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1 Introduction

This lecture covers some basic embedding results for embedding metric spaces into ℓ∞. These ideas
are used in other embedding results, e.g., Bourgain’s theorem which provides embeddings into ℓ2.

2 Embeddings into ℓ∞

We begin by showing that any finite metric embeds isometrically into ℓ∞.

Theorem 2.1. Every 𝑛-point metric space (𝑉, 𝑑) embeds isometrically into ℓ∞.

Proof. Let 𝑉 = {𝑣1, . . . 𝑣𝑛}. We will map each point 𝑣 ∈ 𝑉 to a vector of length 𝑛, where
the 𝑖th coordinate is the distance between 𝑣 and 𝑣𝑖. Formally, define 𝑓𝑖(𝑣𝑗) = 𝑑(𝑣𝑖, 𝑣𝑗), and let

𝑓(𝑣𝑗) =

⎛⎝𝑓1(𝑣𝑗)
· · ·

𝑓𝑛(𝑣𝑗)

⎞⎠.

Claim 2.2. For any 𝑣𝑖, 𝑣𝑗, we have ‖𝑓(𝑣𝑖)− 𝑓(𝑣𝑗)‖∞ ≥ 𝑑(𝑣𝑖, 𝑣𝑗).

Proof.
‖𝑓(𝑣𝑖)− 𝑓(𝑣𝑗)‖∞ = max

𝑘
|𝑓𝑘(𝑣𝑖)− 𝑓𝑘(𝑣𝑗)| ≥ |𝑓𝑖(𝑣𝑖)− 𝑓𝑖(𝑣𝑗)| = 𝑑(𝑣𝑖, 𝑣𝑗).

Claim 2.3. For any 𝑣𝑖, 𝑣𝑗, we have ‖𝑓(𝑣𝑖)− 𝑓(𝑣𝑗)‖∞ ≤ 𝑑(𝑣𝑖, 𝑣𝑗).

Proof. By the triangle inequality, for any 𝑘,

|𝑓𝑘(𝑣𝑖)− 𝑓𝑘(𝑣𝑗)| = |𝑑(𝑣𝑖, 𝑣𝑘)− 𝑑(𝑣𝑘, 𝑣𝑗)| ≤ 𝑑(𝑣𝑖, 𝑣𝑗).

The theorem follows from the two claims.

The embedding in the proof used 𝑛 coordinates. Do we need to all 𝑛 coordinates to construct
an isometric embedding?

The answer is no: 𝑛−1 coordinates suffice. If we remove any one coordinate, it is easy to check
that the first claim still holds (plugging in 𝑗 instead of 𝑖 if necessary). Eliminating a coordinate
cannot increase the ℓ∞ norm, so the second claim also holds.

However, we cannot use less than 𝑛− 1 coordinates without allowing some distortion.
If we do allow for some distortion, we can drastically reduce the number of coordinate. The fol-

lowing theorem yields an upper bound for the number of coordinates necessary to achieve distortion
𝐷.
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Theorem 2.4 (Upper Bound). Let 𝐷 = 2𝑞 − 1 ≥ 3 be an odd integer. Given an 𝑛-point metric
space (𝑉, 𝑑), there exists an embedding with distortion 𝐷 of (𝑉, 𝑑) into ℓ𝑘∞ with 𝑘 = 𝑂(𝑞𝑛1/𝑞 ln𝑛).

For example, for distortion 𝐷 = 3, we get an embedding into 𝑘 = 𝑂(
√
𝑛 ln𝑛) dimensions. For a

smaller value of𝐷, we cannot find an embedding with a number of dimensions that is asymptotically
better than needed for the isometric embedding described above.

Theorem 2.5 (Lower Bound). There is an 𝑛-point metric space (𝑉, 𝑑) such that every embedding
of (𝑉, 𝑑) into ℓ∞ with distortion 𝐷 < 3 requires Ω(𝑛) dimensions.

For 𝐷 = 3, there is a lower bound of Ω(
√
𝑛) dimensions, and there are similar matching lower

bounds for 𝐷 = 5, 7, and possibly more (see Corollary 15.3.4 in [2]).
We will prove the upper bound in Theorem 2.4 using a mapping called a Fréchet embedding.

Definition 2.6. A Fréchet embedding is a map 𝑓 : (𝑉, 𝑑) → ℓ𝑘𝑝 which consists of 𝑘 functions 𝑓𝑖 (one
per coordinate), each of which has the form 𝑓𝑖(𝑣) = 𝑑(𝑣,𝐴𝑖), where 𝐴𝑖 ⊂ 𝑉 . The distance 𝑑(𝑣,𝐴)
is the minimum distance between a point 𝑎 ∈ 𝐴 and the point 𝑣.

More generally, we will sometimes allow scaling by constants 𝛼𝑖 in the definition of Fréchet
embeddings, that is, each coordinate will be given by 𝑓𝑖(𝑣) = 𝛼𝑖𝑑(𝑣,𝐴𝑖).

Fact 2.7. Fréchet embeddings (without scaling) are non-expanding for a single coordinate, that is,
for every 𝑖,

|𝑓𝑖(𝑢)− 𝑓𝑖(𝑣)| ≤ 𝑑(𝑢, 𝑣).

This property of Fréchet embeddings follows from the triangle inequality. Since for every 𝑢, 𝑣,
𝑑(𝑢,𝐴) ≤ 𝑑(𝑢, 𝑣)+𝑑(𝑣,𝐴) (convince yourself why), we get that |𝑓𝑖(𝑢)−𝑓𝑖(𝑣)| = |𝑑(𝑢,𝐴𝑖)−𝑑(𝑣,𝐴𝑖)| ≤
𝑑(𝑢, 𝑣).

Note that the isometric embedding into ℓ∞ that we saw earlier today is a Fréchet embedding.
We are now ready to prove Theorem 2.4.

Proof of Theorem 2.4. Since we will use a Fréchet embedding and the target metric is ℓ∞, the
embedding will be non-expanding (‖𝑓(𝑢)−𝑓(𝑣)‖∞ = max

𝑖
|𝑓𝑖(𝑢)− 𝑓𝑖(𝑣)| ≤ 𝑑(𝑢, 𝑣)). Hence in order

to prove that the embedding has distortion 𝐷, it suffices to show that for some coordinate 𝑖, we

have |𝑓𝑖(𝑢)− 𝑓𝑖(𝑣)| ≥
1

𝐷
𝑑(𝑢, 𝑣).

Recall that for a point 𝑣 ∈ 𝑉 and radius 𝑟 ∈ R≥0, the (closed) ball 𝐵(𝑣, 𝑟) around 𝑣 of radius
𝑟 contains all the points in the metric space that are within distance 𝑟 from 𝑣, that is, 𝐵(𝑣, 𝑟) =
{𝑢 ∈ 𝑉 | 𝑑(𝑢, 𝑣) ≤ 𝑟}. The open ball is defined similarly as 𝐵𝑜(𝑣, 𝑟) = {𝑢 ∈ 𝑉 | 𝑑(𝑢, 𝑣) < 𝑟}.

The intuition behind the proof is as follows. To get a difference |𝑓𝑖(𝑢)−𝑓𝑖(𝑣)| ≥ Δ for coordinate
𝑖, we need to have some 𝑟 such that 𝐵𝑜(𝑢, 𝑟 + Δ) ∩ 𝐴𝑖 = ∅, but 𝐵(𝑣, 𝑟) ∩ 𝐴𝑖 ̸= ∅ or vice versa
(replace the roles of 𝑢 and 𝑣). This would imply that 𝑑(𝑢,𝐴𝑖) ≥ 𝑟 +Δ while 𝑑(𝑣,𝐴𝑖) ≤ 𝑟 (or the
same with the opposite roles). If we can find 𝑟 such that the number of points in 𝐵𝑜(𝑢, 𝑟 +Δ) is
not too large compared to 𝐵(𝑣, 𝑟), we can pick 𝐴𝑖 at random and hope for it to intersect 𝐵(𝑣, 𝑟)
but not 𝐵𝑜(𝑢, 𝑟 +Δ) (see Figure 1).

The embedding of (𝑉, 𝑑) into ℓ𝑘∞ will be a Fréchet embedding constructed in the following way:

∙ Let 𝑝 = 𝑛−1/𝑞.

∙ For 𝑗 = 1, . . . , 𝑞, let 𝑝𝑗 = min{1/2, 𝑝𝑗}.
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𝑟 𝑟 +Δ
𝑣 𝑢

𝐴𝑖

Figure 1: The random set 𝐴𝑖 intersects 𝐵(𝑣, 𝑟) but not 𝐵𝑜(𝑢, 𝑟 +Δ).

∙ Let 𝑚 = ⌈24𝑛1/𝑞 ln𝑛⌉.

∙ Let 𝑘 = 𝑚𝑞 be the number of coordinates in our embedding.

∙ For each 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑞], let 𝐴𝑖𝑗 be a random sample of points in 𝑉 with density 𝑝𝑗 , i.e., each
point 𝑣 ∈ 𝑉 is chosen to be in 𝐴𝑖𝑗 independently with probability 𝑝𝑗 . Our mapping is the
Fréchet embedding with these 𝑘 sets.

We proceed to show that this randomized construction returns an embedding with distortion 𝐷
with probability at least 1/2. We say that a subset 𝐴𝑖𝑗 is good for (𝑢, 𝑣) if |𝑑(𝑢,𝐴𝑖𝑗)− 𝑑(𝑣,𝐴𝑖𝑗)| ≥
1

𝐷
𝑑(𝑢, 𝑣).

Lemma 2.8. For any pair 𝑢, 𝑣 ∈ 𝑉 , there exists some 𝑗 such that if 𝐴𝑖𝑗 is a random sample of
points from 𝑉 where each point is sampled with probability 𝑝𝑗, then

Pr[𝐴𝑖𝑗 is good for (𝑢, 𝑣)] ≥ 𝑝/12.

Before we prove the lemma, let us first show how it can be used to complete the proof of the
theorem. For any pair 𝑢, 𝑣 ∈ 𝑉 ,

Pr[no 𝐴𝑖𝑗 is good for (𝑢, 𝑣)] ≤
(︁
1− 𝑝

12

)︁𝑚
≤ 𝑒−

𝑝𝑚
12 ≤ 1

𝑛2
.

By the union bound, since there are

(︂
𝑛

2

)︂
pairs (𝑢, 𝑣), the probability that there exists a pair with

no good 𝐴𝑖𝑗 is less than
1

𝑛2

(︂
𝑛

2

)︂
≤ 1/2 < 1. Hence, there exists some choice of sets 𝐴𝑖𝑗 for which

the mapping has distortion 𝐷. The probability of success (that is, choosing an embedding with
distortion 𝐷) can be amplified by choosing larger 𝑚.

Finally, we prove Lemma 2.8. Recall that we want to find a coordinate with distance at least
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𝑑(𝑢, 𝑣)/𝐷. Define Δ = 𝑑(𝑢, 𝑣)/𝐷. Consider the following sequence of balls:

𝐵0 = 𝐵(𝑢, 0)

𝐵1 = 𝐵(𝑣,Δ)

𝐵2 = 𝐵(𝑢, 2Δ)

· · ·

𝐵𝑞 =

{︃
𝐵(𝑢, 𝑞Δ) 𝑞 is even

𝐵(𝑣, 𝑞Δ) 𝑞 is odd

Our goal is to find two consecutive balls 𝐵𝑡 and 𝐵𝑡+1 such that the number of points in 𝐵𝑡+1

is not much greater than the number in 𝐵𝑡. For each 𝑡, define 𝑛𝑡 = |𝐵𝑡|, the number of points in
𝐵𝑡. Recall that 𝐷 = 2𝑞 − 1, and note that for any 𝑡 ≤ 𝑞 − 1,

𝐵𝑡 ∩𝐵𝑜
𝑡+1 = ∅,

because (2𝑡+ 1)Δ ≤ (2𝑞 − 1)Δ = 𝑑(𝑢, 𝑣). (Here 𝐵𝑜
𝑡+1 denotes the corresponding open ball.)

Claim 2.9. There exist some 𝑡 < 𝑞 and 𝑗 ≤ 𝑞 such that 𝑛𝑡 ≥ 𝑛
𝑗−1
𝑞 and 𝑛𝑡+1 ≤ 𝑛

𝑗
𝑞 .

Proof. If there is some 𝑡 < 𝑞 such that 𝑛𝑡 ≥ 𝑛𝑡+1, the claim holds for that 𝑡 and the maximum

𝑗 such that 𝑛𝑡 ≥ 𝑛
𝑗−1
𝑞 . Otherwise, 𝑛0 < 𝑛1 < · · · < 𝑛𝑡. Consider the 𝑞 intervals

[︁
𝑛

𝑗−1
𝑞 , 𝑛

𝑗
𝑞

]︁
for

𝑗 = 1, . . . , 𝑞. Since there are 𝑞 + 1 increasing values 𝑛0, . . . , 𝑛𝑞, by the pigeonhole principle, there

must be some 𝑡 and 𝑗 such that 𝑛𝑡 and 𝑛𝑡+1 belong to the same interval
[︁
𝑛

𝑗−1
𝑞 , 𝑛

𝑗
𝑞

]︁
. The claim

holds for those 𝑡 and 𝑗.

We are now ready to show that for the values 𝑡 and 𝑗 that were found in Claim 2.9, with
probability at least 𝑝/12, the set 𝐴𝑖𝑗 intersects 𝐵𝑡 but not 𝐵

𝑜
𝑡+1. As explained earlier, that would

imply that 𝐴𝑖𝑗 is good for (𝑢, 𝑣) (note that the difference in radius between 𝐵𝑡 and 𝐵𝑜
𝑡+1 is Δ). Let

𝐸1 be the event that 𝐴𝑖𝑗 ∩𝐵𝑡 ̸= ∅. Let 𝐸2 be the event that 𝐴𝑖𝑗 ∩𝐵𝑜
𝑡+1 = ∅. Because each point in

𝐴𝑖𝑗 is chosen independently at random with probability 𝑝𝑗 , we have

Pr[𝐸1] = 1− Pr[𝐴𝑖𝑗 ∩𝐵𝑡 = ∅] = 1− (1− 𝑝𝑗)
𝑛𝑡 ≥ 1− 𝑒−𝑝𝑗𝑛𝑡 .

Plugging in 𝑝𝑗 = min{1/2, 𝑛− 𝑗
𝑞 } and 𝑛𝑡 ≥ 𝑛

𝑗−1
𝑞 , we have

Pr[𝐸1] ≥ 1− 𝑒−𝑛𝑡 min{1/2,𝑛− 𝑗
𝑞 } ≥ min{1− 𝑒−

1
2
𝑛

𝑗−1
𝑞
, 1− 𝑒−𝑝} ≥ min{1− 𝑒−

1
2 , 1− 𝑒−𝑝},

where the last inequality follows because 𝑛
𝑗−1
𝑞 ≥ 1. If 𝑝 ≥ 1/2, then this minimum is 1 − 𝑒−

1
2 >

1/3 ≥ 𝑝/3. If 𝑝 < 1/2, then using the first three terms of the Taylor expansion for 𝑒𝑥, we get
1− 𝑒−𝑝 ≥ 𝑝− 𝑝2/2 > 𝑝/3. We conclude that in all cases,

Pr[𝐸1] ≥ 𝑝/3. (1)

Now,

Pr[𝐸2] ≥ (1− 𝑝𝑗)
𝑛𝑡+1 ≥ (1− 𝑝𝑗)

𝑛
𝑗
𝑞
.

4



We again split this into two cases based on the value of 𝑝𝑗 . If 𝑝𝑗 > 1/2, then 𝑛
𝑗
𝑞 = 1/𝑝𝑗 , and hence

(1− 𝑝𝑗)
𝑛

𝑗
𝑞
= (1− 𝑝𝑗)

1/𝑝𝑗 ≥ 1/4,

where the last inequality holds by checking that (1−𝑝𝑗)
1
𝑝𝑗 is decreasing in 𝑝𝑗 and is hence minimized

when 𝑝𝑗 = 1/2.

If 𝑝𝑗 = 1/2, then we must have 𝑛
𝑗
𝑞 ≤ 2, and

(1− 𝑝𝑗)
𝑛

𝑗
𝑞 ≥

(︂
1

2

)︂2

= 1/4.

In all cases, we have
Pr[𝐸2] ≥ 1/4. (2)

It follows from Equation (1) and Equation (2) that

Pr[𝐸1 ∩ 𝐸2] = Pr[𝐸1] · Pr[𝐸2] ≥ 𝑝/12,

where we used the fact that 𝐵𝑡 and 𝐵𝑡+1 are disjoint, and as a result, the events 𝐸1 and 𝐸2 are
independent. This completes the proof of Lemma 2.8.

3 Embeddings into ℓ2

In the previous lecture, we mentioned Bourgain’s theorem.

Theorem 3.1 (Bourgain [1]). Any 𝑛-point metric embeds into ℓ2 with distortion 𝑂(log 𝑛).

We claim that the proof of Theorem 2.4 already provides an embedding of any 𝑛-point metric
into ℓ2 with distortion 𝑂(log2 𝑛).

Proposition 3.2. Any 𝑛-point metric embeds into ℓ2 with distortion 𝑂(log2 𝑛).

Proof. Let 𝑞 = log 𝑛, and consider the mapping provided by Theorem 2.4. This mapping is an

embedding into ℓ∞ with dimension 𝑘 = 𝑂(log 𝑛 · 𝑛
1

log𝑛 log 𝑛) = 𝑂(log2 𝑛) and distortion 𝑂(log 𝑛).
We use this mapping (which we denote by 𝑓), and then embed these vectors into ℓ𝑘2 using the
identity map, that is, we consider the same points but with ℓ2 distance instead of ℓ∞.

Consider two points 𝑢, 𝑣 in the original metric space. We have shown in the proof of Theorem 2.4
that

1

2𝑞 − 1
𝑑(𝑢, 𝑣) ≤ ‖𝑓(𝑢)− 𝑓(𝑣)‖∞ ≤ 𝑑(𝑢, 𝑣).

Now, for every 𝑥 ∈ R𝑘, ‖𝑥‖∞ ≤ ‖𝑥‖2 ≤
√
𝑘‖𝑥‖∞ (convince yourself why). Together, we get that

the embedding into ℓ2 satisfies

1

2𝑞 − 1
𝑑(𝑢, 𝑣) ≤ ‖𝑓(𝑢)− 𝑓(𝑣)‖2 ≤

√
𝑘𝑑(𝑢, 𝑣),

and since 𝑘 = 𝑂(log2 𝑛) and 2𝑞 − 1 = 𝑂(log 𝑛), we conclude that 𝑓 is an embedding into ℓ2 with
distortion 𝑂(log2 𝑛).
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3.1 Overview of the Proof of Bourgain’s Theorem

We will prove Bourgain’s theorem in the next lecture, but we provide a brief sketch of the analysis
here.

As in Theorem 2.4, we will construct a Fréchet embedding with random sets of varying densities.
To perform the analysis, for each pair (𝑢, 𝑣) we will grow balls around 𝑢 and 𝑣 with radii in

[0, 𝑑(𝑢, 𝑣)/2]. Let 𝑞 = ⌊log2 𝑛⌋ + 1 and 𝑟1, 𝑟2, . . . 𝑟𝑞 be radii such that 𝑟𝑗 is the smallest choice
of radius such that both |𝐵(𝑢, 𝑟𝑗)|, |𝐵(𝑣, 𝑟𝑗)| ≥ 2𝑗 (if this radius is greater than 𝑑(𝑢, 𝑣)/2, we set

𝑟𝑗 = 𝑑(𝑢, 𝑣)/2). We define 𝑟0 = 0 and Δ𝑗 = 𝑟𝑗 − 𝑟𝑗−1 so that

𝑞∑︁
𝑗=1

Δ𝑗 ≥ 𝑑(𝑢, 𝑣)/2.

The following claim forms the core of the proof.

Claim 3.3. If a random set 𝐴𝑗 is sampled from 𝑉 such that each point is included independently

with probability
1

2𝑗
, then

Pr[|𝑑(𝑢,𝐴𝑗)− 𝑑(𝑣,𝐴𝑗)| ≥ Δ𝑗 ] ≥ 1/12.

Assuming this claim, we can show using the Cauchy-Schwarz inequality that if enough sets are
sampled with each of the densities 2−𝑗 , then with constant probability, the embedding into ℓ2 does
not contract the distance between any two points too much.
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