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Hebb proposed that neuronal cell assemblies are critical for effective
perception, cognition, and action. However, evidence for brain mech-
anisms that coordinate multiple coactive assemblies remains lacking.
Neuronal oscillations have been suggested as one possible mecha-
nism for cell assembly coordination. Prior studies have shown that
spike timing depends upon local field potential (LFP) phase proximal
to the cell body, but few studies have examined the dependence of
spiking on distal LFP phases in other brain areas far from the neuron
or the influence of LFP–LFP phase coupling between distal areas on
spiking. We investigated these interactions by recording LFPs and
single-unit activity using multiple microelectrode arrays in several
brain areas and then used a unique probabilistic multivariate phase
distribution to model the dependence of spike timing on the full
pattern of proximal LFP phases, distal LFP phases, and LFP–LFP phase
coupling between electrodes. Here we show that spiking activity
in single neurons and neuronal ensembles depends on dynamic
patterns of oscillatory phase coupling between multiple brain
areas, in addition to the effects of proximal LFP phase. Neurons that
prefer similar patterns of phase coupling exhibit similar changes in
spike rates, whereas neurons with different preferences show diver-
gent responses, providing a basic mechanism to bind different neu-
rons together into coordinated cell assemblies. Surprisingly, phase-
coupling–based rate correlations are independent of interneuron dis-
tance. Phase-coupling preferences correlatewith behavior and neural
function and remain stable overmultiple days. Thesefindings suggest
that neuronal oscillations enable selective and dynamic control of
distributed functional cell assemblies.

neuronal oscillations | neuronal ensembles | spike timing | local field
potentials | brain rhythms

Significant progress has been made in understanding the dy-
namics and response properties of single nerve cells (1, 2) and

how they interconnect to form cortical microcircuits (3, 4). More
than 60 y ago, however, Donald Hebb hypothesized that the fun-
damental unit of brain operation is not the single neuron but rather
the cell assembly—an anatomically dispersed but functionally in-
tegrated ensemble of neurons (5). The individual neurons that
compose an assembly may reside in widely separated brain areas but
act as a single functional unit through coordinated network activity.
Dynamic interactions between multiple assemblies may then give
rise to the large-scale functional networks found in mammalian
brains (6–8). Despite the theoretical appeal of Hebb’s idea (9) and
growing empirical evidence of assemblies (10–12), it remains un-
clear how diverse groups of neurons spanning several cortical re-
gions transiently coordinate their activity to form cell assemblies or
howmultiple coactive assemblies regulate their interactions to form
larger functional networks.
Brain rhythms may play a key role in coordinating neuronal

ensembles (13–15),withadynamichierarchyof neuronal oscillations
modulating local computation and long-range communication (16–
18). This hypothesis is supported by evidence that spiking activity
depends on the local field potential (LFP) in both hippocampus

(19–21) and neocortex (22, 23). In particular, single-neuron spike
timing depends on frequency-specific oscillatory LFP phase, both
proximal to theneuron(24) andatmoredistal locations (25).That is,
considering the LFP filtered at a given frequency as a sinusoidal
waveform, individual neurons tend to emit spikes clustered around
a preferred phase, such as the peak (phase: 0 rad or 0°) or trough
(phase: π rad or 180°) of the waveform (Fig. S1). In addition to this
dependence upon absolute LFP phase, spiking also depends on
LFP–LFP phase coupling between distal and proximal sites (26).
LFP–LFPphase coupling is estimated from the distribution of phase
differences between two LFP signals (Fig. S2E) and is a measure of
thedirect dependence between two signals. In otherwords, given the
frequency-specific phase for one LFP signal, how much does one
know about the phase of the other? Spike timing thus appears to
depend on neuronal oscillations in both proximal and distal sites as
well as on the strength of phase coherence between them. This de-
pendence suggests that the spiking of single neurons is influenced by
patterned oscillatory activity occurring in multiple interconnected
brain areas as well as the neuron’s local cortical environment.
Despite the variety of evidence for LFP–neuron interactions, the

role of distributed neuronal oscillations in coordinating single-unit
and cell assembly activity remains an open question. We therefore
investigated the main hypothesis that oscillations enable computa-
tion and long-range communication in distributed brain networks,
focusing on the relationship between cell assemblies, proximal and
distal LFP phases, and LFP–LFP phase coupling. Specifically, our
hypotheses were (i) that spike timing in single neurons depends on
oscillatory phase coupling across multiple brain areas (Fig. 1 A–D),
(ii) that large-scale patterns of phase coupling synchronize ana-
tomically dispersed neuronal ensembles (Fig. 1 E–G), and (iii) that
sensitivity to distinct brain rhythms or coupling patterns permits
selective control of multiple coactive assemblies (Fig. 1 H–J).

Results
We tested these hypotheses using existing data sets recorded from
macaque frontal cortex. Two monkeys engaged in a brain–machine
interface (BMI) task (27) had multiple microelectrode arrays
chronically implanted bilaterally in primary motor (M1) and dorsal
premotor (PMd) cortex. We also examined data from twomonkeys
performing a working memory task (28) with acute bilateral re-
cordings in multiple prefrontal areas including dorsal and ventral
prefrontal cortex (PFdl and PFvl, respectively), orbitofrontal cortex
(PFo), and the dorsal bank of the cingulate sulcus (PFcs).
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These data show that neuronal spiking is modulated by wide-
spread LFP activity occurring in distinct frequency bands. In par-
ticular, the instantaneous spike rates of most cells are statistically
dependent on LFP phases inmultiple areas (Fig. S3). Fig. 2A shows
the dependence of a M1 neuron upon frequency-specific LFP
phase in three different brain areas (28 LFP channels in right M1,
where the neuron is located; 16 in left M1; and 4 in right PMd). All
LFP electrodes were at least 500 μm from the electrode used to
record spikes from this neuron, with most electrodes several mil-
limeters away or in the opposite hemisphere. Fig. 2A shows the
dependence between spike rate and LFP phase as a function of
frequency, where the influence of each LFP channel is considered
separately. Typical of motor cortical neurons (29), this cell exhibits
a strong dependence on the motor high β (25–40 Hz)-band across
most electrodes. For example, if we filter the LFP signal recorded
from an electrode in left M1 (blue traces in Fig. 2A, opposite
hemisphere from the neuron), we find that the distribution of all
phases over a long time interval is uniform (Fig. S2B), but that the
distribution of phases that occur at spike times is nonuniform and is
clustered around a preferred phase (Fig. S2C). This result indicates
that spike times and the LFP phase on that channel are statistically
dependent and that variation in LFP phase can be converted into

a modulation of the expected neuronal spike rate (SI Methods).
Given the strong modulation in the high β-band for most recorded
neurons (29), for the M1–PMd datasets we therefore focused ex-
clusively on the dependence between spikes and 36-Hz phases.
What are the network origins of this dependence? One possi-

bility is that the spiking of this neuron is directly dependent on the
LFP activity occurring in the opposite hemisphere, perhaps medi-
ated by direct synaptic contact of projecting transcallosal axons.
Alternatively, the neuron may be directly coupled to the proximal
LFP through synaptic connections with local interneurons, but not
coupled to distal LFP signals, whereas the LFPs from proximal and
distal cortical areas are nonetheless in phase coherence. In the
second case, spikes and distal LFP phases would not be dependent
once proximal LFP phases were known—spikes and distal LFP
phases would be conditionally independent given proximal LFP
phase. A similar situation may hold for the spike timing depen-
dence on LFP–LFP phase coupling, where such dependence dis-
solves once conditioned upon proximal phases.
Critically, we cannot answer this question by examining the de-

pendence of spiking upon each LFP channel separately—such an
analysis ignores the influence of LFP–LFP interactions and will
therefore generate misleading results. Due to widespread network

Fig. 1. Patterns of oscillatory phase coupling across multiple brain areas coordinate anatomically dispersed neuronal cell assemblies (schematic). (A–D) Hypothesis
1: Spike timing in single neurons depends on frequency-specific oscillatory phase coupling across multiple brain areas. (A) Spiking in one area may depend on
population activity (localfield potentials, LFPs) occurring inmultiple areas. (B) Many neurons are sensitive to oscillatory LFP activity occurring in particular frequency
bands; filtering all LFPs at this frequency and extracting phases can reveal patterns of phase coupling between LFP channels. (C) The strength of LFP–LFP phase
coupling is different for spike times compared with randomly selected times and defines a neuron’s preferred pattern of LFP–LFP phase coupling, similar to a re-
ceptive field. That is, when LFP activity matches the neuron’s preferred pattern of LFP–LFP phase coupling, the cell spikes more often. (D) Given novel LFP phases as
input, themodel generates a predicted coupling-based spike rateoutput,which can thenbe comparedwith themeasured spike rate. (E–G) Hypothesis 2: Large-scale
patterns of phase coupling synchronize anatomically dispersed neuronal ensembles. (E) The procedure described above can be applied to multiple simultaneously
recorded neurons. (F) Cells that prefer similar LFP–LFP phase-coupling patterns exhibit similar coupling-based rates. (G) Shared variability in coupling-based rates is
compactly described by a single phase coupling network that defines a cell assembly. That is, it is possible to identify large-scale patterns of LFP–LFP phase coupling
(G) that explain a significant fraction of the variation in spike rates for a large ensemble of neurons distributed across multiple brain areas. (H–J) Hypothesis 3:
Differential sensitivity to distinct brain rhythms or coupling patterns permits selective control of multiple coactive assemblies. (H) Multiple functional ensembles,
each spanning several brain areas, overlap in space. (I) Interference between ensembles is minimized when each assembly responds to a different frequency (as-
semblies A and C) or distinct phase-coupling pattern (assemblies A and B). (J) Frequency and pattern selectivity permits dynamic, independent coordination of
multiple coactive ensembles.

Canolty et al. PNAS | October 5, 2010 | vol. 107 | no. 40 | 17357

N
EU

RO
SC

IE
N
CE

A
PP

LI
ED

PH
YS

IC
A
L

SC
IE
N
CE

S



connectivity, the phase distribution of one channel, or the distri-
bution of phase differences between two channels, is shaped by the
full network of LFP–LFP phase coupling between all channels. We
therefore estimated the joint probability distribution over phases
using a recently developedmultivariate model for circular variables
(30) that accounts for these complex network effects (SI Methods
and Figs. S4 and S5).
Whereas empirical univariate phase distributions are often used

to estimate phase concentration and phase coupling, additional
influences due to network connectivity bias these estimates. That is,
empirical (marginal) probability density functions (PDFs) (black in
Fig. 2 B–G) differ from the isolated distributions that would be
observed if network effects were removed (red in Fig. 2 B–G); we
term these “isolated distributions,” because they single out effects
due to coupling between only the phases of interest (SI Methods).
Isolated distributions provide a more accurate estimate of the di-
rect coupling between two nodes within a larger network than does
considering those two nodes alone. For example, Fig. 2B shows
a case where accounting for network influence reduces our estimate
of spike/phase dependence, producing a flatter distribution. In con-
trast, for some channels removing network effects reveals stronger
spike/phase dependence (Fig. 2C) or shifts in the preferred phase
(Fig. 2D). Fig. 2 E–G shows similar effects for the phase difference
between channels used to estimate the strength of LFP–LFP phase

coupling (see also Figs. S4 and S5 for simulations demonstrating
these effects).
Surprisingly, the spiking of a single neuron depends on both distal

LFP phases and LFP–LFP phase coupling in addition to the prox-
imal LFP phase recorded near the neuronal cell body (Fig. 2H and
Fig. S3). This dependence indicates that single-unit spiking is related
to large-scale network activity patterns rather than simply reflecting
local presynaptic phenomena. Importantly, the pattern of phase
coupling estimated using all data (baseline coupling) differs from
the pattern of phase coupling inferred using spike times alone
(spike-triggered coupling). The ratio of these distributions for a
given neuron defines its preferred pattern of phase coupling (Fig.
2H) and serves as an “internal” receptive field associated with ongo-
ing brain activity, complementing the traditional, stimulus-related
“external” receptive field. Each node in Fig. 2H represents one
LFP electrode, with links between nodes representing LFP–LFP
phase coupling. Line shading indicates the strength of LFP–LFP
phase coupling. Note that the preferred pattern for this cell exhibits
strong coupling between areas (e.g., right M1 and left PMd, shown
as links between green and red nodes) as well as strong intra-area
coupling (within right M1, green/green links). Importantly, some
LFP pairs exhibited increased phase coupling strength, compared
with baseline conditions, whereas other LFP pairs displayed de-
creased coupling (equivalently, increased coupling at a different
phase offset).

Fig. 2. Spike timing in single neurons depends on oscillatory phase coupling between multiple brain areas. (A) Example of a neuron where the probability of
spiking depends on frequency-specific LFP phase in multiple areas. The neuron is located in right primary motor cortex (M1). Colored traces represent dif-
ferent LFPs recorded from left M1 (blue), right M1 (green), or left dorsal premotor area (PMd, red). The strong high β (25–40 Hz)-modulation shown here is
typical of M1-PMd neurons. (B–G) Estimates of spike/LFP interactions depend on the method used and some commonly used techniques may generate
misleading results. Examining all LFP signals at once results in differing estimates of phase coupling strength compared with examining pairs of LFP signals
separately, as shown by differences between empirical (black) and isolated (red) probability density functions (main text and SI Methods; also Figs. S4 and S5).
(H) Preferred phase coupling network representing 48 LFPs from three brain areas for the M1 neuron shown in A. Nodes represent LFP phase variables; links
represent the strength of LFP–LFP phase coupling, from weak (light lines) to strong (dark lines). Node size is proportional to the sum of link connection
weights entering the node. Strong cross-area coupling remains after conditioning on proximal/distal phases and within-area phase coupling. This preferred
pattern of phase coupling acts like an internal, LFP-based receptive field; when the instantaneous pattern of phase coupling between electrodes is close to the
preferred coupling pattern, the cell spikes more often. (I) The coupling-based spike rate (generated from the preferred LFP–LFP phase coupling pattern
learned from training data and instantaneous LFP phases from test data) predicts the measured spike rate (calculated using spike times from test data). (J) The
relationship between predicted and measured spike rates is stable over multiple days.
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Given a vector of instantaneous phases observed across elec-
trodes at one moment in time, this preferred coupling pattern can
be used to generate a phase-coupling–based spike rate prediction.
That is, once the joint distribution between spike times and the
filtered LFP signals has been learned, a predicted spike rate can be
generated from novel LFP input. We call this spike rate prediction,
generated from LFP phases alone without reference to the actual
spike times, the coupling-based spike rate. Fig. 2 I–J shows how this
coupling-based rate compares to the actual spike rate when given
novel LFP test data (compare with Fig. S6A for a neuron from
a different subject). Overall, 71.2% of neurons (107/138 for subject
P; 51/84 for subject R) exhibited coupling-based rates significantly
correlated to measured rates (P < 0.05, corrected for multiple
comparisons).
Most neurons exhibited preferred phase coupling patterns in-

volving many electrodes in widely separated cortical areas, without
the strong localization one might expect from a modular brain ar-
chitecture. The broad spatial extent of neuron-specific preferred
coupling patterns suggests that neurons in different areas may
prefer the same pattern and thus have correlated coupling-based
rates (Fig. 3 A and B). In contrast, two neurons with different
preferred patterns may exhibit uncorrelated coupling-based rates,
even if they are in close proximity (Fig. 3 C and D). In fact, within
a cortical area the correlation between coupling-based rates is inde-
pendent of interneuron distance (Fig. 3E, not significant). In con-
trast to distance, similarity of neural function predicts coupling-
based rate correlations. That is, we can examine the dependence of
neuronal spiking on external factors such as target direction in
a center-out BMI task (28) to determine neural function, inde-
pendent of any internal spike/LFP relationships that may exist.
Nevertheless, despite assessing these external and internal de-
pendencies separately, on average two neurons with similar di-
rectional tuning exhibit stronger coupling-based rate correlations,

with correlation magnitude dropping as preferred directions di-
verge (Fig. 3F, P < 0.01). Importantly, observing two neurons with
correlated spike rates alone is not enough to produce this result;
neuronal spiking must also be dependent on the same pattern of
LFP–LFP phase coupling (SI Methods).
Given that large-scale patterns of phase coupling influence the

activity of multiple neurons in similar ways, could changes in these
coupling patterns be used to modulate the activity of a coordinated
cell assembly? And, if so, could multiple, coactive assemblies be
modulated independently? Independent components analysis
(ICA) of coupling-based rates reveals a small set of signals respon-
sible for most of the predictive efficacy (Fig. 3G, red). That is, the
coupling-based rate for each neuron—a spike rate prediction
generated from the ongoing LFP signals combined with the pattern
of phase coupling preferred by that neuron—can be decomposed as
a weighted sum of independent (and thus uncorrelated) signals
encoding spike rate variations over time. Each ICA component is
associated with a distinct LFP phase coupling pattern and con-
tributes to the weighted sums for many different neurons. Impor-
tantly, as shown by Fig. 3G, a subset of these components explains
spike rate changes across a large ensemble of neurons and can be
used for ICA-based denoising (SI Methods). Supporting the hy-
pothesis that distributed LFP patterns coordinate cell assembly
activity, these ICA-denoised coupling-based rates reveal synchro-
nized ensemble activity within subsets of simultaneously recorded
neurons. For example, the correlation matrix between denoised
coupling-based rates reveals overlapping clusters of neurons with
similar activity (Fig. 3H; compare with Fig. S6B). That is, simulta-
neously recorded neurons can be sorted such that neurons with
similar rank within a list have correlated changes in predicted spike
rates. This shared spike rate variation is evidence that large-scale
patterns of phase coupling synchronize anatomically dispersed
neuronal ensembles.

Fig. 3. Large-scale patterns of phase coupling synchronize anatomically dispersed neuronal ensembles. Neurons that prefer similar LFP–LFP phase coupling
patterns show correlations between coupling-based spike rates, independent of distance. (A and B) Two neurons from left and right M1 with correlated
coupling-based spike rates. (C and D) Two neurons recorded from one microelectrode exhibit a weak coupling-based spike rate correlation despite close
spatial proximity. (E) Within a cortical area, coupling-based spike rate correlations do not depend on interneuron distance (5,716 pairs, n.s.). (F) In contrast,
motor cortical neurons with similar direction tuning measured during a center-out BMI movement task (28) exhibit coupling-based spike rate correlations
(9,413 pairs, P < 0.001), suggesting that coupling-based spike rate correlations depend on neural function but not spatial location. (G) Shared variability in
coupling-based rates is concentrated by independent components analysis (ICA), with a small set of components (red) accounting for most of the predictive
value of coupling-based rates (see text). (H) Correlation matrix of ICA-denoised coupling-based rates, sorted to identify clusters of neurons with similar
activity; e.g., neurons 1–10 form a spatially distributed ensemble with correlated coupling-based rates, have a low correlation with the activity of neurons 61–
70, and are anticorrelated with neurons 121–130. The LFP–LFP phase coupling patterns associated with these ICA components explain a portion of the in-
ternally generated spike rate variations across an ensemble of anatomically distributed cells and may therefore bind these cells into a functional assembly via
Hebbian synaptic modification.
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Whereas we have shown that spiking depends on large-scale
phase coupling patterns, this dependence may be unrelated to
perception, cognition, and action. It is therefore of interest that
coupling-based rates exhibit event-related changes during behavior.
Monkeys engaged in a BMI task (28) must move a cursor to one of
eight targets, and significant changes are seen in the trial average of
coupling-based rates locked to the onset of a “go” cue (Fig. 4B, P <
0.01, corrected). Furthermore, as shown by Fig. 4C andD, different
cue-locked averages (red) correlate with spike-based peristimulus
time histograms (PSTHs) (blue) of specific neurons. This correla-
tion is evidence that the relation of spikes to distributed patterns of
LFP phase coupling holds during purposeful behavior as well
as spontaneous ongoing activity and can be used to predict event-
related changes in neural activity.
Finally, for cell assemblies to be effective, multiple ensembles

must be able to act in an independent, multiplexed fashion (Fig.
1H). One potential mechanism was identified above: Distinct
phase-coupling patterns at a given frequency can generate inde-
pendent modulatory signals that drive different sets of neurons
(Fig. 1I, cell assemblies A andB, and Fig. 3H). Another possibility is

that different ensembles tune into distinct brain rhythms, a form of
frequency–domain modularity (Fig. 1I, assemblies A and C). As in
Fig. 2A, Fig. 4 E–H shows prefrontal neurons with distinct fre-
quency preferences across many areas, whereas Fig. 4I shows the
sorted optimal frequencies for all 813 frontal neurons examined in
this study. Preferred frequencies span a wide range from <0.3 Hz
to >40 Hz, such that for any given frequency there exists a large
ensemble of neurons modulated by phase coupling patterns oc-
curring at that frequency. Such ensembles experience a common
modulatory drive and thus have the potential to operate as a co-
herent assembly (“fire together, wire together”). Thus, the sensi-
tivity of neurons to (i) distinct brain rhythms as well as (ii) distinct,
single-frequency coupling patterns suggests twomechanisms for the
selective control of multiple coactive assemblies.

Discussion
Are oscillations simply epiphenomenal reflections of population
activity? Or can fluctuations in electric fields have a causal impact
on neuronal networks? Recent studies show that externally gen-
erated, experimenter-controlled oscillatory electric fields have
a causal impact on hippocampal (31) and neocortical (32) slices in
vitro. Importantly, the timing of external stimuli relative to the
phase of the oscillating field can affect spike probability and timing
(31, 32). Other studies used current injection to simulate synaptic
input and show that cellular (33) and network (2) properties in-
teract with the injected current to influence spiking timing (34) and
stimulus discriminability (35). Finally, in vivo studies show that
depth of processing varies with local oscillatory phase (15, 36, 37)
and that oscillatory activity arises from interacting networks ofmul-
tiple cell subtypes (21, 38–40). Thus, neuronal oscillations clearly
have a direct causal impact upon local cortical computation.
In contrast to these local effects, oscillations in distant cortical

areas cannot have a direct ephaptic (field-only) influence upon
neurons. The dependence of spiking on distal phases and phase
coupling shown in this study must therefore rely on synaptic con-
nections mediated by projecting axons. Our findings complement
Fries’ communication through coherence (CTC) hypothesis (14),
where relative phase differences modulate the effective connectivity
between two cortical areas (26).Our hypothesis that distributedLFP
activity influences spiking activity (Fig. 1 A–D) incorporates N dis-
tinct phase signals simultaneously and can be considered a natural
extension of the inherently two-dimensional CTC hypothesis. That
is, we show that spiking in single neurons depends on the full pattern
of oscillatory phases occurring inmultiple brain areas and that phase
coupling patterns will therefore have an impact on long-range
communication.
The idea that oscillations also play a key role in perception, cog-

nition, and action is strengthened by findings that oscillations are
entrainedbyearly sensory (15),motor (41), and linguistic (42)events.
This entrainmentdependsonattention (15, 41) andprovides a link to
internal processes critical for learning and memory—processes as-
sociated with characteristic low-frequency brain rhythms (13, 43).
Priorwork suggests a relationshipbetween rhythmfrequency and the
spatial extent of engaged brain networks, with low frequencies
binding large-scale networks and high frequencies coordinating
smaller networks (44). It is intriguing to speculate on the connection
between the fluid, higher-order cognitive processing enabled by
prefrontal areas, on the one hand, and the diversity of prefrontal
rhythms that may coordinate multiple cell assemblies, on the other.
These connections are beyond the scope of this paper, but could be
investigated using a similar methodology.
In agreement with prior studies (45, 46), we show above that

neurons are sensitive to multiple frequencies. The cellular and net-
work origins of different rhythms are the focus of ongoing research
(39), but the period of concatenation hypothesis (47) provides an
elegant mechanism that generates the frequency bands observed in
neocortex. Each distinct brain rhythm thus generated could exert
independent control of different neuronal ensembles. Furthermore,

Fig. 4. Phase coupling networks exhibit behavior-related changes and may
selectively respond to different frequency bands. (A) Monkeys engaged in
a brain–machine interface (BMI) task, using some cells (BMI neurons) to drive
an on-screen cursor (28). The percentage of neurons exhibiting significant
coupling-based rate modulation was the same for BMI and non-BMI groups.
(B) Predicted spike rates generated by assembly-specific coupling patterns (SI
Methods) show event-related changes. Time is relative to GO cue onset; the
vertical axis shows different independent components sorted by activity
level 100 ms after cue onset. (C) Peristimulus time histogram (PSTH, blue) for
a PMd neuron shows an activity peak at cue onset. The cue-locked average
of one coupling-based rate (red) shows event-related changes that correlate
with PSTH activity. (D) As in C, for a M1 neuron and different coupling-based
rate. Both PSTH (blue) and coupling-based rate (red) peak ∼100 ms after cue.
(E–H) Different neurons are sensitive to distinct frequencies. Plots show
neuronal sensitivity to LFP phase versus frequency (compare with Fig. 2A).
Colored traces represent LFPs from different areas: right (red) and left
(yellow) dorsolateral prefrontal cortex, right (blue) and left (green) orbito-
frontal cortex, and left cingulate sulcus (black). (I) Eight hundred thirteen
neurons from four subjects sorted by preferred frequency (black dots).
Horizontal lines show normalized modulation strength from low (blue) to
high (red) versus frequency; the broad range of preferred frequencies may
enable multiple ensembles to operate with minimal interference.
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interactions between different frequency bands (16, 17, 48, 49) may
provideamechanism to coordinate theactivity ofmultiple functional
assemblies; future research will be required to determine the impact
of cross-frequency coupling on spike/LFP interactions.
Here we presented evidence that dynamic patterns of oscillatory

coupling across multiple brain areas coordinate anatomically dis-
persed neuronal cell assemblies. In particular, we found that spike
timing depends on distal LFPphases and long-range phase coupling,
even after accounting for proximal phase. Different neurons with
similar phase-coupling preferences exhibit similar coupling-based
rates, independent of interneuron distance. Importantly, this mod-
ulation depends on the functional role of neurons and correlates
with behavior, suggesting that neuronal oscillationsmay synchronize
anatomically dispersed ensembles actively engaged in functional
roles. Finally, we found that frontal neurons are selective for a broad
range of frequencies and distinct patterns of phase coupling and thus
may provide a mechanism for selective control of multiple coactive
assemblies. Together, these findings support the hypothesis that
neuronal oscillations play a role in coordinating the functional cell

assemblies thought to be responsible for computation and com-
munication in large-scale brain networks.

Methods
A detailed description of the methods is provided in SI Methods.

Surgery, Electrophysiology, and Analysis. Two adult monkeys were chronically
implanted with multiple microelectrode arrays bilaterally in M1 and PMd and
performed a BMI task. Two different monkeys engaged in a workingmemory
task and had acute recordings made from multiple prefrontal areas. The
pairwise phase distribution of LFP measurements was modeled using a prob-
abilistic model (30). For each neuron, two models were fitted using either all
LFP data or LFP phases occurring at spike times alone and then related using
Bayes’ rule.
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SI Methods
1. Surgery, Electrophysiology, and Experimental Setup for the Brain–
Machine Interface Task. See ref. 1 for full experimental details. Two
adult male rhesus monkeys (Macaca mulatta) were chronically
implanted with multiple microelectrode arrays. Each array con-
sisted of 64 Teflon-coated tungsten microelectrodes (35 μm in di-
ameter, 500-μm interelectrode spacing) arranged in an 8 × 8 array
(CD Neural Engineering). Subject P was implanted bilaterally in
the arm area of primary motor cortex (M1) and in the arm area of
left hemisphere dorsal premotor cortex (PMd), for a total of 192
electrodes across three implants. One hundred thirty-eight identi-
fied single units from this subject were examined. Subject R had
bilateral implants in the arm area of M1 and PMd, for a total of
256 electrodes across four implants. Eighty-four identified single
units from this subject were examined. Localization was performed
using stereotactic coordinates (2). Implants targeted layer-5 pyra-
midal tract neurons and were positioned at a depth of 3 mm
(M1) or 2.5 mm (PMd). Intraoperative monitoring of spike activity
guided electrode depth. Conducted procedures were in compliance
with the National Institutes of Health Guide for the Care and Use
of Laboratory Animals and approved by the University of Cal-
ifornia (Berkeley) Institutional Animal Care and Use Committee.
TheMAP system (Plexon) was used to record unit activity. Only

single units that had a clearly identified waveform with a signal-to-
noise ratio of at least 4:1 were used. An on-line spike-sorting
application (Sort-Client; Plexon) was used to sort activity before
recording sessions. Large populations of well-isolated units and
up to 128 LFP channels (1 kHz sampling) were recorded during
daily sessions for both monkeys.
Monkeys were trained to perform a center-out delayed reach-

ing task using aKinarm (BKINTechnologies) exoskeleton (manual
control) as well as a brain–machine interface task where a cursor
was controlled by neural activity (brain control). During training
and recording, animals sat in a primate chair that permits limb
movements and postural adjustments. Head restraint consisted of
the animal’s headpost fixated to a primate chair. Recording sessions
typically lasted 2–3 h/d. Because of their longer session duration,
only brain control sessions are discussed in this paper. During brain
control sessions a visually presented cursor was continuously con-
trolled by neural activity while both hands were restrained. Subjects
self-initiated trials by bringing the cursor to the center for a hold
period of 250–300 ms, followed by the presentation of a GO cue
(color change of center cue). A trial error occurred if the cursor
failed to reach the target within 10 s after aGOcue. The goal was to
perform a center-out task,moving the cursor from the center to one
of eight peripheral targets distributed over a 14-cm–diameter circle.
Target radius was typically 0.75 cm. A liquid reward was provided
after a successful reach to each target.
ForallsessionsforsubjectP,fromthe192implantedelectrodes,128

LFP channels recorded, with >160 distinct units identified via auto-
matic spike sorting.Only cellswith a spike rate>1Hzwereexamined.
Different figures display results from different numbers of neurons
from distinct sessions: specifically, Fig. 2, 1 neuron from session
paco020608c; Fig. 3 B and D, 4 neurons from session paco020608c;
Fig. 3 E–H, 138 neurons from session paco020608c; Fig. 4A, 138
neurons from sessions paco020608b, -c, and -d; Fig. 4B, 138 neu-
rons from all sessions; Fig. 4C, 1 neuron from session paco020608c;
Fig. 4D, 1 neuron from session paco020608c; Fig. 4I, 138 neurons
from session paco020608c; Fig. S2 A–C, 1 neuron from session
paco020608b; Fig. S3, 138 neurons from session paco020608c.

2. Surgery, Electrophysiology, and Experimental Setup for the
Working Memory Task. See ref. 3 for full experimental details. Two
male rhesusmonkeys (M.mulatta, subjectsA andB)were implanted
with head positioners and two recording chambers, the positions of
which were determined using a 1.5-T magnetic resonance imaging
(MRI) scanner. Acute simultaneous recordings were made using
arrays of 10–24 tungsten microelectrodes (FHC Instruments). Over
several days, recordings were made in dorsolateral prefrontal cortex
(DLPFC), ventrolateral prefrontal cortex (VLPFC), orbitofrontal
cortex (OFC), and anterior cingulate cortex (ACC). Target elec-
trode positions were determined from MRI images and electrodes
were advanced using custom-built, manual microdrives until they
were located just above the cell layer. Electrodes were slowly low-
ered into the cell layer until neuronal waveforms were obtained.
Neurons were randomly sampled with no attempt made to select
neurons on the basis of responsiveness. Waveforms were digitized
and analyzed off-line (Plexon). Recording locations were recon-
structed bymeasuring recording chamber position using stereotactic
methods, with the correspondence between MRI sections and re-
cording chambers confirmed by mapping the position of sulci and
gray and white matter boundaries using neurophysiological re-
cordings. The distance of each recording location along the cortical
surface, from the genu of the ventral bank of the principal sulcus and
the lateral surface of the inferior convexity, was traced and mea-
sured, as were the positions of the other sulci relative to the principal
sulcus. All procedures were in accord with the National Institutes of
Health guidelines and the recommendations of the University of
California (Berkeley) Animal Care and Use Committee.
Subjects engaged in a task targeting reward-dependent modu-

lation of working memory. National Institute of Mental Health
Cortex was used to control the stimulus presentation and task
contingencies. Eye position and pupil dilation were monitored us-
ing an infrared system at 125 Hz sampling rate (ISCAN). Trials
began with subjects fixating a central square cue (subtending 0.3° of
visual angle). Subjects maintained fixation within 2° of the fixation
cue throughout the trial until the fixation cue changed color, after
which subjects made their response. Failure to maintain fixation
resulted in a 5-s “time out” and trial abortion. Following fixation,
two cues appeared sequentially and separated by a delay, one of
which was a spatial location that the subject had to hold in working
memory (the mnemonic stimulus), and one of which indicated to
the subject howmuch reward they would receive for performing the
task correctly (the reward-predictive cue). Following a second delay
a fixation-cue color change indicated that subjects could saccade to
the location of the mnemonic stimulus. Once subjects made eye
movements indicating their response, they had 400 ms to saccade
within 3° of the target location. Successful target saccades with 400
mswere followed by a fixation hold of 150ms. Failures to saccade to
the target within 400 ms or fixate the target for 150 ms were clas-
sified as trial errors and terminated the trial without delivery of
reward. Twenty-four locations forming a 5 × 5 matrix centered at
fixation (each location separated by 4.5°) were used as spatial tar-
gets. There were five different reward sizes. Each reward amount
was represented by one of two pictures. All experimental factors
were fully counterbalanced, and different trial types were randomly
intermingled. Subjects completed ≈600 correct trials per day.
Different figures display results from different numbers of neu-

rons fromdistinct sessions: specifically, Fig. 4I, 329 neurons from all
sessions from subject A and 262 neurons from all sessions from
subject B.
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3. Analysis: LFP Filtering and Phase Extraction. Analyses were done
usingMATLAB(Mathworks)orPython.Allfilteringwasdoneusing
Gaussian chirplet basis functions (4). A Gaussian chirplet is fully
defined by four parameters: namely, the center time t0, the center
frequency v0, the duration parameter s0, and the chirp rate c0 (5). In
the time domain, the chirplet g is given as g(t | t0, v0, s0, c0) = 21/4exp
[(−1/4)s0− π(t− t0)2exp[−s0] + π(t− t0)(c0(t− t0) + 2v0)]. Although
informal investigation suggests that it is worthwhile to optimize the
parameter set (center frequency, duration parameter, chirp rate)
for each neuron separately, for simplicity and ease of comparison
in this study we use a fixed chirp rate of 0 Hz/s (no chirping) and
a fixed fractional bandwidth (FWHM/center frequency) of 0.325.
A constant fractional bandwidth means that chirplets with higher
center frequencies have wider frequency-domain passbands, as in
thewavelet transform. To extract localfield potential (LFP) phases,
first the raw LFP signal xRAW(t) for a given channel was convolved
with a complex-valued Gaussian chirplet basis function g(t) to
generate a complex-valued time series, which has the same number
of sample pointsNtime as the raw LFP signal. The complex angle of
this time series defines a 1×Ntime time series of phase variables θ(t).
This process was repeated for all Nchannel simultaneously recorded
LFP signals to generate amultivariateNchannel×Ntime time series of
phase variables θ(t).

4. Analysis: Multivariate Phase Model. To model the pairwise phase
distribution of LFPmeasurements we used a recently derivedmodel
and estimation technique of coupled oscillator systems (6). The
model specifies a probability distribution, which corresponds to the
maximum entropy distribution given pairwise phase measurements.
Furthermore, it can be shown that the probabilisticmodel implies an
underlying dynamical system of coupled oscillators and the pa-
rameters of the probability distribution are the interactions between
the oscillators (6). Therefore, the parameters of the probability
model can be interpreted as the interaction strengths between
coupled oscillators.
In this section we derive the estimator for the pairwise phase

distribution given phasemeasurements.We then show that a specific
dynamical system formulation of coupled oscillators leads to the
same pairwise phase distribution and that estimating the probability
distribution recovers the interactions of the coupled oscillators. We
then describe how the observed empirical distribution of two oscil-
lators relates to the direct interaction (or isolated distribution) be-
tween the oscillators and the indirect interaction (or network
distribution). Finally, we provide a series of examples to illustrate
potential differences between the measured empirical distribution
and the true coupling interaction and show how properly estimating
the distribution correctly infers the true interaction.
4.1. Pairwise maximum entropy phase distribution. Here we derive the
maximum entropy phase distribution given pairwise phase sta-
tistics. This distribution allows us to evaluate the phase coupling
patterns conditioned on spikes and thus the relationship between
spikes and the recorded LFP phases in multiple areas.
Given a set of measurements (i.e., pairwise phase statistics),

there is a unique maximum entropy distribution that reproduces
the statistics of these measurements. A number of maximum
entropy distributions are used throughout the science and engi-
neering communities. In the real-valued case the multivariate
Gaussian distribution and in the binary case the Ising model serve
as widely used multivariate maximum entropy distributions
consistent with second-order statistics. For multivariate phases,
the first circular moment is a measurement between two phases, k
and l, and is defined as the complex quantity heiðθk − θlÞi. The real
and imaginary parts are given as

Re
hD

eiðθk − θlÞ
Ei

¼ hcosðθk − θlÞi

¼ hcosðθkÞcosðθlÞ þ sinðθkÞsinðθlÞi

Im
hD

eiðθk − θlÞ
Ei

¼ hsinðθk − θlÞi

¼ hsinðθkÞcosðθlÞ− cosðθkÞsinðθlÞi
Written in thisway, thestatisticalmeasurements for thefirst circular
moment contain bivariate terms between pairs of phases and are
thus second-order phase statistics. Given these statistics it follows
that the corresponding maximum entropy distribution is given as

pðθ;KÞ ¼ 1
ZðKÞ

exp
!
− 1
2

∑
d

i; j¼1
κij cosðθi − θj − μijÞ

"
; [S1]

where θ is the d-dimensional set of phases and K specifies the
parameters of the distribution.We used trigonometric identities to
combine the sine and the cosine of the differences of the phase
pairs into one term for each pair of phases. The terms κij and μij are
the coupling between phases i and j and the phase offset between
phases i and j, respectively. The term Z(K) is the normalization
constant and is dependent on the parameters of the distribution.
Next we derive an estimator for this distribution: a method for
determining the parameters K from phase measurements.
Given phases from Nchannel different LFP channels, we can

estimate the probability of observing a particular N-dimensional
vector of phases using a multivariate phase distribution. An
equivalent but more compact expression for the probability dis-
tribution given in Eq. S1 is

pðθ;KÞ ¼ 1
ZðKÞ

exp½−Eðθ;KÞ&

Eðθ;KÞ ¼ 1
2
z∗Kz; [S2]

where we define the N-dimensional vector of phase variables as
a vector of unit length complex variables, zk, where zk = exp(iθk)
and θk is an element of the real-valued interval [−π, π). The
Nchannel × Nchannel coupling matrix K is Hermitian and traceless.
The elements of K encode the coupling parameters between
channels; e.g., Kij encodes the coupling between the ith and jth
phase variables. Each element of K is a complex number Kij =
κijexp(iμij), where the modulus κij encodes coupling strength and
the angle μij denotes the preferred phase offset between chan-
nels. The diagonal elements of K are zero (Kii = 0), but non-
uniform univariate phase distributions can be modeled by
augmenting the observed matrix of phase variables with an ad-
ditional variable of fixed phase, resulting in a (Nchannel + 1) ×
(Nchannel + 1) coupling matrix K. The normalization constant Z
(K) is a function of the coupling matrix and in general cannot be
computed analytically. Note that Eqs. S1 and S2 are equivalent
but Eq. S2 uses complex notation.
Given an observed set of phase variables, we then estimate the

parameters of thedistributionusing anefficient techniquederived in
ref. 6. The lack of a closed form to the partition function Z(K)
makes standard maximum-likelihood estimators computationally
expensive and prone to convergence problems. The estimator de-
rived in ref. 6 is a linear system of equations using themeasurements
of the phase variables. The estimated coupling terms, elements of
the matrix K, are found by solving the linear system of equations

∑
d

k;l¼1

#
δjlCik þ δikClj − δjkCiljk − δilCiljk

$bKkl ¼ 4Cij; [S3]

where the expectation values are defined as Cij ¼ hzi z∗ji and
Cijkl ¼ hzi zj z∗k z∗li. Because the diagonal elements of K are zero,
we can remove the corresponding equations where i = j from
the system. We solved this linear system of equations using
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standard techniques. This estimator has been shown to corre-
spond to the maximum-likelihood estimate and performs well in
high dimensions and with limited data (6). Code to estimate the
distribution is available at ref. 7.
In summary, the pairwise phase distribution in Eq. S1 provides

the most parsimonious statistical model of the joint multivariate
phase distribution given only pairwise phase measurements. The
corresponding estimator in Eq. S3 provides the unique maximum
entropy solution. Maximum entropy solutions serve as the least
biased estimate of the distribution possible and can be used when
the true joint distribution is unknown.
4.2. Pairwise phase distribution and models of coupled oscillators. In this
section we show that the parameters of the phase distribution
have a physical interpretation in a dynamic system of coupled
oscillators and interestingly, the parameters in the phase distri-
bution are identical to the interactions between the oscil-
lators. We can derive the multivariate phase distribution from
a dynamical systems model of coupled oscillators. Given the
dynamical system,

∂
∂t
θiðtÞ ¼ ω− ∑

d

j¼1
κij sin

!
θiðtÞ− θjðtÞ− μij

"
þ viðtÞ;

a corresponding steady-state distribution can be derived using
a suitable Langevin equation. The probability distribution for the
phases of this coupled oscillator system is identical to that given
above in Eqs. S1 and S2, save for the introduction of a parameter
β within the exponential to account for the variance of the noise
terms νi(t). Thus the parameters of the matrix K estimated from
observed phase data may be interpreted as the interaction terms
between a physical system of coupled oscillators.
4.3. Phase-locking value, phase concentration, and phase coupling. In this
section we show the relationship between the commonly used
phase-locking value, the measured phase concentrations, and the
phase coupling parameters in the probability distribution. Im-
portantly, the phase-locking value and the phase concentration
are only indirectly related to the phase coupling parameters.
The phase-locking value (PLV) (8) is the amplitude of the

first circular moment of the measured phase difference between
two phases,

PLV :¼
####
D
eiðθk − θlÞ

E####; [S4]

with the expectation h:i taken over the phase measurements,
and |x| is the complex modulus or amplitude of the complex value
x. We can see the relationship between the phase-locking value
and the coupling parameters, i.e., κkl, in the probability distri-
bution by examining the marginal distribution of phase differ-
ences. The marginal distribution is defined as

pðθk − θl;KÞ ∼
ð
∏
d

i;j¼1
exp

%
1
2
κij cosðθi − θj − μijÞ

&
dθd− 2; [S5]

in which the integration is over all phases θm with m ≠ k, l, which
can be either the first or the second variable in the cosine.
After applying the variable substitution θm ¼ ~θm þ θl, all terms
in Eq. S5 either depend on the phase difference θk − θl or are
independent of θk and θl. The independent terms integrate to
a constant and the remaining terms combine to a von Mises
distribution in the pairwise phase difference given by

pðθk − θl;KÞ ¼ 1
ZðγklÞ

eγklcosðθk − θl −ΔklÞ; [S6]

with mean phase Δkl and concentration parameter γkl. We call
the concentration parameter γkl for a pair of phases the phase
concentration. The parameters of the distribution in Eq. S6 can
be estimated from the first circular moment heiðθk − θlÞi ¼: rkleiΔkl :

the mean phase Δkl is the complex angle of the first moment and
the concentration parameter γkl can be obtained by numerically
solving the equation

rkl ¼ I1ðγklÞ=I0ðγklÞ; [S7]

and the normalization constant Z(γkl) is given by Z(γkl) =
2πI0(γkl). I0(x) and I1(x) denote the modified Bessel functions of
zeroth and first order, respectively. Note that PLV = rkl. The
value of γkl is related to the coupling parameters K through
Eq. S5 and thus PLV is related to the coupling parameters
through Eqs. S5–S7. Therefore, there is a nontrivial relationship
between the phase-locking value or the measured phase con-
centrations and the coupling parameters.
Under the dynamical system interpretation of the probability

distribution, the interaction between two oscillators i and j is
given by the coupling parameters kij and μij. In general there is no
simple relationship between these coupling parameters and the
measured phase-locking value or phase concentration. However,
by properly estimating the coupling parameters from the meas-
urements (SI Methods 4.1), we can infer the direct interactions
between the oscillators.
4.4. Empirical, isolated, and network distributions. We next show the
relationship between the measured empirical distribution, the
isolated distribution, and the network distribution. Given a set of
phase measurements, we can directly compute the marginal dis-
tribution of the phase difference between a specific pair of pha-
ses.Wecall themarginal distribution computed fromthedifference
of phasemeasurements of θk and θl the empirical distribution p(θk−
θl). In a network of many oscillators the empirical distribution is
determined by a direct interaction between nodes k and l and an
indirect interaction through the rest of the network. Given the
probabilistic model in SI Methods 4.1, we next show how the em-
pirical distribution can be decomposed into an isolated distribution,
which captures the direct interaction, and a network distribution,
which captures the interaction through the network.
For a given set of oscillators and coupling parameters the

empirical distribution is given as

pðθk − θl;KÞ ∼
ð
∏
fi;jg

eκijcosðθi − θj − μijÞdθd− 2;

which is a reformulation of Eq. S2 but with the product con-
taining only one term for each pair of oscillators. The integration
is over all phases θi with I ≠ k, l. Because the integration is over
all phases not equal to k or l, we can factor out the terms con-
taining the coupling parameters between k and l:

pðθk − θl;KÞ ∼ eκklcosðθk − θl − μklÞ
ð

∏
fi;jg≠fk;lg

eκijcosðθi − θj − μijÞdθd− 2:

[S8]
We can apply the variable substitution θm ¼ ~θm þ θl and all
terms in Eq. S8 either depend on the phase difference θk − θl or
are independent of θk and θl. The independent terms integrate to
a constant and the remaining terms combine to a von Mises
distribution in the pairwise phase difference. We can therefore
decompose the empirical distribution into a product of two von
Mises distributions,

pðθk − θl;KÞ ¼ pisoðθk − θl; κkl; μklÞ pnet ðθk − θl; !KklÞ

pisoðθk − θl; κkl; μklÞ ¼ eκklcosðθk − θl − μklÞ

pnetðθk − θl; !KklÞ ¼ e!κklcosðθk − θl − !μklÞ;

where !Kkl is the set of parameters excluding the direct
coupling parameters κkl and μkl and the concentration !κkl and
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phase offset !μkl are determined through the integral in Eq. S8
and depend on all of the parameters Kkl excluding κkl and μkl.
We refer to the distribution that contains the direct coupling
parameters as the isolated distribution because it is the distribu-
tion that would be measured if only the direct interaction were
present and there was no interaction due to the network (the two
nodes would be isolated from the rest of the system). We refer to
the distribution that contains the network effects on the empir-
ical distribution as the network distribution because it is the dis-
tribution that would be measured if there were no direct
interaction between the nodes and only the interaction through
the network was present.
4.5. Example phase-coupled systems and their estimation. In this
section we illustrate the differences between phase concen-
tration and estimated phase coupling using a series of sim-
ple networks. We also present a more complicated network
that shows that the method generalizes to complex networks of
interactions.
In Fig. S4 we illustrate three simple networks, their phase con-

centrations, and estimated phase couplings. For each network we
simulated the dynamic system described in SI Methods 4.2. We
then measured the phase concentration between the indicated pair
of oscillators (A and B). We also estimated the coupling param-
eters using Eq. S3. Each network illustrates a specific effect that
can be found in the experimental data we examined: spurious
coupling, missing coupling, and incorrect phase offset. In each case,
phase concentration does not reflect the true direct interaction
between the indicated oscillators. Inferring the parameters of the
full probabilistic distribution correctly recovers the true coupling
between the indicated oscillators and all other pairs. In the last
column in Fig. S4 we illustrate the empirical distribution and the
isolated distribution (similar to Fig. 2 B–G).
In Fig. S5 we present a more complex case of eight coupled

oscillators. Again, phase concentrations poorly reflect the direct
interactions between oscillators whereas phase coupling esti-
mation correctly infers the true interactions. For a more rigorous
analysis of the model estimation performance and behavior of
phase coupling estimation see ref. 6.

5. Analysis: Baseline, Spike-Triggered, and Preferred Phase Coupling
Patterns and the Generation of Coupling-Based Rates from Phase
Data. The previous section (SI Methods 4) describes how multi-
channel LFP data observed during experiments can be used to
estimate the coupling within a network of distinct brain areas.
How can this information be used to predict the spiking activ-
ity of a single neuron? Because the multivariate phase model
specifies a joint distribution over the phase variables, we can
apply Bayes’ rule to determine the probability of a spike condi-
tioned on the state of the multivariate phase up to a normaliza-
tion constant. Specifically, we can estimate the prior probability
of the multivariate phase p(θ) and the conditional probability of
the multivariate phase given a neural spike p(θ|spike). We then
apply Bayes’ rule to arrive at an estimate of the probability of
a spike given a measured multivariate phase state:

pðspikejθÞ ¼ pðθjspikeÞ p ðspikeÞ
pðθÞ :

Inserting the equations for the multivariate phase distributions,
we find

pðspikejθÞ∝
exp

!
− 1

2 z
∗Kspikez

"

exp
!
− 1

2 z
∗K0z

" pðspikeÞ∝ exp

 

−
1
2
z∗ðKspike −K0Þz

!

Thus the probability of a spike is modulated by a multivariate
phase distribution with coupling parameters KΔ = Kspike − K0.
The two coupling matrices K0 and Kspike can be estimated as
described in SI Methods 4. K0 is estimated from the time series of

all phase measurements, θ(t), and Kspike is estimated from phase
measurements at spike times fθðtÞjt ¼ tspikeg.
The coupling matrix K∆ encodes the neuron-specific preferred

pattern of phase coupling, as shown in Fig. 2H, and can be
thought of as a phase-coupling receptive field. The dependency of
the coupling-based spike rate r(θ; K∆) can then be expressed in
terms of the phase-dependent differential energy:

log rðθ;KΔÞ∝ −Eðθ; KΔÞ ¼ −
1
2
z∗KΔz:

We then find a linear regression of log r(θ; K∆) against
−E(θ; K∆) yielding two parameters, a and b, where
log rðθ;KΔÞ ¼ − aEðθ; KΔÞ þ b. This relationship can then be
used to predict the neural spike rate given the state of the
multidimensional LFP phase.

6. Analysis: Determining Independent Components of the Population
Phase Coupling. To investigate the relationships among the phase-
coupling receptivefields of individual neuronswe apply independent
components analysis (ICA) to the ensemble of the logarithm of
coupling-basedpredicted spike rates.Wedenote theensemble of the
logarithm of coupling-based predicted spike rates as the vector
v, where vi ¼ logriðθ;KΔ;iÞ and i indexes the neuron-specific rate, ri,
and differential coupling matrix, K∆,i. Under the ICA model the
observations, vi, are a linear mixture of NICA sources, sj, such that

vi ¼ ∑
NICA

j¼1
Aijsj:

Given a set of observations from different time points, we can
estimate the mixing matrix A using standard techniques (9). We
can then determine the estimated sources as

s ¼ ATv

given an observation vector, v, where the unmixing matrix, AT, is
given by the transpose of the mixing matrix. Because the ICA
model produces a linear mixture, each source component can be
reexpressed to show that it is selective for a specific phase cou-
pling relationship. By substituting the neuron-specific coupling
into the rate we arrive at

sj ¼ ∑
NICA

i¼1
Aij log ri

!
θ;KΔ; i

"
¼ − 1

2
z∗KICA; jz

KICA; j ¼ ∑
NICA

i¼1
Aij

!
aiKΔ; i

"
;

where we use the regression relation log riðθ;KΔ; iÞ ¼
− aiEðθ; KΔ;iÞ þ bi as determined in the previous section for each
neuron and ignoring the constant offset bi. Therefore, each ICA
source, sj, is selective for a specific phase coupling pattern, KICA,j,
in the LFP. Depending on the statistics of the neural ensemble
these sources may represent phase coupling patterns that are
relevant only for a single neuron or may capture shared coupling
preference among multiple neurons. As we show in Fig. 3G, we
find that a small number of components are predictive of the
majority of neurons, indicating that phase coupling preferences
are shared among the neural population.

7. Analyses for Specific Figures. Figs. 2A and 4 E–H each show the
dependence of spiking in a single neuron upon LFP phase for a set
of distinct LFP channels recorded simultaneously. Importantly, this
analysis considers each LFP channel separately and does not at-
tempt to model effects due to phase coupling between different
channels. To generate these figures, first frequency-specific phases
were extracted as describe in SI Methods 3. One hundred twenty-
eight logarithmically spaced center frequencies were used, ranging
from 0.3 to 64 Hz. For each center frequency, a constant fractional

Canolty et al. www.pnas.org/cgi/content/short/1008306107 4 of 11



bandwidth of 0.325 was used for filtering. Second, for each LFP
channel and center frequency the set of phases occurring at the spike
times of the neuron of interest was used to estimate the von Mises
distribution parameters μ and κ, circular variable analogs to the
Gaussian distribution mean and variance. μ indicates the mean
anglewhereas κ, ameasure of dispersion, encodes the concentration
of the distribution around μ. This estimation was done using the
fitting algorithm described in SI Methods 4 for which code is avail-
able online at ref. 7. Third, the von Mises concentration parameter
κ, encoding the concentration of the probability density function
prob(θ | spike), and the overall mean spike-count rate, encoding
prob(spike), were combined using Bayes’ rule to estimate prob
(spike | θ). Unlike in SI Methods 5, here θ is a univariate phase
variable. The percentage of modulation in spike rate was calculated
from this PDF, defined as 100 × the difference in maximum and
minimum spike rates divided by the mean spike-count rate. Fourth,
the percentage of modulation in spike rate was calculated for all
center frequencies and LFP channels for all neurons examined in
this study. Fig. 2A shows the results for one neuron from subject P;
Fig. 4 E–H shows the results for four simultaneously recorded
neurons from subject B.
Fig. 4I shows rate modulation vs. frequency traces for all 813

neurons examined in this study after normalization and sorting.
For each neuron, first the LFP channel from the microelectrode
used to record spike times of that neuron was removed and then
the LFP channel showing the maximum modulation was found
from the remaining traces. Second, this trace was divided by the
maximum modulation value to scale trace values to fall between
0 and 1 to facilitate comparisons across different neurons. Third,
the frequency of maximum modulation was identified for each
trace and used to reorder traces as a function of modulation
frequency.
Fig. 2 B–G shows examples of spike-triggered empirical and

isolated phase PDFs. To estimate empirical PDFs for particular
phase variables (black traces in Fig. 2 B–D), von Mises distribution
parameters μ and κ were estimated using the set of phases observed
on a given LFP channel during spike times. Similarly, von Mises
distributions were also used to estimate empirical PDFs for phase
differences between two channels (black traces in Fig. 2 E–G). To
generate isolated PDFs for these variables (red traces in Fig. 2 B–
G), the matrix Kspike representing the spike-triggered pattern of
phase coupling for a given neuron was estimated as described in SI
Methods 5, with code available at ref. 7. This estimate takes into
account both the direct interaction between pairs of phase variables
and indirect interactions through the rest of the network. There-
fore, using this estimate we can easily separate out the parameters
of the corresponding isolated distribution: They are given by the
corresponding parameters κij and μij. This procedure produces a
univariate phase PDF of von Mises form representing either the
absolute LFP phase (red traces in Fig. 2 B–D) or LFP–LFP phase
differences (red traces in Fig. 2 E–G).
Fig. 2H shows a representation of the preferred pattern of phase

coupling for one neuron and was generated from the matrix KΔ,
which was computed as described in SI Methods 5. Nodes represent
phase variables and are color coded by area. Links represent cou-
pling between phase variables. The width/contrast of links is pro-
portional to the absolute value of the entries in the matrixKΔ. Node
size is proportional to the sum of the weights on links entering that
node. Plotting of Fig. 2H was done using the Python programming
language package NetworkX (http://networkx.lanl.gov/).
Fig. 2 I and J shows the correlation between the predicted cou-

pling-based rate and the measured rate. To generate Fig. 2 I and J,
first a set of training data was used to estimate the coupling matrix
KΔ; second, LFPs from two different test sets of data were used to
generate coupling-based rates for a given neuron, as described in SI
Methods 5. Third, a binary time series representing the spike train of
that neuron was generated. This time series had the same number of
sample points as the coupling-based rate (Ntime) and had a value of 1

at spike times and 0 at other times (no spiking). Fourth, to facilitate
an upcoming binning procedure using 200 bins, these time series
were truncated to sizeNtr × 1, whereNtr =Ntime –mod(Ntime, 200);
that is, mod(Ntr, 200) = 0. Fifth, the coupling-based rate and spike
train were combined to form a single Ntr × 2 matrix C. Sixth, the
rows of C were sorted as a function of the values of the coupling-
based rate, such that the first column of C is a nondecreasing
monotonic function consisting of sorted values of the coupling-
based rate (sortrows.m in MATLAB). The second column of
C is a binary vector representing reordered spike times. Seventh,
C was reshaped into a 3D array of size (Ntr/200, 200, 2). Eighth, C
was separated into two matrices C1 and C2, both of size (Ntr/200,
200). C1 consisted of sorted and reshaped coupling-based rate data
and C2 consisted of the sorted and reshaped binary data corre-
sponding to the spike train. Ninth, the mean of C1 over the first
dimension was taken, producing a 200 × 1 vector of mean predicted
rates, where each entry corresponds to the average of 1 of 200 equal-
count bins. That is, each bin has an equal number of sample points
(Ntr/200) and each bin captures one-half percentile of the full range
of coupling-based rates. Tenth, a 200 × 1 vector of measured rates
was generated from C2 by taking the sum of C2 over each column
(the number of spikes occurring in each bin), divided by the number
of rows (the number of 1-ms sample points within each bin), mul-
tiplied by the sampling rate of 1,000 Hz. This procedure produces
a value with units of spikes per second. Eleventh, the 200 × 1 mean
predicted rate vector was used as a regression predictor for the 200×
1 measured rate vector, with the fraction of explained variance (r2)
and the associated uncorrected P value recorded. Finally, the pre-
dicted and measured rates were normalized by subtracting the
minimum value and dividing by the maximum value. To summarize,
after generating a coupling-based rate, all time samples where the
value of the coupling-based rate falls within a narrow bin were
identified, and then the number of spikes occurring at these sample
points was noted and used to calculate a measured rate that can be
compared with the predicted, coupling-base rate.
For Fig. 3, coupling-based rates were generated for 4 neurons as

described in SI Methods 5. Fig. 3 B and D shows 2-s examples of
coupling-based rates. For Fig. 3E, first the correlation coefficients
between coupling-based rates were calculated for all 138 simul-
taneously recorded neurons in one session from subject P, gen-
erating a 138 × 138 correlation matrix C. Second, the interneuron
distance for all pairs of neurons occurring within one cortical area
was determined. Third, interneuron distance was used as a re-
gression predictor for the correlation coefficients, resulting in
a nonsignificant regression. Fourth, pairs of neurons were as-
signed to one of nine bins on the basis of interneuron distance.
Fifth, the mean correlation coefficient for all pairs within one bin
was calculated, as well as the SEM (through bootstrap resam-
pling). For Fig. 3F, first the tuning direction of each neuron was
estimated using cosine fits to the target-specific spike rates for
each neuron. Directional tuning was estimated by comparing the
mean firing rate as a function of target angle during execution of
the movement. The first 2 s of each trial were used. A similar
method was also used for shorter time windows (e.g., 200 ms).
Essentially identical results were obtained with window sizes of 1
and 1.5 s. The tuning curve was estimated by fitting the firing rate
with a sine and a cosine as

f ¼ ½B1B2B3#×

2

4
1

sin θ
cos θ

3

5;

where θ corresponds to reach angle and f corresponds to
the firing rate across the different angles. Linear regression was
used to estimate the B coefficients. The preferred direction (PD)
was calculated using the following: PD = tan−1(B2/B3), resolved
to the correct quadrant. The depth of modulation was measured
by calculating the difference between the maximum and the
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minimum of the tuning curve (in hertz). B1 was taken to be the
mean firing rate for a session. Second, the absolute difference in
tuning direction was determined for each pair of neurons. Third,
the difference in direction tuning was used as a regression pre-
dictor for the correlation coefficients between coupling-based
rates. Fourth, neuron pairs were binned into one of nine bins as
a function of tuning difference. Fifth, the mean (and SE) cor-
relation coefficient for all pairs within one bin was calculated.
For Fig. 3G, first the 138 × Ntime matrix of coupling-based

energies −E(θ; K∆) for all simultaneously recorded neurons in
one session from subject P was generated as described in SI
Methods 5. Second, ICA was performed on this matrix, using the
runica.m function from the EEGLAB toolbox (10). Third, as
described in SI Methods 6, the ICA unmixing matrix was applied
directly to the preferred phase-coupling network matrix K∆ to
generate a set of 138 ICA-component–specific phase-coupling
network matrices, each of size 49 × 49. Fourth, phase data
for a new set of test data were generated as described in SI
Methods 3. Fifth, the ICA-component–specific phase-coupling
networks were applied to these phase data to generate an ICA-
component–specific, coupling-based energy time series. Sixth,
coupling-based rates were generated from these energy time se-
ries as decribed in SI Methods 5. Seventh, each ICA-component–
specific coupling-based rate was tested against the spike times of
the 138 neurons (see predicted rate/measured rate methods in
Fig. 2 I and J) to determine the percentage of neurons signifi-
cantly predicted by each component. Eighth, a small set of highly
predictive ICA components (red in Fig. 3G) was identified by
inspection.
For Fig. 3H, first the 138 × Ntime matrix of I time series for all

simultaneously recorded neurons in one session from subject P was
generated as described above. Second, all values for ICA compo-
nents will low predictive efficacy (black in Fig. 3G) were set to zero.
Third, the inverse of the ICA unmixing matrix was used project the

activity of the remaining ICA components upon each of the 138
neurons. That is, each neuron-specific coupling-based energy time
series is a linear combination of ICA-component–specific coupling-
based energy time series, and the above procedure retains only the
ICA components with high predictive efficacy (red in Fig. 3G).
Fourth, these energies were used to generate coupling-based rates,
as described in SI Methods 5. Fifth, the 138 × 138 matrix of corre-
lation coefficients between these neuron-specific ICA-denoised
rates was calculated. Sixth, this correlation matrix was sorted using
a clustering algorithm (reorderMAT.m from the Brain Connectivity
toolbox: http://sites.google.com/a/brain-connectivity-toolbox.net/bct/
visualization).
Fig. 4A displays the percentage of neurons exhibiting spike de-

pendence on phase coupling patterns, sorted by functional group.
The BMI group consists of 39 M1 neurons directly involved in
cursor control (1), whereas the non-BMI group is composed of 62
M1 neurons not involved in cursor control. All neurons were re-
corded simultaneously. Permutation resampling was used to test
for significance.
For Fig. 4B, first the 138 × Ntime matrix of ICA-component–

specific coupling-based rates was generated for each examined BMI
data set for subject P. Second, the go-cue onset times for successful
BMI trials were identified. Third, epochs starting 2 s before until 4 s
after cue onset were extracted for each of the 138 coupling-based
components. Fourth, these cue-locked epochs were averaged for
each component to generate a time series similar to an event-related
potential. Fifth, these traces were smoothed using a Gaussian win-
dow (SD of 250 ms). Sixth, the 138 traces were reordered on the
basis of the value occurring 100 ms after cue onset. Fig. 4 C and D
shows two of the traces described above (red) as well as peri-
stimulus-time histograms (PSTHs). Cue-locked PSTHs were gen-
erated in an identical fashion using spike trains rather than ICA
components.
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Fig. S1. Example of phase extraction and identification of spike-triggered phases. (A) A 1-s example spike train. Spike times are indicated by vertical lines. (B)
LFP trace from a different microelectrode, filtered with a center frequency of 36 Hz and a fractional bandwidth of 0.325. Spike times are indicated as red dots.
(C) Amplitude envelope of of filtered LFP trace. (D) Phase time series extracted from filtered LFP trace. Phase values range from –π to π. Red dots indentify spike
times and define the spike-triggered LFP phases.
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Fig. S2. (A) Example of raw LFP trace (black) and filtered LFP trace (red), with neuronal spike times marked (blue). (B) Phases extracted from filtered LFP often
exhibit a uniform distribution, as indicated by the histogram. (C) In contrast, phases that occur at spike times often concentrate around a preferred phase. (D)
Probability density functions (PDFs) for phase estimated from all data (black) or at spike times only (blue) often differ, indicating mutual information between
spike timing and LFP phase. (E) Similarly, PDFs of the phase difference between two LFP channels may differ when all data are considered (black) versus spike
times alone (blue).
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Fig. S3. Spikes depend on proximal LFP phases, distal LFP phases, and LFP–LFP phase coupling between electrode pairs. (A) Even after accounting for the
proximal LFP phase near the cell body, a majority of neurons (55.1% or 76/138) are more strongly coupled to distal LFP phases than to the proximal LFP phase.
Bars show the percentage of neurons where the strongest coupling to (absolute) LFP phase fell into one of three groups. LFP electrodes were classified as
proximal to the electrode used to record neuronal spikes if the interelectrode distance was <0.75 mm. A total of 45.0% (66/138) of neurons exhibited the
strongest coupling to proximal LFP phase. Distal ipsilateral LFP electrodes were >0.75 mm from the neuron electrode, with a maximum of 9 mm separation in
this study. A total of 31.9% (44/138) of neurons were most strongly coupled to a distal ipsilateral LFP phase. Distal contralateral LFP electrodes were in the
opposite hemisphere (several centimeters), with 23.2% of neurons locking most strongly to a distal contralateral LFP phase. (B) The strength of distal–distal
LFP–LFP phase coupling preferred by a neuron is comparable to the strength of proximal–distal LFP–LFP phase coupling preferred by a neuron. For each
neuron, the LFP signal from the closest electrode was identified (maximum separation of 0.75 mm), and the mean preferred phase coupling between this
proximal LFP signal and all other (distal) LFP signals was computed. Similarly, the mean preferred phase coupling between all pairs of distal electrodes was
computed and is shown here to be of comparable magnitude. This result suggests that neurons in one location may nonetheless exhibit sensitivity to the
magnitude and angle of phase coupling between LFPs in two distant sites.
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Fig. S4. Phase coupling estimation correctly estimates phase coupling in networks where phase concentrations are misleading. Here we show three example
networks (one in each row). The first column (A, D, and G) shows the network coupling used to simulate a system of oscillators. The second column (B, E, and H)
indicates the measured phase concentration (black vector) and estimated phase coupling (red vector) between oscillators A and B. The magnitude and angle of
the phase concentration are plotted on the polar plot with angle equal to ΔA,B and radius equal to !A;B. The estimated phase coupling, κA,B, and angle, μA,B, are
plotted similarly. The third column indicates the isolated distribution pisoðθA − θB; κA;B; μA;BÞ (red line) and the empirical distribution p(θA − θB) (black line) for the
phase difference θA − θB. (A–C) Spurious coupling: phase concentration measurements (black vector and black line) indicate interaction between A and B when
the true coupling and the estimated coupling (red vector and red line) have 0 magnitude. (D–F) Missing coupling: phase concentration indicates a lack of
coupling between A and B, but the estimated phase coupling and true phase coupling indicate a strong interaction. (G–I) Incorrect phase offset: phase
concentration indicates that oscillator A leads oscillator B; however, the true interaction and the estimated phase coupling indicate that oscillator A lags
behind oscillator B.

Fig. S5. Phase coupling estimation correctly infers phase coupling in complex networks. (A) A network of eight oscillators where solid lines indicate a coupling
interaction of κij = 1 and μij = 0 and no line indicates that κij = 0 (no coupling). (B) The measured phase concentration (green dots) and the estimated phase
coupling (red dots) for all pairs of oscillators plotted against the true coupling in the simulated network (x axis). Phase coupling estimation correctly recovers
the presence of coupling or lack of coupling. Phase concentration includes contributions from the direct interaction between the oscillators and through the
network of oscillators and therefore does not reflect the direct interaction.
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Fig. S6. (A) As in Fig. 2 I and J, for one neuron from subject R. Relationship between predicted coupling-based rate and measured rate is shown. (B) As in Fig.
3H, for subject R. Correlation matrix between coupling-based rates is shown for the 84 simultaneously recorded neurons.
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