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1 Introduction

Non-negativity over the hypercube. Given a low degree polynomial f : {0, 1}n → R, we want to decide
whether f ≥ 0 over the hypercube or there exists a point x ∈ {0, 1}n such that f(x) < 0.

Now let’s see how we can formulate the Max-cut problem in this language. Remember that we have a
graph G = (V,E) and we are looking for a bipartition of the set of vertices V such that the number of edges
between these two parts (size of the cut) will be maximized. For |V | = n we encode a bipartition of the
vertex set of G by a vector x ∈ {0, 1}n and we let fG(x) be the number of edges cut by the bipartition x.
This function is a degree-2 polynomial,

fG(x) =
∑

{ij}∈E(G)

(xi − xj)2.

Therefore deciding if the polynomial c − fG(x) takes negative value over the hypercube is equivalent to
deciding if the maximum cut in G is larger than c.

2 Sum-of-Squares Algorithm

The Sum-of-Squares algorithm gets a polynomial f : {0, 1}n → R as input and outputs

1. Either a proof that f(x) ≥ 0 for all x ∈ {0, 1}n,

2. or an object that “pretends to be” a point x ∈ {0, 1}n with f(x) < 0.

2.1 Sum-of-Squares Certificate

Definition 4.1 (SOS certificate). A degree−d SOS certificate for a function f : {0, 1}n → R consists of
polynomials g1, · · · , gr : {0, 1}n → R of degree at most d/2 for some r ∈ N such that

f(x) =
r∑
i=1

g2i (x)

for every x ∈ {0, 1}n.

We will refer to degree−d SOS certificate for f also as a degree−d SOS proof of the inequality f ≥ 0.

Now one question is that how big is r? We will answer this question later.
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2.2 Verifying Certificates

How do we show that f −
r∑
i=1

g2i (x) vanishes for every x ∈ {0, 1}n? Since g1, · · · , gr have degree at most

d/2, we can represent each polynomial gi by nO(d) coefficients (say in a monomial basis). Thus in nO(d)

time we can verify whether all the coefficients of f −
r∑
i=1

g2i (x) are equal to zero or not by reducing it to a

multilinear polynomial by repeatedly applying x2i = xi (which holds for xi ∈ {0, 1}).

Let’s consider f : {0, 1}n → R which ∀x ∈ {0, 1}n we have f(x) ≥ 0. Is there always a certificate for f?

Proposition 4.1. For non-negative f : {0, 1}n → R there exists a degree-2n SOS certificate.

Proof. Using the fact that I{x = y} =
∏

i∈Ones(y)

x2i
∏

y∈Zeros(y)

(1− xi)2 for x, y ∈ {0, 1}n, we may write

f(x) =
∑

y∈{0,1}n
(f(y) · I{x = y}) =

∑
y∈{0,1}n

f(y)
∏

i∈Ones(y)

x2i
∏

y∈Zeros(y)

(1− xi)2

then by construction we have found a certificate for f where gy(x) =
√
f(y)

∏
i∈Ones(y)

x2i
∏

y∈Zeros(y)

(1− xi)2.

2.3 Finding certificates

We saw that we can check sos certificates efficiently. Also the following theorem shows that we can also
find them in an efficient way. This sum-of-squares algorithm is based on semidefinite programming and has
first been proposed by Naum Shor in 1987, later refined by Pablo Parrilo in 2000, and Jean Lasserre in 2001.

Theorem 4.1 (sum-of-squares algorithm-certificate version). There exists an algorithm that for a given
function f : {0, 1}n → R, k ∈ N it outputs a degree-k sos certificate for f + 2−n in time nO(k) if f has a
degree-k sos certificate.

Theorem 4.2. f has a degree-d sos certificate⇔ ∃ p.s.d matrix A such that ∀x ∈ {0, 1}n,

f(x) =
〈
(1, x)⊗d/2, A(1, x)⊗d/2

〉
.

Proof. First let’s prove the (⇐). If A � 0, then we can find the following representation of A

A =
∑
i

ViV
T
i .

Then note that by (1, x)⊗d/2 we mean the vector (1, xi, · · · , xixj , · · · ) therfore we will have〈
(1, x)⊗d/2, A(1, x)⊗d/2

〉
=

〈
(1, x)⊗d/2,

∑
i

ViV
T
i (1, x)⊗d/2

〉
=

∑
i

〈
(1, x)⊗d/2, ViV

T
i (1, x)⊗d/2

〉
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Then note that〈
(1, x)⊗d/2, ViV

T
i (1, x)⊗d/2

〉
= [1, xi, · · · , xixj , · · · ]

[
Vi

]
[V T
i ][1, xi, · · · , xixj , · · · ]T

= ([1, xi, · · · , xixj , · · · ]
[
Vi

]
)︸ ︷︷ ︸

gi(x)

([1, xi, · · · , xixj , · · · ]
[
Vi

]
)T

So defining gi(x) = V T
i (1, x)⊗d/2 will give us f(x) =

∑
g2i (x).

To prove (⇒) going in the backward direction of the previous argument will give us the desired A.

Note that based on this proof we can conclude if f has a sos certificate then we can find a degree-r sos
certificate such that r ≤ nd/2.

Exercise 4.1. For a graph G = (V,E) consider its Laplacian LG =
∑
(i,j)

(ei − ej)(ei − ej)T . Show that

λmax(LG)
n

2
− fG has degree-2 sos certificate where fG is the max cut polynomial.

Exercise 4.2. ∀f : {0, 1}n → R with degree at most d for even d ∈ N there exists M ∈ R≥0 such that
M − f has degree-d sos certificate. Also M can be chosen nO(d) times the largest coefficient of f in the
monomial basis.

2.4 Degree-k sos certificate

First of all note that the the functions with degree-k sos certificate form a closed convex cone. Then by
hyperplane separation theorem for convex cones, for every function f : {0, 1}n → R without degree-k
sos certificate there exists a hyperplane through the origin that separates f from the cone of functions with
degree-k sos certificate in the sense that the halfspace H above that hyperplane contains the degree-k sos
certificate cone but not f .

Now let’s see how does such a halfspace look like? We can represent that halfspace by its normal function
µ : {0, 1}n → R so that

H =
{
g ∈ {0, 1}n → R|

∑
x∈{0,1}n

µ(x)g(x) ≥ 0
}

And by scaling without loss of generality we can assume that
∑

x{0,1}n
µ(x) = 1. If we had µ(x) ≥ 0 for

all x ∈ {0, 1}n this µ would correspond to a probability distribution on the hypercube. In that case, the
hyperplane H is simply the set of all the functions with nonnegative expectation with respect to the measure
µ. Therefore for f 6∈ H the expectation of f with respect to µ is negative which means that there exists at
least one point x on the hypercube such that f(x) < 0.

The point is that µ is not necessarily nonnegative, there is no guarantee that µ(x) ≥ 0 for all x ∈ {0, 1}n.
But still it behaves like a probability distribution in many ways. So let’s formalize this idea. We are going
to define a pseudo-distribution and pseudo-expectation
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Definition 4.2 (Degree-d pseudo distribution). over the hypercube is a function µ : {0, 1}n → R such that
for every polynomial f of degree at most d/2 we have Ẽµf2 ≥ 0 and Ẽµ1 = 1, where

Ẽµf =
∑

x∈{0,1}n
µ(x)f(x)

and we call it pseudo expectation of f .

Lemma 4.1. Suppose µ is a degree-` pseudo distribution. Then there exists a multilinear polynomial µ′ of
degree at most ` such that

Ẽµp = Ẽµ′p ∀p of degree `

Proof. Let U` ⊂ R{0,1}
n

be the linear subspace of multilinear polynomials of degree at most `. Then this
space contains all polynomials of degree at most `. Decompose the function µ as µ = µ′ + µ′′ such that
µ′ ∈ U` and µ′′ ⊥ U`. Then for every p ∈ U` we have

Ẽµp =< µ′ + µ′′, p >=< µ′, p >= Ẽµ′p

The notion of pseudo expectation can be easily extended to vector valued functions, in which case this
denotes the vector obtained by taking expectation of every coordinate of f . Using this notion we can write
the conclusion of last lemma more succinctly as

Ẽµ(1, x)⊗` = Ẽµ′(1, x)⊗`.

Exercise 4.3. If µ has degree bigger than ` what is the projection of µ onto U`?

Exercise 4.4. Show that if µ is a degree-2n pseudo distribution, then µ(x) ≥ 0 for all x.

Exercise 4.5. Show that µ : {0, 1}n → R is a pseudo distribution if and only if

Ẽµ1 = 1,

and
Ẽµ
(
[(1, x)⊗d/2][(1, x)⊗d/2]T

)
≥ 0.

Exercise 4.6. For all d and all pseudo distributions µ of degree d there exists a degree-d pseudo distribution
µ′ with the same pseudo moments up to degree d as µ such that

|µ′(x)| ≤ 2−n
d∑

d′=0

(
n

d′

)
Hint: Fourier Analysis.

Exercise 4.7. Show that the set of degree-d pseudo distributions over {0, 1}n admits a separation algorithm
with running time nO(d). Concretely show that there exists an nO(d)-time algorithm that given a vector
N ∈ (Rn)⊗d outside of the following set χd outputs a halfspace that separates N from χd. Here χd is
the set that consists of all coefficient vectors M ∈ (Rn+1)⊗d such that the function µ : {0, 1}n → R with
µ(x) =< M, (1, x)⊗d > is a degree-d pseudo distribution over {0, 1}n.

Exercise 4.8. Show that for every d ∈ N, the following set of pseudo moments admits a separation algorithm
with running time nO(d),

Md =
{
Ẽµ(1, x)⊗d

∣∣∣µ is deg-d pseudo distribution over {0, 1}n
}
.
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3 Duality

Now we show that there is a dual relationship between sos certificates and pseudo distributions.

Theorem 4.3. For all functions f : {0, 1}n → R and every d ∈ N, there exists a degree-d sos certificate for
the non-negativity of f if and only if every degree-d pseudo distribution µ over {0, 1}n satisfies Ẽµf ≥ 0.

Proof. (⇒) If f has a degree-d sos certificate then we have f(x) =
∑
i

g2i (x) where gi’s are of degree at

most d/2. Then for every degree-d pseudo distribution µ we have Ẽµg2i ≥ 0 which will give Ẽµ
∑

g2i =

Ẽµf ≥ 0.

(⇐) If there is no degree-d sos certificate, then we want to show that there exists a pseudo distribution µ
such that Ẽµf < 0. Now by hyperplane separation theorem, there exists a halfspace H through the origin
such that contains the cone but not f . Let µ : {0, 1}n → R be the normal of H so that

H =
{
g : {0, 1}n

∣∣∣R̃µg ≥ 0
}
.

Since f 6∈ H we know that Ẽµf < 0. Since H contains the degree-d sos cone, every polynomial g of
degree at most d/2 satisfies Ẽµg2 ≥ 0. It remains to argue that Ẽµ1 = 1, which means that we can rescale
µ by a nonnegative factor to ensure that Ẽµ1 = 1. In fact by one of the exercises we know that there exists
M ∈ R≥0 such that M + f has a degree-d sos certificate, which means that

Ẽµ1 =
1

M

(
ẼµM + f − Ẽµf

)
> 0,

as desired.
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