_i \) by \(u_i^{-\frac{1}{p}} \),

\[
y_i = \frac{x_i}{u_i^{1/p}}
\]

In the second step, we compute \(z \in \mathbb{R}^m \) using a random hash function \(h : [n] \rightarrow [m] \).

\[
z_j = \sum_{i: h(i) = j} \sigma_i \cdot y_i
\]

where \(\sigma_i \) are random \(\pm 1 \). The final estimator is given by \(\max_{j \in [m]} |z_j| = \|z\|_\infty \).
4.1 Analysis

We first claim the max $y_i = ||y||_\infty$ is a good estimate on $||x||_p$.

Lemma 3.

$$Pr(||y||_\infty \in [\frac{1}{2} ||x||_p, 2 ||x||_p]) \geq \frac{3}{4}$$

Proof. Let $q = \min\{\frac{u_1}{|x_1|^p}, ..., \frac{u_p}{|x_n|^p}\}$. Given $u_1, u_2, ... u_n$ are i.i.d random variables drawn from the exponential distribution e^{-t},

$$P(q > t) = P(\forall i, u_i > t|x_i|^p)$$
$$= \prod_{i=1}^{n} e^{-t|x_i|^p}$$
$$= e^{-t|x_i|^p}$$

Therefore,

$$P(\frac{1}{2} ||x||_p \leq ||y||_\infty < 2 ||x||_p) = P(\frac{1}{2p} \sum_i |x_i|^p \leq q \leq \frac{2p}{\sum_i |x_i|^p})$$
$$= e^{-\frac{1}{2p}} - e^{-2p}$$
$$\geq \frac{3}{4}$$

for $p > 2$.

In next lecture, we will show that the second step preserves $||y||_\infty$ with good probability.

References
