Final Report: Lower bounds on the size of semidefinite programming relaxations

Weihao Kong

June 14, 2017

1 Problem Formulation and Main result

An instance ξ of Max-CSP problem is defined as

$$\text{maximize } \sum P_i(x)$$
$$x \in \{0,1\}^n$$

where $P_i : \{0,1\}^n \to 0,1$ are all predicates. We use $\xi(x)$ to denote $\sum P_i(x)$ and $\max(\xi)$ to denote the optimal value of the instance. A Max-CSP problem is defined as a set of the Max-CSP instances.

Definition 1. The degree d SOS upperbound for function f, $\text{sos}_d(f)$, is defined to be smallest c such that $c - f$ has a degree d SOS proof.

Definition 2. The subspace U SOS upperbound for function f, $\text{sos}_U(f)$, is defined to be smallest c such that $c - f = \sum f_i^2$ where $f_i \in U$.

$sos_d(f)$ is the upperbound of f given by a degree d sos algorithm. $sos_U(f)$ is the upperbound of f given by a subspace U sos algorithm. Now for a Max-CSP problem, we need the following definition to capture how good approximation does a subspace U sos algorithm give.

Definition 3. We say that the subspace U achieves (c,s)-approximation of problem Π if for any $\xi \in \Pi$, $\max(\xi) \leq s \Rightarrow sos_U(\xi) \leq c$.

The authors claim that any SDP formulation with instance oblivious constraints actually is equivalent to computing sos_U for a certain U where the running time is $\text{dim}(U)$. Hence we can focus on showing that U must have large dimension in order for $sos_U(\xi)$ to be close to $\max(\xi)$. Indeed, the following theorem states that if polynomial sos need high degree to achieve good approximation, no U with much smaller dimension can achieve the same approximation.

Theorem 1 (Main Theorem). Let Π be Max-CSP problem and let Π_m be the set of instances of Π on n variables. Suppose that for some $m, d \in N$, the subspace of degree-d functions $f : \{0,1\}^m \to R$ fails to achieve a (c,s)-approximation for Π_m. For all $n \geq 2m$, every subspace U of functions $f : \{0,1\}^n \to R$ with $\text{dim}(U) = nd^{18}$ fails to achieve a (c,s)-approximation for Π_n.

Before going further to prove the main theorem, let’s see what would happen if U achieves (c,s)-approximation for problem Π and has dimension d. Given any instance $\xi \in \Pi$, the function $c - \xi$ has a subspace U sos proof: $c - \xi = \sum f_i^2$ where $f_i \in U$. Let $\{g_i\}, i = 1, \ldots d$ be a set of orthogonal basis of subspace U. Define a matrix A such that $f_i = \sum_j g_j A_{ji}$.

Define matrix $B \in R^{2n \times d}$ such that $B(x,i) = g_i(x)$. $c - \xi(x)$ can be written as $\text{tr}(BA'BA') = \text{tr}(AA'BB')$ which means there exists two $d \times d$ PSD matrix $P = AA', Q = BB'$ such that $c - \xi(x) = \text{tr}(PQ)$. Notice that P is a function of ξ and Q is a function of x, so we also use $P(\xi)$ and $Q(x)$ to denote the two PSD matrices. Let’s define matrix $M_{\Pi}^c(\xi,x) = c - \xi(x)$, by the definition of M_{Π}^c and previous observation, $M_{\Pi}^c(\xi,x) = \text{tr}(P(\xi)Q(x))$ where $P(\xi), Q(x)$ are $d \times d$ PSD matrices. Now we introduce a useful definition called PSD rank of a matrix.

Definition 4. Let $M \in R^{p \times q}$ be a matrix with non-negative entries. We say that M admits a rank-r psd factorization if there exist positive semidefinite matrices $\{P_i : i \in [p]\}, \{Q_j : j \in [q]\} \subset S^+_r$ such that $M_{i,j} = \text{tr}(P_i Q_j)$ for all $i \in [p], j \in [q]$. We define $r_{psd}(M)$ to be the smallest r such that M admits a rank-r psd factorization. We refer to this value as the PSD rank of M.

Since we have constructed a rank \(d \) psd factorization of matrix \(M^c_{\Pi} \). We conclude that \(rk_{psd}(M^c_{\Pi}) \leq d \) assuming \(U \) achieves \((c, s)\)-approximation of \(\Pi \). In order to show the hardness result, we will dedicate the rest of the report for proving the psd rank of matrix \(M^c_{\Pi} \) is large.

2 Main Lemma

We will prove a stronger result by bounding the psd rank of a submatrix of \(M \) from below. Given a function \(f : \{0, 1\}^m \to R_+ \), define a \((\binom{n}{m}) \times 2^n \) matrix \(M^f \) where \(M^f(S, x) = f(x, S) \). Let \(deg_{sos}(f) \) be the smallest \(d \) such that \(f \) has a degree-\(d \) SOS proof.

Lemma 1 (Main Lemma). For every \(m \geq 1 \) and \(f : \{0, 1\}^m \to R_+ \), there exists a constant \(C > 0 \) such that for \(n \geq 2m \), \(rk_{psd}(M^f) > n^{deg_{sos}(f)/8} \).

Now we are ready to prove the main theorem.

Proof of the Main Theorem. Suppose for some \(n \geq 2m \), there is subspace \(U \) with \(\dim(U) \leq n^{d/8} \) achieves \((c, s)\)-approximation of \(\Pi_n \). Then by the previous argument, the matrix \(M^c_{\Pi_n} \) has psd rank less than or equal to \(n^{d/8} \). Since degree \(d \) SOS fails to achieve a \((c, s)\) approximation of \(\Pi_m \), there must be a \(\xi \) such that \(\max(\xi) \leq s \) and \(deg_{sos}(c - \xi(x)) > d \). By Lemma 1, for \(n \geq 2m \) \(rk_{psd}(M^c_{\Pi_m}) \geq n^{d/8} \). Since \(M^c_{\Pi_m} \) is a submatrix of \(M^c_{\Pi_n} \), we conclude that \(rk_{psd}(M^c_{\Pi_n}) \geq n^{d/8} \) and there is a contradiction. Actually for the submatrix property to hold, we need some assumptions on the Max-CSP problem \(\Pi \). Without formally state the assumption, we just verify this property for Max Cut and Max 3-SAT here. A max cut problem on a graph with \(n \) vertices is valid even if there are only \(m \) nodes which are incident to some edges. A Max 3-SAT on \(n \) variable is valid even if there are only \(m \) variables involved in the formula.

Now we give a plan to prove the main lemma. First there must be a degree \(d = deg_{sos}(f) - 1 \) pseudo distribution \(D \) such that \(E(D(x)f(x)) < -1 \). Then we define the following linear functional on matrices \(M^f : \binom{[n]}{m} \times \{0, 1\}^n \to R \):

\[
L_D(M^f) = E_{|S|=m} E_x D(x, S) M^f(x, S, x)
\]

By the definition, suppose \(L_D(M^f) < -1 \). It is known that we can find a set of matrices \(\{P(S), Q(x)\} \) such that \(M^f(S, x) = tr(P(S)Q(x)) \) and \(\|P(S)\| \cdot \|Q(x)\| \leq rk_{psd}(M^f)^2 \leq n^{d/4} \). Define the quantum relative entropy of \(X \) with respect to \(Y \) to be the quantity \(S(X|Y) = tr(X \cdot (log X - log Y)) \). Then the relative entropy between \(Q = \frac{1}{tr(Q)} E_x e_x e_x^T \otimes Q(x) \) and uniform distribution \(U = \frac{1}{tr(U)} \) is small (roughly \(log rk_{psd}(M^f) \)). Given that, we have the following proposition showing that it can be approximated by a low degree polynomial.

Proposition 1 (Low degree polynomial approximation). Let \(F \) be a symmetric matrix. Then, for every \(\epsilon > 0 \), there exists a degree-\(k \) univariate polynomial \(p \) with \(k \leq (1 + S(Q||U)) \cdot \|F\|/\epsilon \) such that the \(Q = \frac{1}{tr(F)} p(F)^2 \) satisfies

\[
tr(FQ) = tr(FQ) + \epsilon.
\]

Using the low degree polynomial approximation, we can now show that \(L_D(M^f) > -1 \). Let \(F(x) = E_{|S|=m} D(x, S) P(S) \) and \(F = \sum_x e_x e_x^T \otimes F(x) \)

\[
L_D(M^f) = E_{|S|=m} E_x D(x, S) M^f(S, x)
= E_{|S|=m} E_x D(x, S) tr(P(S)Q(x)) = tr(FQ)
= tr(FQ) - \epsilon = E_x E_x P(S) p(F(x))^2 - \epsilon
\]

The degree of \(p(F(x))^2 \) can be much larger than \(d \), but notice that for a fixed set \(S \), the degree of \(p(F(x)) \) in terms of the variables in \(S \) is typically smaller than \(d \). The probability that the degree in terms of the variables in \(S \) is larger than \(d \) is on the order of \(O(\frac{1}{(n-m)^D}) \). Since \(D \) is a degree-\(d \) pseudo distribution, \(E_x P(S) p(F(x))^2 \) must be non-negative unless the \(\frac{1}{(n-m)^D} \) probability event happens. In that case, the pseudo expectation can be \(-\|F_S\| \) which is larger than \(-rk_{psd}(M^f) \). Hence when \(rk_{psd}(M^f)^2 = \frac{1}{(n-m)^D} \), we have find \(L_D(M^f) \) is both smaller than \(-1 \) and larger than \(-1 \).