
CS 369M: Metric Embeddings and Algorithmic Applications 10/30/2018

Lectures 11-13: Tree Embeddings for Problems with Capacities

Lecturer: Moses Charikar Scribe: Margalit Glasgow

1 Introduction

In Lecture 9, we proved that any 𝑛-point metric can be embedded into a distribution on hierarchical
well-separated tree metrics (HSTs) with distortion 𝑂(log(𝑛)) [2]. In today’s lecture, we discuss
how this result can be used to approximate not only shortest path lengths in graphs, but also
capacities across cuts. This technique will ultimately yield 𝑂(log(𝑛)) approximation algorithms for
the Oblivious Routing Problem and the Minimum Bisection Problem.

2 Two Motivating Problems

We begin by motivating this lecture with two main problems, Oblivious Routing and Minimum
Bisection.

2.1 The Oblivious Routing Problem

Let 𝐺 = (𝑉,𝐸) be a graph with 𝑛 vertices and symmetric capacities 𝑐 : 𝐸 → R+. Given a set of
demand pairs 𝑑 : 𝑉 ×𝑉 → R+, we would like to route 𝑑(𝑢, 𝑣) units of flow between each demand pair

(𝑢, 𝑣) while minimizing the congestion, max
𝑒∈𝐸

flow(𝑒)

𝑐(𝑒)
. In the oblivious version of this problem, we

have to commit to a predetermined flow route between each pair before learning what the demands
are.

Ultimately we will show that it is possible to commit to flow routes such that for any set of
demands, the congestion is no more than 𝑂(log(𝑛)) times the optimal congestion, i.e., compared to
when we know the demands beforehand. We will accomplish this by committing to route a single
unit of flow from 𝑢 to 𝑣 on a weighted combination of flow paths. Each path will be given by the
single path from 𝑢 to 𝑣 in one tree in the support of our distribution, and weighted according to
the probability of that tree in the distribution.

2.2 The Minimum Bisection Problem

Let 𝐺 = (𝑉,𝐸) be a graph with 𝑛 vertices. We want to partition 𝐺 into 𝑆 and 𝑆 := 𝑉 ∖ 𝑆 with
|𝑆| = |𝑉 |/2 so as to minimize the total capacity of edges between 𝑆 and 𝑆.

For this problem, we will show that we can achieve a polynomial-time 𝑂(log(𝑛)) approxima-
tion by choosing a bisection of the vertices that is optimal for one tree 𝑇 in the support of the
probabilistic tree embedding.

2.3 Analysis

Both of the algorithms above use the following generic procedure:

1

1. Create a probabilistic embedding from 𝐺 to a distribution over trees, which preserves some
notion of cut capacities up to a 𝜌-approximation, formally defined later (see Definition 3.2
and Corollary 5.2).

2. Given a problem instance, solve it optimally on each tree 𝑇 in the support of the distribution,
producing a solution OPT𝑇 . By exploiting the simple structure of trees, finding an optimal
solution to NP hard problems can often be done in polynomial time.

3. Map the optimal tree solutions to a solution on 𝐺, creating a feasible solution A𝐺.

Our analysis will rely on the fact that because our distribution over trees preserves cut capacities
up to a factor of 𝜌, the feasible solution 𝐴𝐺 only looses this factor when compared to the optimal
solution on 𝐺. The specifics of this analysis will depend on the problem we are solving, but the
main ingredients are in Lemma 4.3 and Lemma 4.4, which bound the congestion of flows mapped
between decomposition trees and 𝐺.

3 Mappings between Trees and Graphs

In this section, we describe how to map edges from a graph 𝐺 to a decomposition tree 𝑇 (defined
below) and back to 𝐺. This mapping will in turn define a way to maps flows from 𝐺 to 𝑇 and back
to 𝐺, which will be useful in the analysis of our approximation algorithms.

Let 𝐺 = (𝑉,𝐸) be a graph with capacities given by 𝑐 : 𝐸 → 𝑅+. and lengths given by
ℓ : 𝐸 → 𝑅+. A decomposition tree 𝑇 = (𝑉𝑇 , 𝐸𝑇) is a rooted tree whose leaves correspond to the
vertices of 𝐺. The tree 𝑇 may have additional vertices. For clarity, we will index edges and vertices
in 𝑇 by the subscript 𝑡.

Any decomposition tree 𝑇 induces the following four mappings:

1. A map 𝑃 : 𝐸 → 𝐸*
𝑇 which maps a graph edge (𝑢, 𝑣) to the unique tree path from leaf 𝑢 to

leaf 𝑣 in 𝑇 .

2. A vertex mapping 𝑚𝑉 : 𝑉𝑇 → 𝑉 maps a vertex 𝑣𝑡 in 𝑉𝑇 to an arbitrary leaf in the subtree
rooted at 𝑣𝑡.

3. An edge mapping 𝑚𝐸 : 𝐸𝑇 → 𝐸* maps edges in 𝑇 to paths in 𝐺. For any edge 𝑒𝑡 = (𝑢𝑡, 𝑣𝑡) ∈
𝐸𝑇 , 𝑚𝐸(𝑒𝑡) will be some arbitrarily chosen shortest path between 𝑚𝑉 (𝑢𝑡) and 𝑚𝑉 (𝑣𝑡).

4. A mapping 𝑀 : 𝐸 → 𝐸* from each edge 𝑒𝑖 = (𝑢, 𝑣) in 𝐸 to multisets of 𝐸. This mapping is
defined as the union of all paths 𝑚𝐸(𝑒𝑡) for each edge 𝑒𝑡 in the path 𝑃 (𝑒𝑖) from leaves 𝑢 to
𝑣 in 𝑇 . We will represent this mapping 𝑀 by a matrix, where 𝑀𝑖𝑗 is the number of times 𝑒𝑗
lies on a path 𝑚𝐸(𝑒𝑡) for 𝑒𝑡 in the unique simple tree path from 𝑢 to 𝑣. Formally,

𝑀𝑖𝑗 =
∑︁

𝑒𝑡∈𝑃 (𝑒𝑖)

1𝑒𝑗∈𝑚𝐸(𝑒𝑡). (1)

Example 1. Consider the graph 𝐺 and a decomposition tree, 𝑇 in Figure 1. We have labeled each
vertex 𝑣𝑡 of 𝑇 with the label 𝑚𝑉 (𝑣𝑡). Note that the values on the edges are their labels, not lengths
or capacities.

2

𝑎

𝑏 𝑐

𝐺

1

2

𝑐

𝑎 𝑏

𝑐𝑏𝑎

12

5

3

4

𝑇

Figure 1: A graph and decomposition tree

The following matrix represents the mappings 𝑚𝐸 for each edge of the tree:

1 2

1 0 1

2 0 0

3 0 0

4 0 1

5 1 1

The follow matrix represents the mapping 𝑀 ,

1 2

1 1 0

2 2 1

Let ℳ be the set of admissible mappings, that is, the set of mappings induced by some decom-
position tree of 𝐺.

A probabilistic mapping is given by weights 𝜆𝑀 ≥ 0 for each mapping 𝑀 ∈ ℳ where
∑︁

𝜆𝑀 =
1.

Remark. A probabilistic mapping can equivalently be defined by a distribution {𝜆𝑇 } over decom-
position trees, where for each mapping 𝑀 induced by a tree 𝑇 , we put 𝜆𝑀 = 𝜆𝑇 . In the rest of
these notes, we will sometimes use the weights {𝜆𝑇 } and {𝜆𝑀} interchangeably.

We are now ready to define capacity distortion (relative load) of an probabilistic mapping, in
analogy with our previous notion of length distortion, or stretch of a probabilistic embedding:

Capacity : Length :: Relative Load : Stretch

The stretch of an edge is a measure of how much the length of an edge (𝑢, 𝑣) ∈ 𝐸 is stretched
when it is mapped by 𝑀 to a multiset of 𝐸.

Definition 3.1 (Distance Mapping). For any edge 𝑒𝑗 ∈ 𝐸, define

dist𝑀 (𝑒𝑖) =
∑︁
𝑗

𝑀𝑖𝑗ℓ𝑗 .

3

and

stretch𝑀 (𝑒𝑖) =
dist𝑀 (𝑒𝑖)

ℓ𝑖
.

The average stretch of a probabilistic mapping is

E[stretch𝑀 (𝑒𝑖)] =
∑︁ 𝜆𝑀dist𝑀 (𝑒𝑖)

ℓ𝑖
.

Given a distribution over mappings, the stretch of the distribution is the maximum over all
edges of the average stretch of an edge.

Definition 3.2. [Capacity Mapping] For any edge 𝑒𝑗 ∈ 𝐸, define

load𝑀 (𝑒𝑗) =
∑︁
𝑖

𝑀𝑖𝑗𝑐𝑖.

Define the relative load

rload𝑀 (𝑒𝑗) =
load𝑀 (𝑒𝑗)

𝑐𝑗
.

The average relative load of a probabilistic mapping is

E[rload𝑀 (𝑒𝑗)] =
∑︁ 𝜆𝑀 load𝑀 (𝑒𝑗)

𝑐𝑗
.

Given a distribution over mappings, the relative load of the distribution is the maximum over
all edges of the average relative load of an edge.

In our analysis of our approximation algorithms, it will be convenient to map flows from 𝐺 to
a decomposition tree 𝑇 and vice versa. We will do this by mapping the flow on each edge 𝑒 in 𝐺 to
a flow of that same value on the entire path 𝑃 (𝑒) in 𝑇 associated with that edge. A flow in 𝑇 can
be mapped to a flow in 𝐺 by mapping the flow on each edge 𝑒𝑡 of 𝑇 to a flow of the same value on
the path 𝑚𝐸(𝑒𝑡) in 𝐺.

Formally, given a multi-commodity flow 𝑓 : 𝐸 → 𝑅+ on 𝐺, and a decomposition tree 𝑇 with
associated mappings 𝑃 , 𝑚𝑉 , 𝑚𝐸 , and 𝑀 , define the linear mapping 𝑚′ : 𝑅|𝐸| → 𝑅|𝐸𝑇 | by

𝑚′(𝑓)𝑒𝑡 =
∑︁

𝑒∈𝐸:𝑒𝑡∈𝑃 (𝑒)

𝑓𝑒.

Similarly, define the linear mapping 𝑚 : 𝑅|𝐸𝑇 | → 𝑅|𝐸| by

𝑚(𝑓)𝑒 =
∑︁

𝑒𝑡∈𝐸𝑇 :𝑒∈𝑚𝐸(𝑒𝑡)

𝑓𝑒𝑡 .

It is easy to check that
𝑚(𝑚′(𝑓)) = 𝑀𝑓.

We also need to define capacities 𝑐′ : 𝐸𝑇 → 𝑅+ in each decomposition tree so that we can
measure the congestion of a flow in 𝑇 . For a tree edge 𝑒𝑡 = (𝑣𝑡, 𝑢𝑡), define

𝑐′(𝑒𝑡) :=
∑︁

𝑒∈𝐸:𝑒𝑡∈𝑃 (𝑒)

𝑐𝑒. (2)

4

4 Analysis

In this section we will prove the following two theorems.

Theorem 4.1. Given a graph 𝐺 and distribution {𝜆𝑀} over ℳ with average relative load 𝜌, we
can find a predetermined routing which, given any set of demands, achieves at most 𝜌 times the
congestion of the optimal routing of the demands in retrospect.

Theorem 4.2. Given a graph 𝐺 and a distribution {𝜆𝑀} over ℳ with average relative load 𝜌, in
polynomial time, we can find a bisection of weight at most 𝜌 times the optimal bisection of 𝐺.

In the next section, we will show that we can satisfy the hypothesis of these two theorems for
𝜌 = 𝑂(log(𝑛)). The proof of these theorems rely on the next two lemmas:

Lemma 4.3. For any flow 𝑓 of congestion 𝐶𝐺(𝑓) in 𝐺, the congestion 𝐶𝑇 (𝑚′(𝑓)) of 𝑚′(𝑓) in 𝑇
is at most 𝐶𝐺(𝑓).

Proof. This follows directly from our definition of tree capacities in Equation (2). For any tree edge
𝑒𝑡, we have

𝑚′(𝑓)𝑒𝑡 =
∑︁

𝑒∈𝐸:𝑒𝑡∈𝑃 (𝑒)

𝑓𝑒 ≤
∑︁

𝑒∈𝐸:𝑒𝑡∈𝑃 (𝑒)

𝐶𝐺(𝑓)𝑐𝑒 = 𝐶𝐺(𝑓)𝑐′(𝑒𝑡).

Hence for every tree edge, the congestion is no more than 𝐶𝐺(𝑓).

Lemma 4.4. Given a distribution {𝜆𝑇 } over decomposition trees, with average relative load 𝜌,
for any flows 𝑓𝑇 on each tree of congestion at most 𝐶, the congestion of the expected graph flow,
𝐶𝐺(E𝑇 [𝑚(𝑓𝑇)]), is at most 𝐶𝜌.

Proof. Given a flow 𝑓𝑇 , we have 𝐶𝐺(E𝑇 [𝑚(𝑓)]) = max
𝑒

E𝑇 [𝑚(𝑓𝑇)𝑒]

𝑐𝑒
. For every graph edge 𝑒𝑗 and

a fixed tree 𝑇 , we have

𝑚(𝑓𝑇)𝑒𝑗 =
∑︁

𝑒𝑡:𝑒𝑗∈𝑚𝐸(𝑒𝑡)

𝑓𝑇 𝑒𝑡 ≤
∑︁

𝑒𝑡:𝑒𝑗∈𝑚𝐸(𝑒𝑡)

𝐶𝑐′(𝑒𝑡) = 𝐶
∑︁

𝑒𝑡:𝑒𝑗∈𝑚𝐸(𝑒𝑡)

∑︁
𝑒𝑖:𝑒𝑡∈𝑃 (𝑒𝑖)

𝑐𝑖

By definition of the matrix 𝑀 in Equation (1), we have

𝑀𝑖𝑗 =
∑︁

𝑒𝑡∈𝑃 (𝑒𝑖)

1𝑒𝑗∈𝑚𝐸(𝑒𝑡) =
∑︁

𝑒𝑡:𝑒𝑗∈𝑚𝐸(𝑒𝑡)

1𝑒𝑡∈𝑃 (𝑒𝑖),

so
𝑚(𝑓𝑇)𝑒𝑗 = 𝐶

∑︁
𝑖

𝑀𝑖𝑗𝑐𝑖 = load𝑀 (𝑒𝑗).

Hence for any edge,
E𝑇 [𝑚(𝑓𝑇)𝑒]

𝑐𝑒
= 𝐶E𝑇 [rload𝑀 (𝑒𝑗)] ≤ 𝐶𝜌,

because the average relative load of our distribution of mappings is 𝜌. It follows that

𝐶𝐺(E𝑇 [𝑚(𝑓)]) ≤ 𝐶𝜌.

5

We are now ready to prove our main results for oblivious routing and minimum bisection. We
begin with oblivious routing, which is more straightforward.

Proof. (Theorem 4.1) We can construct a predetermined routing from the distribution over map-
pings in the following way. For each tree 𝑇 in the support of the distribution of mappings, let
𝑟𝑇 (𝑢, 𝑣) be the tree flow routing one unit of flow from the leaf 𝑢 to the leaf 𝑣 in 𝑇 on the unique
tree path from 𝑢 to 𝑣. Now for any pair (𝑢, 𝑣), to route one unit of flow from 𝑢 to 𝑣 in 𝐺, we will
use the flow

𝑟(𝑢, 𝑣) =
∑︁
𝑇

𝜆𝑇𝑚(𝑟𝑇 (𝑢, 𝑣)).

For demands {𝑑(𝑢, 𝑣)}, the final flow 𝑓 in 𝐺 is given by

𝑓 =
∑︁
(𝑢,𝑣)

𝑑(𝑢, 𝑣)𝑟(𝑢, 𝑣) =
∑︁
𝑇

𝜆𝑇𝑚(𝑓𝑇),

where
𝑓𝑇 =

∑︁
(𝑢,𝑣)

𝑑(𝑢, 𝑣)𝑟𝑇 (𝑢, 𝑣).

Suppose the optimal routing in hindsight, 𝑓*, has congestion at most 𝐶𝐺(𝑓*) in 𝐺. Recall that
we want to show that

𝐶𝐺(𝑓) ≤ 𝜌𝐶𝐺(𝑓*).

For each tree 𝑇 in the support of the distribution of mappings, let 𝑓*
𝑇 = 𝑚′(𝑓*), where 𝑚′ is

the mapping given by 𝑇 . Then by Lemma 4.3, we have

𝐶𝑇 (𝑓*
𝑇) ≤ 𝐶𝐺(𝑓*). (3)

Because 𝑓𝑇 is the optimal way to route the demands in 𝑇 , and 𝑓*
𝑇 and 𝑓𝑇 route the same

demands, we have
𝐶𝑇 (𝑓𝑇) ≤ 𝐶𝑇 (𝑓*

𝑇). (4)

Finally, by Lemma 4.4, combining Equation (3) and Equation (4), we have

𝐶𝐺

(︃∑︁
𝑇

𝜆𝑇𝑚(𝑓𝑇)

)︃
= 𝐶𝐺 (E𝑇𝑚(𝑓𝑇)) ≤ 𝜌𝐶𝐺(𝑓*). (5)

The approximation ratio for minimum bisection follows from a slightly more complicated argu-
ment.

Proof. (Theorem 4.2)
Given a distribution over tree mappings with average relative load at most 𝜌, we will produce a

bisection in the following way. For each tree 𝑇 in the support of this distribution1, we compute the
minimum cost leaf bisection (𝑆𝑇 , 𝑆𝑇). The cost of a leaf bisection (𝑆, 𝑆) in a tree is defined as the
minimum capacity of edges that must be removed to separate 𝑆 from 𝑆. Computing the optimal
(minimal cost) leaf bisection is possible in polynomial time using dynamic programming, see [3] for

1By a problem on the homework, the support of this distribution has size 𝑂(𝑛2), see also [4].

6

example. We then output the minimum bisection on 𝐺 given by one of the (𝑆𝑇 , 𝑆𝑇) which achieves
the minimum capacity in 𝐺.

We will use the notation cost𝑇 (𝑆, 𝑆) to denote the capacity of the leaf bisection (𝑆, 𝑆) in 𝑇 ,
and cost𝐺(𝑆, 𝑆) to denote the cost of the bisection (𝑆, 𝑆) in 𝐺.

Let (𝑆*, 𝑆
*
) be the optimal bisection in 𝐺. We want to show that there exists some 𝑇 in the

support such that
cost𝐺(𝑆𝑇 , 𝑆𝑇) ≤ 𝜌cost𝐺(𝑆*, 𝑆

*
). (6)

Claim 4.5. For any tree 𝑇 , and any bisection (𝑆, 𝑆), we have

cost𝑇 (𝑆, 𝑆) ≥ cost𝐺(𝑆, 𝑆).

Proof. Let 𝑠 be a super-source in 𝐺, connected by edges of infinite capacity to each vertex in 𝑆,
and let 𝑡 be a super-sink in 𝐺, connected by edges of infinite capacity to each vertex in 𝑆. Without
exceeding edge capacities, we can send at most cost𝐺(𝑆, 𝑆) units of flow from 𝑠 to 𝑡 in 𝐺, because
any flow must cross the cut from 𝑆 to 𝑆. Analogously adding a super-source 𝑠 and super-sink 𝑡 to
𝑇 , by Lemma 4.3, we can send a flow of congestion at most 1 from 𝑠 to 𝑡 in 𝑇 . Hence the cost of
the bisection in the tree is at least cost𝐺(𝑆, 𝑆).

To show the existence of a tree satisfying Equation (6), it suffices to prove the following claim:

Claim 4.6.
E𝑇

[︀
cost𝐺(𝑆𝑇 , 𝑆𝑇)

]︀
≤ 𝜌cost𝐺(𝑆*, 𝑆

*
).

Proof. First note that for any 𝑇 , by Claim 4.5 and optimality of the bisection (𝑆𝑇 , 𝑆𝑇), we have

E𝑇

[︀
cost𝐺(𝑆𝑇 , 𝑆𝑇)

]︀
≤ E𝑇

[︀
cost𝑇 (𝑆𝑇 , 𝑆𝑇)

]︀
≤ E𝑇

[︁
cost𝑇 (𝑆*, 𝑆

*
)
]︁

(7)

By Claim 4.5, in each tree 𝑇 , there exists a flow 𝑓𝑇 of value cost𝑇 (𝑆*, 𝑆
*
) from 𝑆* to 𝑆

*
with

congestion at most 1 in 𝑇 .
We can map these flows 𝑓𝑇 to a flow 𝑓 of value E𝑇 [cost𝑇 (𝑆*, 𝑆

*
)] in 𝐺, where

𝑓 = E𝑇 [𝑚(𝑓𝑇)].

Then by Lemma 4.4, the congestion of 𝑓 in 𝐺 is at most 𝜌. Scaling down by 𝜌, we get a flow of

congestion at most 1 in 𝐺 and value
E𝑇 [cost𝑇 (𝑆*, 𝑆

*
)]

𝜌
.

It follows that any cut between 𝑆* and 𝑆
*

in 𝐺 must have capacity at least
E𝑇 [cost𝑇 (𝑆*, 𝑆

*
)]

𝜌
,

and hence
E𝑇 [cost𝑇 (𝑆*, 𝑆

*
)]

𝜌
≤ cost𝐺(𝑆*, 𝑆

*
).

Combining this with Equation (7) yields the claim.

Using Claim 4.6, we see that there must exist some tree 𝑇 in the support such that

cost𝐺(𝑆𝑇 , 𝑆𝑇) ≤ 𝜌cost𝐺(𝑆*, 𝑆
*
).

By this claim, there must exist a tree 𝑇 satisfying Equation (6), so our algorithm can find a
bisection of cost at most 𝜌 times the cost of the optimal bisection of 𝐺.

7

5 Low Relative Load Probabilistic Mappings

In this section, we will prove the following result.

Theorem 5.1 (Räcke [4]). For every family of admissible mappings ℳ, the following are equivalent:

1. For every collection of lengths, there exists a distribution {𝜆𝑀} over mappings with stretch
at most 𝜌.

2. For every collection of capacities, there exists a distribution {𝜆𝑀} over mappings with relative
load at most 𝜌.

Remark. The distribution over tree mappings which yields low stretch may not be the same as the
distribution which yields low distortion. For a discussion of distributions which yield low stretch
and distortion, see Feige-Andersen [1], section 3.4.

A corollary of this theorem proves that our algorithms in the previous section achieve approxi-
mations of 𝑂(log(𝑛)):

Corollary 5.2. For every collection of capacities, there exists a distribution over decomposition
trees which induces a distribution {𝜆𝑀} over mappings with relative load at most 𝑂(log(𝑛)).

The proof of the corollary relies on the result of FRT:

Theorem 5.3 (FRT [2]). For any graph 𝐺 = (𝑉,𝐸) with shortest path distances 𝑑(𝑢, 𝑣) ≥ 1, there
exists some distribution over HSTs 𝑇 , such that

∙ For every tree 𝑇 in the support, 𝑑(𝑢, 𝑣) ≤ 𝑑𝑇 (𝑢, 𝑣).

∙ On average, E𝑇 [𝑑𝑇 (𝑢, 𝑣)] ≤ 𝑂(log(𝑛))𝑑(𝑢, 𝑣).

Tree distances 𝑑𝑇 (𝑢, 𝑣) are measured by the weight of the least common ancestor of 𝑢 and 𝑣 in 𝑇 .
The weight of any node is 8ℎ, where ℎ is its height from the bottom of the tree. Each leaf has height
0, and each path from the root to a leaf is of equal length.

Proof. (Corollary 5.2) We will show how Theorem 5.3 implies the first statement in Theorem 5.1.
For a graph 𝐺 with lengths ℓ𝑖, scale the lengths so that ℓ𝑖 ≥ 1. Let 𝜆𝑇 be the probability of the
tree 𝑇 in the distribution given by Theorem 5.3. For each 𝑇 in the support, let 𝑀 be the mapping
induced by this tree, and choose 𝜆𝑀 = 𝜆𝑇 .

For any edge (𝑢, 𝑣) = 𝑒𝑖 ∈ 𝐸, let ℎ𝑇 (𝑒𝑖) denote the height of the least common ancestor of 𝑢
and 𝑣 in 𝑇 .

Consider the unique path 𝑃 (𝑒𝑖) in 𝑇 from 𝑢 to 𝑣 which traverses exactly two edges 𝑒ℎ,1𝑡 and

𝑒ℎ,2𝑡 between every consecutive pair of heights (ℎ, ℎ + 1), ℎ < ℎ𝑇 (𝑒𝑖). Let (𝑢ℎ,𝑘𝑡 , 𝑣ℎ,𝑘𝑡) = 𝑒ℎ,𝑘𝑡 for
𝑘 ∈ {1, 2}.

By definition of the distance mapping,

dist𝑀 (𝑒𝑖) =
∑︁
𝑒𝑡∈𝑃

∑︁
𝑒𝑗∈𝑚𝐸(𝑒𝑡)

ℓ𝑗 .

Summing over tree edges, we have

dist𝑀 (𝑒𝑖) =

ℎ𝑇 (𝑒𝑖)−1∑︁
ℎ=0

∑︁
𝑘=1,2

∑︁
𝑒𝑗∈𝑚𝐸(𝑒ℎ,𝑘𝑡)

ℓ𝑗 =

ℎ𝑇 (𝑒𝑖)−1∑︁
ℎ=0

∑︁
𝑘=1,2

𝑑(𝑚𝑉 (𝑢ℎ,𝑘𝑡),𝑚𝑉 (𝑣ℎ,𝑘𝑡)).

8

Because 𝑚𝑉 (𝑢ℎ,𝑘𝑡) and 𝑚𝑉 (𝑣ℎ,𝑘𝑡) have a least common ancestor at height at most ℎ + 1, by the
dominating property of the FRT embeddings, we have

𝑑(𝑚𝑉 (𝑢ℎ,𝑘𝑡),𝑚𝑉 (𝑣ℎ,𝑘𝑡)) ≤ 8ℎ+1.

It follows that the average distance of 𝑒𝑖,

E𝑀 [dist𝑀 (𝑒𝑖)] ≤ E𝑇

⎡⎣ℎ𝑇 (𝑒𝑖)−1∑︁
ℎ=0

∑︁
𝑘=1,2

𝑑(𝑚𝑉 (𝑢ℎ,𝑘𝑡),𝑚𝑉 (𝑣ℎ,𝑘𝑡))

⎤⎦ ≤ E𝑇

⎡⎣ℎ𝑇 (𝑒𝑖)−1∑︁
ℎ=0

2 · 8ℎ+1

⎤⎦
≤ E𝑇

[︁
8ℎ𝑇 (𝑒𝑖)+1

]︁
= 8E𝑇 [𝑑𝑇 (𝑢, 𝑣)] ≤ 𝑂(log(𝑛))𝑑(𝑢, 𝑣) ≤ 𝑂(log(𝑛))ℓ𝑖.

It follows that the average stretch of 𝑒𝑖 is

E𝑀

[︂
dist𝑀 (𝑒𝑖)

ℓ𝑖

]︂
≤ 𝑂(log(𝑛)),

which proves that the probabilistic mapping given by {𝜆𝑀} has stretch at most 𝑂(log(𝑛)).

To prove Theorem 5.1, we will use the following two lemmas relating minimum stretch (resp.
relative load) with a two player game.

Lemma 5.4. For every family of admissible mappings ℳ, there exists a distribution over mappings

with stretch at most 𝜌 if and only if for every set of 𝛼𝑖 ≥ 0 where
∑︁

𝛼𝑖 = 1, there exists an 𝑀 ∈ ℳ
such that ∑︁

𝛼𝑖 stretch 𝑀 (𝑒𝑖) ≤ 𝜌. (8)

The following lemma is the analogous result for relative load.

Lemma 5.5. For every family of admissible mappings ℳ, there exists a distribution over mappings

with relative load at most 𝜌 if and only if for every set of 𝛽𝑗 ≥ 0 where
∑︁

𝛽𝑗 = 1, there exists a

mapping 𝑀 ∈ ℳ such that ∑︁
𝛽𝑗rload𝑀 (𝑒𝑗) ≤ 𝜌

∑︁
𝛽𝑗 .

The proof of these lemmas is application of von Neumann’s minimax Theorem:

Theorem 5.6 (Minimax). Given a two player game where Player 1 chooses an allowed strategy
𝑀 , and Player 2 chooses an allowed strategy 𝑖, where the payoff of the game is 𝑝(𝑖,𝑀), we have

min
{𝜆𝑀}:

∑︀
𝜆𝑀=1

max
𝑖

∑︁
𝑀

𝜆𝑀 𝑝(𝑖,𝑀) (9)

= max
{𝛼𝑖}:

∑︀
𝛼𝑖=1

min
𝑀

∑︁
𝑖

𝛼𝑖 𝑝(𝑖,𝑀). (10)

We call this value the value of the game.

9

Proof. (Lemma 5.4) Consider a zero sum game in which Player 1, MAP, is trying to find a good
mapping, and Player 2, EDGE, tries to find an edge on which this mapping has high average
stretch. The payoff 𝑝(𝑀, 𝑖) of this game is the stretch of 𝑒𝑖 in mapping 𝑀 .

Suppose there exists a distribution 𝜆𝑀 on ℳ with stretch at most 𝜌. Then by Equation (9) the
value of the game is at most 𝜌 because for any edge, the average stretch is less than 𝜌. It follows

by Theorem 5.6 that for any 𝛼𝑖 where
∑︁

𝛼𝑖 = 1, there exists some mapping 𝑀 such that the sum

in Equation (8) is at most the value of the game, 𝜌. This yields one direction of the lemma.
Now suppose for every set 𝛼𝑖, Equation (8) holds. It follows that the value of the game is at

most 𝜌, meaning the value in Equation (9) is at most 𝜌, and hence there exists a distribution of
mappings 𝜆𝑀 with stretch at most 𝜌.

Lemma 5.5 follows by the same reasoning.
We are now ready to prove Theorem 5.1.

Proof. (Theorem 5.1) We first show that the first statement implies the second. By Lemma 5.4, the

first statement implies that for any set of lengths ℓ𝑖 and 𝛼𝑖 with
∑︁

𝛼𝑖 = 1, there exists a mapping

𝑀 such that ∑︁
𝑖

𝛼𝑖
dist𝑀 (𝑒𝑖)

ℓ𝑖
≤ 𝜌. (11)

Recall that we want to show that for any 𝛽𝑖 which sum to 1, we have∑︁
𝑗

𝛽𝑗
dist𝑀 (𝑒𝑗)

𝑐𝑗
≤ 𝜌. (12)

Given some 𝛽𝑗 , choose 𝛼𝑖 = 𝛽𝑖, and ℓ𝑖 =
𝛽𝑖
𝑐𝑖

. Employing Equation (11), it follows that

∑︁
𝑖

𝛽𝑖
𝑐𝑖dist𝑀 (𝑒𝑖)

𝛽𝑖
≤ 𝜌. (13)

Now ∑︁
𝑖

𝛽𝑖
𝑐𝑖dist𝑀 (𝑒𝑖)

𝛽𝑖
=
∑︁
𝑖

𝑐𝑖
∑︁
𝑗

𝑀𝑖𝑗ℓ𝑗 =
∑︁
𝑖,𝑗

𝑀𝑖𝑗
𝑐𝑖𝛽𝑗
𝑐𝑗

=
∑︁
𝑗

𝛽𝑗
load𝑀 (𝑒𝑗)

𝑐𝑗
,

yielding Equation (12). By Lemma 5.5, this implies that there exists a distribution on ℳ with
relative load at most 𝜌.

We can similarly show that the second statement implies the first by choosing 𝛽𝑖 = 𝛼𝑖, and
𝑐𝑖 = 𝛼𝑖/ℓ𝑖.

References

[1] Reid Andersen and Uriel Feige. Interchanging distance and capacity in probabilistic mappings.
CoRR, abs/0907.3631, 2009.

[2] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating ar-
bitrary metrics by tree metrics. Journal of Computer and System Sciences, 69(3):485–497,
2004.

10

[3] Marek Karpinski, Andrzej Lingas, and Dzmitry Sledneu. Optimal cuts and partitions in tree
metrics in polynomial time. Information Processing Letters, 113(12):447–451, 2013.

[4] Harald Räcke. Optimal hierarchical decompositions for congestion minimization in networks.
In Proceedings of the fortieth annual ACM symposium on Theory of computing, pages 255–264.
ACM, 2008.

11

