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1 Introduction

In the previous lecture we studied Bourgain’s embedding, which embeds any 𝑛-point metric into

ℓ1 with 𝑂(log 𝑛) distortion (and after a slight modification, with distortion 𝑂

(︂
log 𝑛

𝑝

)︂
into ℓ𝑝) and

began to set up the problem of Uniform Sparsest Cut. This problem is NP-hard to solve exactly,
and assuming the Unique Games Conjecture, its generalized version is hard to approximate within
any constant factor. In this lecture we see how to obtain an 𝑂(log 𝑛) approximation for uniform
sparsest cut using Bourgain’s embedding into ℓ1. To do this, we rewrite uniform sparsest cut as an
optimization problem over cut metrics, and then relax this optimization problem. We then show
that this relaxation doesn’t hurt “too much” (at most by a factor of 𝑂(log 𝑛)). Thus the algorithm
we use is a relax-and-round type of algorithm, where we use Bourgain’s embedding in the rounding
step.

We then state that the same algorithm with the same approximation guarantees works for a
generalized version of uniform sparsest cut called (unsurprisingly) non-uniform sparsest cut. We
end this lecture by embarking on a proof of lower bounds for distortion-dimension tradeoffs for
embedding arbitrary 𝑛-point metrics into any normed space. We do not complete this proof, and
will do so in the next lecture.

2 Uniform Sparsest Cut

Let 𝐺 = (𝑉,𝐸) be a graph with vertices 𝑉 and edges 𝐸, with |𝑉 | = 𝑛. Let 𝑆 ⊂ 𝑉 such that 𝑆 ̸= ∅
and let 𝑆 = 𝑉 ∖ 𝑆. We define the sparsity of the cut

(︀
𝑆, 𝑆

)︀
to be

𝜑 (𝐺,𝑆) ,
|𝐸

(︀
𝑆, 𝑆

)︀
|

|𝑆||𝑆|
.

The sparsest cut is the cut
(︀
𝑆, 𝑆

)︀
which minimizes 𝜑 (𝐺,𝑆).

Our strategy to solve this optimization problem is to first look at it from a different angle. We
simply restate the same problem in the language of metrics to make it more amenable to tools
developed in this course.

Every cut
(︀
𝑆, 𝑆

)︀
defines a metric (𝑑𝑆 , 𝑉 ), which we call a cut metric, on the graph 𝐺 as follows:

𝑑𝑆 (𝑢, 𝑣) ,

{︃
1 |𝑆 ∩ {𝑢, 𝑣}| = 1

0 otherwise

We showed in the previous lecture that the uniform sparsest cut problem is exactly equivalent to
minimizing the following objective function (which we denote by 𝑃cut metrics in these notes – this is
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not standard terminology):

min
𝑑𝑆 is a cut metric

∑︀
{𝑢,𝑣}∈𝐸

𝑑𝑆(𝑢, 𝑣)∑︀
𝑢,𝑣∈𝑉

𝑑𝑆(𝑢, 𝑣)

Of course, since uniform sparsest cut is a hard problem, so is solving 𝑃cut metrics since the two
are equivalent. However, we will make two successive relaxations to the set we optimize over. The
first relaxation doesn’t change the optimum, and hence is hard too. The second relaxation makes
the problem tractable, but its optimal solution may have a lower value than the sparsest cut (and
will need to be rounded to a solution to the sparsest cut problem).

We first relax the problem to 𝑃conic combs of cut metrics as defined below. A conic combination (or

non-negative linear combination) of cut metrics is a metric of the form 𝑑(𝑢, 𝑣) =
∑︁
𝑆

𝛼𝑆𝑑𝑆(𝑢, 𝑣),

where the sum is over all possible cut metrics 𝑑𝑆 , and the coefficients 𝛼𝑆 are non-negative. As
the name suggests, 𝑃conic combs of cut metrics is simply the optimization problem with the feasible set
relaxed to all conic combinations of cut metrics.

min
𝑑 is a conic combination of all cut metrics

∑︀
{𝑢,𝑣}∈𝐸

𝑑(𝑢, 𝑣)∑︀
𝑢,𝑣∈𝑉

𝑑(𝑢, 𝑣)
.

This changes the set we must optimize over from a discrete set to a continuum. Note that since
every cut metric 𝑑𝑆 is a conic combination of cut metrics, the optimal value of 𝑃conic combs of cut metrics

is at most the optimal value of 𝑃cut metrics. In the other direction, if we consider the optimal solution

(or any feasible point) 𝑑(𝑢, 𝑣) =
∑︁
𝑆

𝛼𝑆𝑑𝑆(𝑢, 𝑣) for 𝑃conic combs of cut metrics, we can find a cut metric

𝑑𝑆 for which the value of the objective function is at most the value of the objective function for
𝑑. This follows from the inequality

𝑎1 + 𝑎2 + . . . + 𝑎𝑘
𝑏1 + 𝑏2 + . . . + 𝑏𝑘

≥ min
𝑖=1,...,𝑘

𝑎𝑖
𝑏𝑖
.

Hence, the optimal value of 𝑃conic combs of cut metrics is the same as the optimal value of 𝑃cut metrics.
However, 𝑃conic combs of cut metrics is still not tractable problem. We thus further relax the prob-

lem to be an optimization problem over all metrics. We call this 𝑃metrics:

min
𝑑 is a metric

∑︀
{𝑢,𝑣}∈𝐸

𝑑(𝑢, 𝑣)∑︀
𝑢,𝑣∈𝑉

𝑑(𝑢, 𝑣)
.

Why is 𝑃metrics tractable? And if we obtain a good solution for 𝑃metrics, how can we use it to
obtain a good-enough solution for 𝑃conic combs of cut metrics?

1. 𝑃metrics is actually equivalent to a linear program (which we will call 𝐿𝑃metrics). We know
that linear programs can be solved in polynomial time.

(a) For every pair 𝑢, 𝑣, let 𝑥𝑢𝑣 be a variable in the LP. 𝑥𝑢𝑣 will be corresponding to 𝑑(𝑢, 𝑣).
The constraints that ensure that the variables 𝑥𝑢𝑣 define a metric are simply linear
constraints. These constraints are simply the non-negativity and triangle inequality
constraints over all pairs, which are:
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i. 𝑥𝑢𝑣 ≥ 0 for all 𝑢, 𝑣 ∈ 𝑉

ii. 𝑥𝑢𝑣 + 𝑥𝑣𝑤 ≥ 𝑥𝑢𝑤 for all 𝑢, 𝑣, 𝑤 ∈ 𝑉

(b) Recall that the objective function of 𝑃metrics is

min
𝑑 is a metric

∑︀
{𝑢,𝑣}∈𝐸

𝑑(𝑢, 𝑣)∑︀
𝑢,𝑣∈𝑉

𝑑(𝑢, 𝑣)
.

This objective function is fractional, which seems like it won’t let us get a linear program.
However, there is a straightforward trick that lets us convert objective functions that are
fractions of linear functions into a linear program, simply by noting that the objective
function is invariant to scaling all the variables by the same constant and by then adding

the constraint
∑︁

𝑢,𝑣∈𝑉
𝑥𝑢𝑣 ≥ 1 to our set of constraints. We then let the objective of

𝐿𝑃metrics then simply be
∑︁

{𝑢,𝑣}∈𝐸

𝑥𝑢𝑣. Any solution to 𝐿𝑃metrics can be scaled down to

let
∑︁

𝑢,𝑣∈𝑉
𝑥𝑢𝑣 = 1 (the scaling can only decrease the value of the objective function), and

hence the obtained optimal solution to the LP will be an optimal solution to 𝑃metrics.

Hence we see that 𝑃metrics is equivalent to a linear program 𝐿𝑃metrics which can be solved
efficiently.

2. Thus we know that we can obtain an optimal solution to 𝑃metrics, and this solution is an
arbitrary 𝑛-point metric. How can we convert this to a conic combination of cut metrics that
doesn’t do too much worse on the objective function? Here we use the following fact

Fact 2.1. The set of all conic combinations of cut metrics is equivalent to the set of all ℓ1
metrics.

It is easy to see that every non-negative linear combination of cut metrics is an ℓ1 metric. For
each cut metric with coefficient 𝛼𝑆 in our non-negative linear combination, simply define a
new coordinate in our ℓ1 space. For the coordinate corresponding to each cut, set the value of
all points in 𝑆 to 0 and in 𝑆 to 𝛼𝑆 . Thus this is an ℓ1 metric. The reverse implication requires
some work. At a high level, an ℓ1 metric can be thought of as a sum of line metrics. Then,
each line metric can be represented as a non-negative linear combination of cut metrics.

So the question now becomes “How to map an arbitrary 𝑛-point metric to an ℓ1 metric
without too much loss?”. But this is exactly what Bourgain’s embedding (which we studied
in the last lecture) does.

Theorem 2.2 (Bourgain). There exists an embedding 𝑓 from an arbitrary 𝑛-point metric
(𝑉, 𝑑𝑉 ) to ℓ1 such that for all 𝑢, 𝑣 ∈ 𝑉 , the following holds

𝑑𝑉 (𝑢, 𝑣) ≤ ||𝑓(𝑢) − 𝑓(𝑣)||1 ≤ 𝑂(log 𝑛) · 𝑑𝑉 (𝑢, 𝑣).

If we apply Bourgain’s embedding to the solution of 𝑃metrics, the denominator of our objective
can only increase (which is good for us) and the numerator of our objective can increase by
at most 𝑂(log 𝑛). Hence we obtain a good-enough solution for 𝑃conic combs of cut metrics which
is at most 𝑂(log 𝑛) worse than the optimal solution to the LP.
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Figure 1: An illustration of the relaxations we use to approximately solve uniform sparsest cut

3 Multi-Commodity Flow and Non-Uniform Sparsest Cut: Known
Upper and Lower Bounds

3.1 Multi-Commodity Flow

Much like the famed max-flow-min-cut duality which says that max flow and min cut are dual
problems, we also have a dual of the linear program 𝐿𝑃metrics. Consider the following multi-
commodity flow problem. We have 𝑘 pairs of vertices in the (weighted) graph 𝐺 = (𝑉,𝐸) given by
{𝑠𝑖, 𝑡𝑖} for 𝑖 ∈ {1, 2, ..., 𝑘}. We want to maximize 𝛼 such that there exists a feasible flow on 𝐺 such
that for all 𝑖 ∈ {1, 2, ..., 𝑘}, the flow from 𝑠𝑖 to 𝑡𝑖 is at least 𝛼.

With a little thought, one can see the optimization problem above is dual to 𝐿𝑃metrics, which
is the relaxation of uniform sparsest cut.

3.2 Non-Uniform Sparsest Cut

We can actually generalize the Uniform Sparsest Cut in such a way that the problem becomes much
more general but can still be solved approximately in the same way by using relax and round with
Bourgain’s embedding like uniform sparsest cut is solved. We now present this generalization.

Let 𝐺 = (𝑉,𝐸) be the complete graph on |𝑉 | = 𝑛 points, where there are sets of edge weights:
𝛼𝑢𝑣 ≥ 0 and 𝛽𝑢𝑣 ≥ 0 (for all 𝑢, 𝑣 ∈ 𝑉 ). Then the Non-Uniform Sparsest Cut problem is that of
finding 𝑆 ⊆ 𝑉 such that

min
𝑆⊆𝑉

∑︀
𝑢∈𝑆,𝑣∈𝑆

𝛼𝑢𝑣∑︀
𝑢∈𝑆,𝑣∈𝑆

𝛽𝑢𝑣

It is easy to observe that this is indeed a generalization of uniform sparsest cut by letting
𝛼𝑢𝑣 = 1 if {𝑢, 𝑣} ∈ 𝐸 and 0 otherwise, and letting 𝛽𝑢𝑣 = 1 for all 𝑢, 𝑣 ∈ 𝑉 .

For a given optimization problem and an LP relaxation corresponding to it, we often care
about something called the Integrality Gap. The Integrality Gap is defined as the maximum over
all problem instances of the ratio between the true optimal value to the optimal value of the relaxed
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Figure 2: An illustration of the tighter relaxations we can use to approximately solve sparsest cut

Upper Bound Lower Bound

Uniform Sparsest Cut O(
√︀

log 𝑛) Ω(log log𝑛)

Non-Uniform Sparsest Cut O(
√︀

log 𝑛 log log𝑛) Ω(
√︀

log 𝑛) (only for solving using SDP)

LP:

Integrality Gap = max
all problem instances 𝐼

OPT(𝐼)

LP(𝐼)

Here OPT(𝐼) corresponds to the true optimal value and LP(𝐼) corresponds to the optimal value of
the relaxed LP.

We have shown that the Integrality Gap of the uniform sparsest cut 𝐿𝑃metrics relaxation is
𝑂(log 𝑛). In fact, the following is true.

Fact 3.1. The Integrality Gap of Non-Uniform Sparset Cut = Worst Case Distortion Needed to
map arbitrary 𝑛-point metrics into ℓ1 = 𝑂(log 𝑛)

This shows that the Bourgain embedding is indeed the right tool for the rounding job when
trying to solve Non-Uniform Sparsest Cut by using LP relaxations.

3.3 Known Upper and Lower Bounds for Sparsest Cut

The fact above shows that if we hope to get better results for Non-Uniform Sparsest Cut, we will
need to use tighter relaxations than LP relaxations. There exists a hierarchy of such tighter relax-
ations, for example SDP relaxations (which corresponds to ℓ22 metrics) that people have studied.

We also state some known upper and lower bounds in the table above.

4 Distortion-Dimension Tradeoff Lower Bounds

We now embark on a proof of lower bounds for distortion-dimension tradeoffs for embedding arbi-
trary 𝑛-point metrics into any normed space. We do not complete this proof, and will do so in the
next lecture.
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Theorem 4.1. For every 𝐷 < 3, there is a constant 𝑐𝐷 > 0 (which depends only on the distortion
𝐷) such that if 𝑍 is a 𝑘-dimensional normed space such that all 𝑛-point metrics embed into 𝑍 with
distortion at most 𝐷, then 𝑘 ≥ 𝑐𝐷 · 𝑛.

This theorem says that we can’t achieve distortion less than 3 with dimension sublinear in the
number of points. The idea behind the proof is that we will come up with a large number of 𝑛-point
metrics that are different from each other, and and argue that if we find a low distortion embedding
into 𝑍 for all of them, then all these embeddings must be sufficiently different from each other. We
will then argue that there can’t be these many embeddings into 𝑍 that are all so different if 𝑘 is
too small (sublinear in 𝑛). This sort of counting argument will provide us with a contradiction.

Consider 𝑛 even, and 𝐾𝑛
2
,𝑛
2

= (𝑉,𝐸), the complete bipartite graph on 𝑛 vertices. So |𝑉 | = 𝑛

and |𝐸| =
(︁𝑛

2

)︁2
= 𝑚

Now consider the set of all subgraphs of 𝐾𝑛
2
,𝑛
2

(this set has size 2|𝐸| = 2𝑚) and for every graph
𝐻 in this set define an 𝑛-point metric as follows:

𝑑𝐻(𝑢, 𝑣) , min{shortest path in 𝐻 between 𝑢 and 𝑣, 3}

Fact 4.2. If 𝐻1 and 𝐻2 are two different subgraphs of 𝐾𝑛
2
,𝑛
2
, then 𝑑𝐻1 and 𝑑𝐻2 are different in

the following sense: There exists {𝑢, 𝑣} ∈ 𝐸 such that either (𝑑𝐻1(𝑢, 𝑣) = 1 and 𝑑𝐻2(𝑢, 𝑣) = 3) or
(𝑑𝐻1(𝑢, 𝑣) = 3 and 𝑑𝐻2(𝑢, 𝑣) = 1).

This is easy to see using the fact that there must exist an edge {𝑢, 𝑣} ∈ 𝐸 which exists in
exactly one of 𝐻1 or 𝐻2. Thus we have a set of 2𝑚 different 𝑛-point metrics, each corresponding
to a subgraph of 𝐾𝑛

2
,𝑛
2
. In particular, if for each such 𝐻1 and 𝐻2, we consider their respective

embeddings into 𝑍 (scaled to be non-expanding), they must be different if the distortion is strictly
less than 3.

Now to use any counting argument for maps into a continuous space, we must discretize the
continuous space (𝑍 in our case) using a tool called 𝛿-net.

Definition 4.3 (𝛿-net). A set of points 𝑃 ⊆ 𝑍 is called a 𝛿-net of 𝑍 if for all 𝑥 ∈ 𝑍 we can find at
least one point 𝑦 ∈ 𝑃 such that 𝑑𝑍(𝑥, 𝑦) ≤ 𝛿.

We can show, using a greedy construction that any 𝑘-dimensional normed space 𝑍 has a 𝛿-net

P with |𝑃 | ≤
(︁ 𝑐
𝛿

)︁𝑘
where 𝑐 is a universal constant.

We complete the rest of the proof in the next lecture.
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