
AS

a) W
ac

b) B

c) Yo

tw
co
no

W
an
m
o

SSIGNMEN

Reflection

Image Pro

What is an ima
ccomplish?
riefly describ

ou are hired
wo categories
onveyor belt,
ot overlap or

Write a pseud
nd the numbe

make it easy to
r shape of th

NT #2: IM
Due

Id

ocessing (12

age brightnes

be the effect

by a widget f
s: widgets wit
, a camera ca
r touch, but m

do-code desc
er of widgets
o understand
e widgets.

0.1 0.1
0.1 0.1
0.1 0.1

MAGE PRO
February

deation

2 Points)

ss histogram?

of each of th

factory to des
th holes and

aptures black
may be close

ription of an
s without hole
d. State any a

0.1
0.1
0.1

OCESSING
y 5, 2008

Ex

? What is hist

he following f

sign an inspe
widgets with
 and white im
to each othe

algorithm to
es. Include a
ssumptions y

0 0 0
0 0 0
0 0 1

G AND OB
(in lecture

xercise

togram stretc

ilters:

ction algorith
out holes. As

mages, like the
r. They can b

count the nu
simple block

you make in y

‐1
0
1

0
0
1

BJECT TR
e)

 Bon

ching, and wh

hm that separ
s widgets pas
e one below.

be any shape

umber of widg

diagram of t
your algorithm

‐2 ‐1
0 0
2 1

RACKING

nus Challen

hat does it

rates widgets
ss by on a
 The widgets
or size.

gets with hole
he algorithm
m about the s

G

nge

s into

s do

es
to

size

d) Name two problems that can occur when capturing a digital image. For each problem, explain
how it can be rectified using digital image processing techniques.

 Computer Vision Design Challenges (9 Points)

EyeToy: Kinetic Combat is a new physical fitness video game for the Sony Playstation 2. It teaches
players martial arts moves, giving them automatic feedback on their technique based on input from the
EyeToy camera. The creators of Kinetic Combat made an instructional video explaining how to get
started with the game. Watch the video here:

http://cs377s.stanford.edu/assignments/eyetoy.html

The setup for the game is more complicated than one might expect! List the variety of problems that
can arise, and how they might impact the game’s computer vision algorithms. How do the game
designers suggest preventing these problems? How might one design around some of these issues,
either by changing the nature of the activity or by changing the underlying computer vision algorithm?

 Motion Tracking in MATLAB (12 Points)

In MATLAB, video sequences are typically represented as an array with four dimensions: height, width,
color, and time. In this exercise you will load a video sequence into MATLAB and perform some basic
object tracking.

a) Start by downloading the following video:
http://cs377s.stanford.edu/assignments/ball.avi
Verify that you can view the video file in a standard player, such as Windows Media Player,
before proceeding. If you are unable to play the video, you may need to install the DivX codec,
available at http://www.divx.com.

b) Start MATLAB and switch to the directory containing the video. Begin by getting some basic
information about the video:
aviinfo('ball.avi')
This command will display the video size, length, and framerate, among other statistics.

c) Load the video into MATLAB with the command:
ball = aviread('ball.avi');
This will take some time, as MATLAB will decompress each frame of the video and load the
entire sequence into memory, in a very large multidimensional matrix.

d) Try watching the video you just loaded with the movie command:
movie(ball);
MATLAB should open a figure window and play the video. You will see a ball hanging on a
string from the ceiling, swinging past some books in the Gates library.

e) The variable ball contains a data structure that holds the video frame in memory. This
structure consists of two fields, cdata and colormap. The colormap field is a table of
colors that is used only for indexed color videos. Indexed color is a more compact, lower

fidelity representation of an image that stores a color index at each pixel instead of a color
value. To determine the color at that pixel, you would look up the color index in the color map.
However, most videos that you will encounter, including this one, use true color, meaning that a
full 3-component color value is stored at each pixel. This information is stored in the cdata
structure. You can think of ball.cdata as a four-dimensional array of size 240-by-320-by-3-
by-500. It represents an image sequence with 240 rows, 320 columns, 3 color components,
and 500 frames. You can extract the first frame of the video as follows:
frame = ball(1);
Since we are only interested in cdata, the image component of the frame, we need to extract
this component into a separate variable to view the frame:
frameimage = frame.cdata;
imshow(frameimage);

f) We can process the video by thinking of each frame as a separate image. For example,
suppose we wanted to apply a Gaussian blur to every fifth video frame. We could step through
the video in increments of five frames, running the blur operation each time:
filter = fspecial('gaussian', [15, 15], 7);
for i=5:5:size(ball,2)
 I=ball(i).cdata;
 ball(i).cdata = imfilter(I, filter, 'symmetric', 'conv');
end
Run this code and play the video again with the movie command to see the difference.

g) After modifying a video, we sometimes want to save a copy. Export our new video as follows:
movie2avi(ball,'blurryball.avi');
If successful, this command will store the processed video in a new file in your working
directory. If you get errors about a missing video compressor, don’t worry about it for now –
you can download the compressor if you like, but it’s not strictly necessary for this exercise.

h) Now that we have learned how to load and process video, we will explore two simple
techniques for tracking the ball in this video sequence: frame differencing and background
subtraction. Begin by reloading the video, since we want to use the original copy, not the one
we modified:
ball = aviread('ball.avi');

i) The absolute difference between successive frames can be used to divide an image frame into
changed and unchanged regions. Since only the ball moves, we expect the changed region to
be associated only with the ball, or possibly with its shadow. To begin, we convert each frame
to grayscale using rgb2gray, and store it in a new variable called grball. Running the loop
“backwards,” from numframes down to 1, is a common MATLAB programming trick to ensure
that grball is initialized to its final size the first time through the loop.
numframes = size(ball,2);
for k = numframes:-1:1
 grball(:, :, k) = rgb2gray(ball(k).cdata);
end

j) Next we will compute differences between successive frames using the imabsdiff function,
and store them in a variable called framediffs.

for k = numframes-1:-1:1
 framediffs(:,:,k) = imabsdiff(grball(:,:,k), grball(:,:, k+1));
end
Let's examine one of the difference images. Load the image representing the change between
frames 100 and 101 of the video sequence:
imshow(framediffs(:,:,100), [])

k) Notice that there are two bright arcs in the image, corresponding to the ball positions in frame
100 and frame 101. We can now threshold this sequence of difference images using some
functions you have seen before:
for k = numframes-1:-1:1
 bwdiffs(:,:, k) = ...
 im2bw(framediffs(:,:,k),graythresh(framediffs(:,:,k)));
end

l) Finally, we can label each individual region (using bwlabel) and compute its corresponding
center of mass (using regionprops). Because most of our difference frames have two or
more regions, we will average the centroids of all of the detected regions to estimate the
location of the ball, and store the list of locations in a variable called position.
for k = numframes-1:-1:1
 s = regionprops(bwlabel(bwdiffs(:,:, k)), 'centroid');
 centroids = [s.Centroid];
 xavg = mean(centroids(:,1:2:end));
 yavg = mean(centroids(:,2:2:end));
 position(:,k) = [xavg,yavg];
end

m) Use this sequence of commands to construct a plot of the x- and y-coordinates of the ball over
time. Save this plot and include it in your assignment hand-in.
subplot(2, 1, 1);
plot([1:499], position(1,:)), ylabel('x');
subplot(2, 1, 2);
plot([1:499], position(2,:)), ylabel('y');
xlabel('time (s)');

n) There seem to be some glitches in the data. Inspect the sequence of frame differences and try
to diagnose the problem. See if you can smooth out the data by doing additional processing
on the difference frames before extracting the region positions, or by some other method. If
you manage to improve the results, save the new plot and include it in your hand-in along with
your modified code.

o) To see how good our tracking is, we can overlay the detected ball position back onto the
original video. Use these commands to draw a yellow rectangle over the detected ball location
in the original video clip:
for k = 1:length(position)
 I = ball(k).cdata;
 xpos = int32(position(1,k));
 ypos = int32(position(2,k));
 I(ypos-5:ypos+5,xpos-5:xpos+5,1:2) = 255;

 ball(k).cdata = I;
end
Play the modified clip with the movie command and see how closely our tracking matches the
actual ball position.

p) Another approach to tracking the ball is to estimate the background image and subtract it from
each frame. There are various ways of doing this, but a simple way is to find the pixel-wise
maximum among a range of neighboring frames. We can do this using dilation, a morphological
operation that will activate a pixel (change it from 0 to 1) if one of its neighboring pixels is
activated. Normally we dilate a single image in the x- and y-directions, but we can also dilate
between multiple images by using a structuring element oriented along the frame dimension.
This will produce a new image in which each pixel has the maximum value at its location across
a range of frames. We will use a structuring element that is 1x1x10 – a single pixel spanning ten
frames.
background = imdilate(grball, ones(1, 1, 10));
imshow(background(:,:,100))

q) Next, we compute the absolute difference between each frame and its corresponding
background estimate. For each frame, we subtract the background and then threshold the
image.
for k = numframes:-1:1
 diff = imabsdiff(grball(:,:,k), background(:,:,k));
 thresh = graythresh(diff);
 bwdiffs(:,:,k) = im2bw(diff,thresh);
end

r) Now we want to compute the location of the ball in each frame. Some frames contain small
extra spots resulting from noise. We can solve this problem by assuming that the ball is the
largest object in each frame. We will initialize a variable called centroids that will store a
list of region centers.
centroids = zeros(numframes, 2);
for k = 1:numframes
 L = bwlabel(bwdiffs(:, :, k));
 s = regionprops(L, 'area', 'centroid');
 area_vector = [s.Area];
 [tmp, idx] = max(area_vector);
 centroids(k, :) = s(idx(1)).Centroid;
end

s) As before, let’s examine the quality of our tracking by creating a plot of the ball's estimated
locations as a function of time:
subplot(2, 1, 1)
plot([1:500], centroids(:,1)), ylabel('x')
subplot(2, 1, 2)
plot([1:500], centroids(:, 2)), ylabel('y')
xlabel('time (s)')
Save this plot to include in your assignment hand-in. How does this tracking method compare

to the previous one? Can you think of a way to improve on this one, or to combine the two
approaches for better results?

t) Tracking objects in the real world is often more complicated than in this contrived example.
Try running your object tracking algorithms on this video example:
http://cs377s.stanford.edu/assignments/ball2.avi
Produce new plots using both motion tracking techniques. What exactly is the problem here?
How might you improve your tracking algorithm to cope with this sort of messy data? You
don’t have to actually implement any changes – just suggest one or more possible approaches.

 Setting Up Processing (0 Points)

The goal of this exercise is simply to set up the Processing and JMyron toolkits on your computer for
use in the next problem. Since these tools are designed to work with live video, you will need a
webcam in order to use them. If you don’t have a webcam, you can still install the tools, but you won’t
be able to verify that they are working. Although these tools are quite easy to use once installed,
getting them working can be a headache, particularly on Windows platforms. Please allow yourself
some time to troubleshoot installation problems.

Processing is an open-source Java-based language and environment for programming interactive
multimedia applications. Its creators describe it as “an environment for learning the fundamentals of
computer programming within the context of the electronic arts… an electronic sketchbook for
developing ideas.” Because of its ease of learning and focus on interactive images, animation, and
sound, it is frequently used by artists and designers. Processing can produce programs that run locally
as well as web-embeddable Java applets.

a) Begin by downloading and installing the latest release of the Processing environment from
http://www.Processing.net/. You don’t need to run an install program; simply unzip the
processing-0135 folder and you’re ready to run Processing.

b) JMyron is a video capture and analysis plug-in that can be used in conjunction with Processing.
Designed for artists and inexperienced computer vision programmers, it provides a variety of
basic image analysis functions for tracking motion, color, and shape. Download JMyron from
SourceForge:
http://webcamxtra.sourceforge.net/
Note that there are several versions available; you should download the version designed for
use with Processing.

c) After downloading and unzipping JMyron, open the JMyron0025 folder. You will find three
subfolders: JMyron, JMyron Examples, and Extra DLLs. Copy the JMyron folder into
your Processing\libraries directory. Copy the JMyron Examples folder into your
Processing\Examples directory. Copy the two DLL files in the Extra DLLs folder into
your Processing root directory.

d) To use Processing’s built-in video capture library in Windows, you will also need to install both
QuickTime and WinVDig, a QuickTime video digitizer for Windows. Mac users can skip this
step. QuickTime is available here:

ht
Y
ht
U
W

e) O
ex
vi
re

f) Y
F
b
th

g) P
of
ht
U
P
ru
g
fu

Use the P
The partic
through b
particular
the playe
paddle, th

The choic
existing g
game was
Processin
source co

• 3
ht

• R
ht

• C
ht

ttp://www.ap
You can find W

ttp://cs377s.s
Use QTCap, t
WinVDig is wo
Once you get

xample, locat
ideo library is
endered as A

You should als
File Example

right. You sh
he frame.
roblems with
f one of the J
ttp://cs377s.s

Unzip the arch
rocessing

unning one of
etForcedH

unctions in or

 Camera

Processing en
cular method

background s
r color. You m
r control the
hat is detecte

ce of game is
game written
s not originall
ng that might
ode available

D Pong (by C
ttp://www.ch
oach Attack
ttp://www.th

Cytris (by And
ttp://process

pple.com/qui
WinVDig in th
stanford.edu
he capture ap
orking proper
QTCap work
ted under Fil
s working, run

ASCII art.
so test JMyro
s JMyron Ex
ould see a liv

h JMyron? If y
JMyron librar
stanford.edu
hive and repla
g/librarie
f JMyron exa
Height() d
rder to run th

a Control i

nvironment to
d of camera in
ubtraction or

might require
game with a

ed by the cam

also left to y
in Processing
y designed to
lend themse
that you can

Charlie Mezak
harliemezak.c
(by Cadin Ba

hepencilfarm.
dre Michelle)
sing.andre-m

icktime/
he course sof
/software/W
pplication inc
rly.
king, you’re re
le Examples
nning the exa

on by running
xamples. Clic
ve video wind

you are using
ry files. You c
/software/lib
ace the old l
es/JMyron
amples again.
on’t work on

he examples.

n Process

o build a very
nput is up to
r frame differ
 the player to
custom prop

mera.

our imaginat
g (or Java) an
o use a came
lves particula
 modify.

k)
com/java/pad
atrack)
.com/games/

ichelle.com/c

ftware direct
WinVDIG_101.e

cluded with t

eady to go! S
 Libraries

ample should

g the Myron_B
ck the play bu
dow with box

g an Intel-bas
can download
bJMyron.jnilib
libJMyron.
/library/
 The JMyron
Macs, so you

sing (6 Point

y simple game
you. You mig
rencing, or yo
o make speci
p, such as an

ion. You are w
nd modify it to
era as input. H
arly well to ca

ddleGame/

/roach_attack

cytris/

ory:
exe
he WinVDig

tart Processi
Video(Captu
 display the l

BoundingBox
utton and a p
es drawn aro

ed Mac, you
d it from the
b.zip
.jnilib file
/ directory. R
 methods ge

u may need t

s)

e that is drive
ght control th
ou might try t
al hand gestu
LED flashligh

welcome to f
o use vision-b

Here are links
amera contro

k/

install, to ma

ing and load t
re) AsciiVid
ive video fro

xes example,
point your cam
ound the brig

may need a d
course softw

e by copying
Restart Proce
etForcedWi
o comment o

en by comput
he game by m
tracking the p
ures, or you m
ht or a specia

find the sourc
based trackin
s to several g
ol. All of thes

ke sure that

the AsciiVide
deo. If the bu
m your came

located unde
mera at some
htest objects

different vers
ware directory

the new lib to
ssing and try
idth() and
out calls to th

ter vision inp
motion trackin
position of a
might even ha
lly colored

ce code for a
ng, provided t
ames written

se games hav

eo
ilt-in

era,

er
ething
s in

sion
y:

o the

hese

ut.
ng

ave

an
the

n in
e

• SpaceGame (by Benjie Nelson)
http://www.stanford.edu/~bmnelson/

You do not need to constrain yourself to a traditional game. If you prefer, you may build an interesting
visualization that is driven by the camera, provided that (a) it is fun and engaging and (b) it is clear to
the user that he is controlling the visualization using the camera, and he can take conscious steps to
produce interesting audio or visual output. Here are some examples of interesting visualizations that
might be modified to use camera input:

• VineGardener (by Jeffrey Crouse)
http://idt.gatech.edu/~jcrouse/6310/VineGardener/applet/index.html

• WindPainter (by Marcello Bastéa-Forte)
http://www.cs.unm.edu/~cello/processing/windpainter/

You are also welcome to program your own game logic, if you have a clever idea and are feeling
ambitious. Here are examples of some game ideas that might work well:

• Whack-A-Mole: Animated targets pop up on the screen, and you must wiggle your hand or
head over the targets to hit them.

• Bumper Cars: Point a webcam in different directions to steer a car and hit or dodge obstacles.
• Simon Says: Mimic a series of increasingly complex sequences by moving in certain ways or

holding up different colored objects in front of the camera.

When you have finished programming your game, record a digital video of someone playing it. Post this
video online, along with a copy of your source code. Include the URL of the gameplay video and a link
to the game’s source code in your assignment hand-in.

