

Designing Applications that See Lecture 5: Motion and Tracking

Dan Maynes-Aminzade 22 January 2008

Designing Applications that See

http://cs377s.stanford.edu

Reminders

- Assignment #1 due now
- Assignment #2 available next Tuesday
- Bring your webcams on Thursday for the Processing Tutorial
- Sunday is the add deadline

Today's Goals

- Learn how to detect, measure, and predict motion in a video sequence
- Get a high-level overview of some different tactics for tracking moving objects

Outline

- Look at some of your videos from Assignment #1
- Learn about some motion and tracking techniques and try them out on your videos
 - Frame differencing
 - Background subtraction
 - Motion templates
 - Optical flow
 - Color tracking

Tennis Balls

Carl

Marcello

Yangfan

Michael

Intersection

Farmers' Market

Foosball

Fish

Around the House

Bikes

Clothes

Driving

Fish

Kitchen

Laundry

Ping-Pong

Plate

Sandwich

Traffic

Types of Motion Determination

- Motion Detection: identifying whether or not image points are moving
- Motion Estimation: identifying how image points are moving
- Motion Segmentation: identifying moving objects from moving points

Extracting Moving Objects

Simple case: static background, with only the object of interest in motion

Solution: Frame Differencing

 Subtract current frame from previous frame, and threshold the result

Accumulative Frame Differencing

Estimate motion direction by accumulating motion history over a range of frames

9						
10	00000000					
11	00000000					
(-> 12	00000000					
(a) 13	00000000					
14	00000000					
15	0000000					
16						
9		9				
10	00000000	10	1	1		
11	00000000	11	1	1		
(b) 12 14	00000000	12	1	1		
	00000000	13	1	1	(1	
	0000000	14	1	1		
15	0000000	15	1	1		
16		16				
9		9				
10	00000000	10	21	21		
11	00000000	11	21	21		
12	00000000	12	21	21		
(C) 13	00000000	13	21	21	(g	
14	00000000	14	21	21		
15	00000000	15	21	21		
16		16				
9		9				
10	00000000	10	321	321		
$(d) \frac{11}{13}$	00000000	11	321	321		
	00000000	12	321	321	Ch	
	00000000	13	321	321	(II	
14	00000000	14	321	321		
15	0000000	15	321	321		
16		16				
9		9				
10	00000000	10	A98765438887654321 A98765438887654321 A98765438887654321 A98765438887654321 (i) A98765438887654321			
11	00000000	11				
12	00000000	12				
(e) 13	00000000	13				
14	00000000	14				
15	00000000	15	A98765438887654321			
16		16		11111	10000	

Figure 7.42 (a) Absolute, (b) positive, and (c) negative accumulative difference image a 20 × 20 pixel object with intensity greater than the background and moving in a southeas direction. (From Jain [1983].)

Motion History Image

a b c

FIGURE 10.49 ADIs of a rectangular object moving in a southeasterly direction. (a) Absolute ADI. (b) Positive ADI. (c) Negative ADI.

Multiple Moving Objects?

(courtesy of Sebastian Thrun)

Motion Segmentation

 Add timestamp to current motion history image, and overlay it on top of the older ones

Motion Segmentation

 Measure the gradients of the stack of motion history images

Clapping boxes together and down

Motion Segmentation

Ignore motion template edges resulting from too large of a time delay

Clapping boxes together and down

Segmented

Motion

Motion Segmentation

Find boundaries of most recent motions and fill them in to segment motion regions

Clapping boxes together and down

Segmented Motion

Let's Try It Out!

Background Subtraction

If we know what the background looks like, we can ignore it to focus on things that are moving or changing

Blue Screen

Video Example

(courtesy of Frank Dellaert)

Subtraction and Thresholding

low thresh

high thresh

EM (later)

Basic Background Subtraction

- Assume background is mostly static
- Build a background model by averaging pixel values across a range of frames
- Given a new image, generate a silhouette by marking the pixels that are significantly different from the "background" value

Finding Subparts

- Look at contour shape and mark points farthest from the center as hands
- Can be combined with a skin color model for better results

Pfinder Example

Dynamic Backgrounds?

(courtesy of Kentaro Toyama)

Let's Try It Out!

Keeping Track of Objects

Blob Tracking

Let's Try it Out!

22 January 2008

More Complex Motion

(courtesy of J.M. Rehg)

More Complex Motion

(courtesy of J.M. Rehg)

More Complex Motion

(courtesy of J.M. Rehg)

Optical Flow

- A 2-D velocity field describing the motion in an image sequence
- A vector at each pixel indicates its motion direction between neighboring frames

Characterizing Motion

Image Sequence

Flow Vectors

(courtesy of Sebastian Thrun)

Computing Optical Flow

(courtesy of Michael Black)

Tracking Local Features

Optical Flow Assumptions

 Brightness constancy: though regions may move around, the brightness within a small region will not change

Optical Flow Assumptions

Temporal persistence: gradual motion over time

Aperture Problem

Aperture Problem

Motion along just an edge is ambiguous

(courtesy of Sebastian Thrun)

Another Example

Harris Corners

Let's Try It Out!

Segmentation by Clustering

Image

Clusters on intensity

Clusters on color

Simple Clustering Algorithms

Algorithm 15.3: Agglomerative clustering, or dustering by merging

Make each point a separate cluster Until the clustering is satisfactory Merge the two clusters with the smallest inter-cluster distance end

Algorithm 15.4: Divisive clustering, or clustering by splitting

Construct a single cluster containing all points Until the clustering is satisfactory Split the cluster that yields the two components with the largest inter-cluster distance end

(courtesy of Marc Pollefeys)

Clustering Example

(courtesy of Marc Pollefeys)

Mean Shift Segmentation

Original Image

Segmented Image

(courtesy of D. Comaniciu)

Mean Shift Algorithm

 Goal: find the points of highest density ("modes") in the data distribution

(courtesy of D. Comaniciu)

Mean Shift Algorithm

- 1. Choose a search window size.
- 2. Choose the initial location of the search window.
- 3. Compute the mean location (centroid of the data) in the search window.
- 4. Center the search window at the mean location computed in Step 3.
- 5. Repeat Steps 3 and 4 until convergence.

Mean Shift Results

(courtesy of D. Comaniciu)

Continuously Adaptive Mean Shift

- A version of the mean shift algorithm can be applied to object tracking based on color
- Start with a object location and an object color profile (hue distribution histogram)

Continuously Adaptive Mean Shift

 Calculate "backprojection" image: probability that each pixel came from the same hue distribution as the tracked object

 Use Mean Shift Algorithm to find the new object center given its back projection and the initial position of search window

(courtesy of G. Bradski)

CAMSHIFT Example

(courtesy of Robin Hewitt)

Let's Try It Out!

Summary

- Motion is often much more useful than static image features for understanding what is happening
- There are many tactics for detecting, measuring, and segmenting motion
 - You'll try some out in Assignment #2
 - We'll have more hands-on practice during the next two workshop sessions
- Think about how you might use motion sensing in your project