Designing Applications that See Lecture 4: Matlab Tutorial ©

Dan Maynes-Aminzade 23 January 2007

Reminders

- Assignment \#1 due now!
- Assignment \#2 released today, due in one week
- All the readings are now available, linked from course calendar

Today's Goals

- Take the techniques covered in the last lecture and learn how to use them in Matlab
- Work through the process of building a complete example of a simple computer vision application

Image Processing in Matlab

Image Conversion

Dilation and Erosion

Connected Components

Linear Filtering

10	5	3				
4	5	1				
1	1	7	$*$	0	0	0
:---:	:---:	:---:				
0	0.5	0				
0	1.0	0.5				
kernel			$=$			
:---:	:---:	:---:				
	7					

imfilter, filter2

Gaussian Kernel

fspecial('gaussian', ...)

Sobel Edge Detection

Sobel x

edge(I, 'sobel')

Canny Edge Detection

edge(I, 'canny')

Hough Transform

Image

Edge detection

Hough Transform
houghlines(BW, theta, rho, peaks)

Outline

- Matlab fundamentals*
- Walkthrough of developing a computer vision application in Matlab*
- Designing an image processing algorithm
- Building a GUI
- Running on live video
- Deploying an application
*Based on slides by Christopher Rasmussen (University of Delaware)
*Based on "Image Processing" seminar by Bruce Tannenbaum (MathWorks, Inc.)

What is Matlab?

- A high-level language for matrix calculations, numerical analysis, \& scientific computing
- Language features
- No variable declarations
- Automatic memory management (but preallocation helps)
- Variable argument lists control function behavior
- Vectorized: Can use for loops, but largely unnecessary (and less efficient)

Need Matlab Help?

- In Matlab
- Highlight a term, right-click, and select "help"
- Type "help" to get a listing of topics
- "help <topic>" gets help for that topic
- On the web
- CS377S Resources page has links
- In particular, the MathWorks help desk:
www. mathworks.com/access/helpdesk/help/helpdesk.shtm1

Entering Variables

- Entering a vector, matrix
- V = [10, 4.5, 1];
- $\mathrm{M}=[3,4$; $-6,5]$;
- Without semi-colon, input is echoed (this is bad when you're loading images!)
- Comma to separate statements on same line
- size: Number of rows, columns

Constructing Matrices

- Basic built-ins:
- All zeroes, ones: zeros, ones
- Identity: eye
- Random: rand (uniform), randn (unit normal)
- Ranges:m:n, m:i:n (i is step size)
- Composing big matrices out of small matrix blocks
" repmat ($\mathrm{A}, \mathrm{m}, \mathrm{n}$) : "Tile" a big matrix with $m \times n$ copies of A

Multiplications \& Calculations

- Transpose ('), inverse (inv)
- Matrix arithmetic: +, -, *, /, ^
- Elementwise arithmetic: . *, . /, .^
- Functions
- Vectorized
- sin, cos, etc.

Deconstructing Matrices

- Indexing individual entries by row, col: A (1, 1) is upper-left entry
- Ranges: e.g., A (1:10, 3), A (: , 1)
- Matrix to vector and vice versa by column:

$$
\mathrm{B}=\mathrm{A}(:), \mathrm{A}(:)=\mathrm{B}
$$

- Transpose to use row order
- find: Indices of non-zero elements

Matrix Analysis

- Basics (by column)
- norm
- max, min
- sum
- More advanced
- Linear systems: $\mathrm{A} \backslash \mathrm{b}$ solves A * $\mathrm{x}=\mathrm{b}$
- QR decomposition: qr
- Singular value decomposition: Svd
- Eigenvalues: eig
- Etc.

Control Structures

- Expressions, relations ($==,>, \mid, \&$, functions, etc.)
- if/while expression statements end
- Use comma to separate expression from statements if on same line

$$
\begin{aligned}
& \text { - if } a==b \text { \& isprime(} n \text {), } M=\text { inv(K); } \\
& \text { else } M=K \text {; end }
\end{aligned}
$$

- for variable $=$ expression statements end
- for $i=1: 2: 100, s=s / 10 ; ~ e n d$

The M-Files

- Any text file ending in ".m"
- Use path or addpath to tell Matlab where code is (or select in directory window)
- Script: Collection of command line statements
- Function: Take argument(s), return value(s). First line defines:
- function $y=f o o(A)$
- function $[x, y]=$ foo2 (a, $M, N)$
- Comment: Start line with \%

Plotting

- 2-D vectors: plot (x, y)
" plot(0:0.01:2*pi, sin(0:0.01:2*pi))
- 3-D: plot3(x, y, z) (space curve)
- Surfaces
- meshgrid makes surface from axes, mesh plots it
- $[\mathrm{X}, \mathrm{Y}]=$ meshgrid(-2:.2:2, -2:.2:2); $Z=X . * \exp (-X . \wedge 2-Y . \wedge 2) ;$
mesh (Z)
- surf: Solid version of mesh
- Saving figures, plots: print -depsc2 filename

Image Processing Toolbox

- Loading, displaying images:

I=imread('im1.jpg'), imshow(I)

- Saving images: imwrite(I, 'newim.jpg')
- Image representation
- Grayscale: Matrix of uint 8
- Color: Stack of 3 matrices for R, G, and B
- Conversion: I2 = double(I1)

Building an Example Application

- Image analysis with the Matlab Image Processing Toolbox
- Getting live data with the Matlab Image Acquisition Toolbox
- Building a GUI with GUIDE
- Deploying an application with the Matlab compiler
- Try to follow along!

Matlab Workflow

Image Processing Toolbox

- Image visualization
- Image pre- and post-processing
- Image analysis
- Spatial transformations
- Color processing

Traditional Image Processing Tasks

Image Acquisition Toolbox

- Stream video and images into Matlab
- Supports a wide variety of frame grabbers and digital cameras
- Configure device properties
- Live video previewing
- Background image acquisition

Designing a GUI with GUIDE

- Design and edit GUI
- Add buttons, pull-down menus, etc.
- Generate Matlab code
- Finish the code yourself

Nice Things about Matlab

- Unified environment
- Quick iteration through different algorithms
- Interactive graphics and visualizations
- High level language
- Lots of built-in routines, useful Toolbox functions, and code available on the web

To Learn More...

- Digital Image Processing Using Matlab by Gonzalez, Woods, and Eddins

Tutorial Files

- Download the tutorial files:
http://cs377s.stanford.edu/code/matlab-tutorial.zip
- Copy them to your Matlab working directory (probably C : \MATLAB701 \work)

