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1 Introduction

In this lecture, we show the proof of Bourgain’s theorem, which claims that every 𝑛-point metric
space embeds into ℓ2 with distortion 𝑂(log 𝑛). Then, we introduce the sparsest cut problem, for
which we will later show an approximation algorithm that builds on Bourgain’s theorem.

2 Bourgain’s Theorem

In the previous lecture, we proved the following theorem.

Theorem 2.1. Let 𝐷 = 2𝑞 − 1 ≥ 3 be an odd integer and let (𝑉, 𝑑𝑉 ) be an 𝑛-points metric space
(i.e., |𝑉 | = 𝑛). Then there is a D-embedding of (𝑉, 𝑑𝑉 ) into ℓ𝑘∞ with 𝑘 = 𝑂(𝑞𝑛1/𝑞 ln𝑛).

In this lecture, we prove Bourgain’s theorem, stated as follows.

Theorem 2.2 (Bourgain [1]). Every n-point metric space (𝑉, 𝑑𝑉 ) can be embedded in ℓ2 with
distortion at most 𝑂(log 𝑛).

The proof will be similar to the proof of Theorem 2.1. For the proof of Bourgain’s theorem,
refer to Matoušek’s lecture notes, Section 4.2, pages 107-110 [2].

The embedding in the proof of Bourgain’s theorem is mapping into ℓ2 with 𝑘 = 𝑂(log2 𝑛)
dimensions. In ℓ2, we can reduce the dimension to 𝑂(log 𝑛) using the Johnson-Lindenstrauss
lemma.

Theorem 2.3 (Johnson-Lindenstrauss Lemma). Let 0 < 𝜀 < 1 and consider an 𝑛-point subset of

R𝑑. There is a mapping 𝑓 : R𝑑 → R𝑘 where 𝑘 = 𝑂

(︂
log 𝑛

𝜀2

)︂
such that for every two points 𝑥, 𝑦 in

the set,
(1 − 𝜀)‖𝑥− 𝑦‖2 ≤ ‖𝑓(𝑥) − 𝑓(𝑦)‖2 ≤ (1 + 𝜀)‖𝑥− 𝑦‖2.

Furthermore, even in ℓ1, the dimension of the embedding can be improved to be 𝑂(log 𝑛).

Exercise 1. For all finite 𝑝 ≥ 1, show that the mapping given in the proof of Bourgain’s theorem is

an embedding into ℓ𝑝 with distortion 𝑂

(︂
log 𝑛

𝑝

)︂
.

3 The Sparsest Cut Problem

We now introduce the sparsest cut problem, for which we will show an approximation algorithm
in the next lecture. Given a graph 𝐺 = (𝑉,𝐸), for any 𝑆 ⊆ 𝑉 , consider the cut (𝑆, 𝑆). Denote
by 𝐸(𝑆, 𝑆) the set of edges whose one endpoint is in 𝑆 and the other is in 𝑆. For any non-empty
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𝑆 ⊂ 𝑉 , we define the sparsity of a cut (𝑆, 𝑆) as 𝜑(𝐺,𝑆) =
|𝐸(𝑆, 𝑆)|
|𝑆||𝑆|

. In the uniform sparsest cut

problem, we would like to find the cut with minimum sparsity, that is, compute

𝜑(𝐺) = min
𝑆⊂𝑉 :𝑆 ̸=∅

𝜑(𝐺,𝑆) = min
𝑆⊂𝑉 :𝑆 ̸=∅

|𝐸(𝑆, 𝑆)|
|𝑆||𝑆|

.

Solving this problem exactly is known to be NP-hard, and assuming the Unique Games Conjecture,
a generalized version of this problem is even hard to approximate within any constant factor.
Formally, when we are talking about approximation algorithms, we say that an algorithm computes
an 𝛼-approximate solution to the uniform sparsest cut problem if it returns a cut 𝑆 such that
𝜑(𝐺,𝑆) ≤ 𝛼𝜑(𝐺). We usually the note the value of the optimal solution (in this case, 𝜑(𝐺)) by
𝑂𝑃𝑇 .

The definition of the problem is combinatorial and does not seem related to metrics. We
reformulate the problem to be finding a minimum over cut metrics.

Definition 3.1. A metric space (𝑉, 𝑑) is a cut metric if it embeds isometrically into {0, 1} (in R1)
with the ℓ1 distance. Equivalently, (𝑉, 𝑑) is a cut metric if there is a subset 𝑆 ⊆ 𝑉 such that

𝑑(𝑢, 𝑣) =

{︃
0 𝑢, 𝑣 ∈ 𝑆 or 𝑢, 𝑣 ∈ 𝑆

1 otherwise
.

We now claim that the sparsest cut problem can be formulated as

𝜑(𝐺) = min
𝑑 is a cut metric

∑︀
{𝑢,𝑣}∈𝐸 𝑑(𝑢, 𝑣)∑︀
𝑢,𝑣∈𝑉 𝑑(𝑢, 𝑣)

.

The cut metrics that we minimize over are defined on 𝑉 (the vertices of the graph). This representa-

tion follows since for the cut metric 𝑑 that corresponds to the cut (𝑆, 𝑆),
∑︁

{𝑢,𝑣}∈𝐸

𝑑(𝑢, 𝑣) = |𝐸(𝑆, 𝑆)|

and
∑︁

𝑢,𝑣∈𝑉
𝑑(𝑢, 𝑣) = |𝑆||𝑆|.

We can take this one step further, and instead of optimizing over cut metrics, we can optimize
over non-negative linear combination of cut metrics. Non-negative linear combinations of cut

metrics are metrics of the form 𝑑(𝑢, 𝑣) =
∑︁
𝑆

𝛼𝑆𝑑𝑆(𝑢, 𝑣) where for every possible cut 𝑆, we have

𝛼𝑠 ≥ 0. When we minimize over non-positive combinations of cut metrics, there is always a cut
metric that achieves the minimum, due to the inequality

𝑎1 + 𝑎2 + . . . + 𝑎𝑘
𝑏1 + 𝑏2 + . . . + 𝑏𝑘

≥ min
𝑖=1,...,𝑘

𝑎𝑖
𝑏𝑖
.

In conclusion, we showed that the uniform sparsest cut problem can be formulated as a problem
of minimizing over metrics that are non-negative linear combinations of cut metrics. In the next
lecture, we will show an algorithm that solves a relaxation of this problem: We will minimize over
all metrics, and then use Bourgain’s theorem to embed the solution into ℓ1, which is a non-negative
linear combination of cut metrics. This way, we will get an approximate solution to the sparsest
cut problem.
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