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Abstract

The rich dynamical nature of neurons poses major conceptual and technical challenges for unraveling their nonlinear
membrane properties. Traditionally, various current waveforms have been injected at the soma to probe neuron dynamics,
but the rationale for selecting specific stimuli has never been rigorously justified. The present experimental and theoretical
study proposes a novel framework, inspired by learning theory, for objectively selecting the stimuli that best unravel the
neuron’s dynamics. The efficacy of stimuli is assessed in terms of their ability to constrain the parameter space of
biophysically detailed conductance-based models that faithfully replicate the neuron’s dynamics as attested by their ability
to generalize well to the neuron’s response to novel experimental stimuli. We used this framework to evaluate a variety of
stimuli in different types of cortical neurons, ages and animals. Despite their simplicity, a set of stimuli consisting of step and
ramp current pulses outperforms synaptic-like noisy stimuli in revealing the dynamics of these neurons. The general
framework that we propose paves a new way for defining, evaluating and standardizing effective electrical probing of
neurons and will thus lay the foundation for a much deeper understanding of the electrical nature of these highly
sophisticated and non-linear devices and of the neuronal networks that they compose.
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Introduction

Ever since the seminal study of Hodgkin and Huxley [1] on the

biophysical basis of the squid giant axon action potential,

conductance-based models (CBMs) have provided a critical

connection between the microscopic level of membrane ion

channels and the macroscopic level of signal flow in neuronal

circuits. Indeed, as we have sought to further our understanding of

single neuron and network computation [2,3], CBMs have become

one of the powerful computational approaches in Neuroscience

[4,5,6,7]. They have been of great assistance in incorporating

diverse experimental data under a coherent, quantitative framework

and for interpreting experimental results in a functionally

meaningful way [8,9,10,11,12,13,14,15,16,17,18,19]. Considering

the dramatic advancements in our knowledge of single neurons and

neural circuits along with the equally impressive increase in

computing power during the last decade, CBMs can be expected

to become of even greater utility than they already are today

[20,21,22].

The most fundamental difficulty in accurately modeling neurons

stems from the fact that their electrical behavior arises from the

complex interaction of a large number of non-linear elements – the

membrane ion channels [10,23]. Furthermore, the identity and

density of different ion channels vary from neuron to neuron and

cannot presently be directly determined experimentally. Instead,

these are treated as free parameters that are typically constrained by

an iterative process of comparison between a set of experimental

recordings (e.g. voltage response to current-clamp steps) and the

model’s responses until a close resemblance is found. Yet successful

matching of model response to a given target experimental data set

is not, in and of itself, sufficient to establish the validity of a model, as

complex models with numerous parameters run the risk of

systematic biases (or errors) in the estimation of their parameters,

i.e. over-fitting. Specifically, such a bias may not be apparent in the

accuracy of matching the response to stimuli used to construct the

model, but may be revealed by further testing of the model’s

generalization to different conditions. One can imagine many

different such tests: predicting the response to pharmacological

manipulation, examining the stability of the model to small

perturbations of model parameter values, etc.

Here we describe the application of a particularly intuitive yet

powerful measure of generalization: the model’s ability to generate

an accurate response to a set of current stimuli to which it has not

been previously exposed during the model’s construction. We

favor this form of testing generalization since it gets to the heart of

the purpose of conductance-based models (CBMs) – to examine

whether the model can indeed be considered a valid approxima-

tion of the neuron’s underlying dynamics. If that were indeed the

case, one would expect the response of the model to match the

experimental response not only to the stimuli used to constrain it,

but also to different, novel inputs. Moreover, measuring the

response to different stimuli is experimentally straightforward.

Such measurement of generalization has only been sporadically

applied in CBM research papers [24] most likely due to the fact
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that the vast majority of CBMs studies involved hand tuning of

parameters [25,26] in which clean separation between test sets and

generalization sets is difficult due to human involvement. Thus,

despite its importance, the quantification of generalization has

been lacking from conductance-based neuron modeling.

Since there are many different choices for stimuli that can be

used to train and test a model, it is crucial to have a clear way of

selecting an optimal (and minimal) set of stimuli (and correspond-

ing targets to be preserved) that will ensure accurate generalization

to a wide range of inputs. The present work is the first to have

addressed these fundamental principles in order to assess the

validity of CBMs in a thorough manner. We experimentally

recorded the responses of a variety of cortical neurons to a wide set

of different current stimuli (step, ramp and noise currents) each

with multiple intensities and many repetitions. We then selected a

subset of the experimental data (a training set) to be employed in

generating models of the respective cells, using automated multiple

objective optimization algorithms, and reserved another set of

stimuli to test the accuracy of these models in generalizing to novel

stimuli.

We show that, for all neurons tested, CBMs were able to

accurately predict stimuli not encountered during the parameter

constraining process. Furthermore, by systematically changing the

number and type of stimuli used to constrain the models, we

determined how each stimulus contributes to the models’

predictive power. Notably, models trained solely on responses to

step currents were able to accurately predict both the responses to

simple stimuli such as ramp current as well as to the responses to

physiologically inspired noisy current injections. In contrast,

models trained on either ramp or noisy inputs were not as

successful in predicting the response to other types of stimuli, i.e.

do not generalize well. We discuss the reasons why some stimuli

are more successful for estimating the properties of the underlying

ion channels than others as well as the implication of this work on

the way we understand the process of constraining biophysical

neuron models and on the data collection approach required to

allow the generation of accurate, predictive CBMs. We believe

that our method will become a standard tool for generating in-silico

models for a variety of neuron types and that these models could

then be used in realistic models of large scale neuronal networks.

Results

The process of constraining (training) the CBMs is portrayed in

Figure 1 and explained in detail in the Materials and Methods
section. Briefly, from the experimental data, voltage responses to

suprathreshold current inputs, (Figure 1a) we first extract a set of

features (Figure 1b). We then obtain the reconstructed morphology

of the neuron and assume a set of membrane conductances (ion

currents) to be present in the neuron’s soma (Figure 1c). In the

present study we assumed that the modeled cortical cells contain:

Transient sodium channel-Nat, Delayed potassium channel-Kd,

Slow inactivating persistent potassium channel-Kp, fast non-

inactivating potassium channel Kv3.1 channel, high-voltage-

activated calcium channel Ca, calcium dependent K channel -

SK, Hyperpolarization-activated cation current – Ih, M-type

potassium channel Im (for full details see Materials and
Methods). In the interests of simplicity, and since recordings

were performed in the soma, we assumed the neuron’s dendrites to

be passive. We then run an optimization algorithm (a Multiple

Objective Optimization (MOO) algorithm [27]) to constrain the

values of the maximal conductances of these ion channels and of

the passive properties of the neuron. The optimization generates a

set of multiple models from which we select for further analysis

only the models that pass a selection criterion (Figure 1e). These

constitute the final set of acceptable models (Figure 1f).

The procedure of assessing the models’ generalization power is

depicted in Figure 2. In Figure 2a three suprathreshold step

currents (together with the corresponding experimental voltage

responses) were injected to a rat layer V pyramidal cell and used as

the training set. Model parameters, maximal conductance values

for the eight excitable ion channels modeled and the neuron’s

passive properties, were automatically constrained until the

response of the resulting set of models closely matched the

experimental data (Figure 2b).

Then, while keeping the model parameters fixed, we applied to

the models a new set of stimuli (ramp currents in this example) that

were not encountered during the parameter constraining proce-

dure, and recorded the models’ voltage response to these new

stimuli (Figure 2c, red trace, generalization). Finally, we quantified

the degree of resemblance of the model response to that of the

corresponding experimental response (Figure 2d). This is quanti-

tatively expressed as the model mismatch, or error, as measured by

the feature-based distance between model and experiment in units

of experimental standard deviation (SD) [27].

Figure 3a depicts the ability of models constrained by responses

to step currents to predict (generalize to) the response to

suprathreshold ramp current injections. We find that as the size

(the number of different step currents) of the training set increases,

the average training error between the model and the experimen-

tal responses slightly increases (Figure 3a, blue circles). This is

expected from learning theory as a model of a given complexity is

challenged to fit a growing number of targets [28]. However, the

more interesting measure of model accuracy is the error in

matching responses to stimuli not encountered during the

parameter constraining procedure, the generalization error. This

error steeply decreases with the size of the training set (Figure 3a,

red circles, difference between one and four stimuli, P,0.0001)

indicating more accurate, reliable (better constrained) models.

Author Summary

Neurons perform complicated non-linear transformations
on their input before producing their output - a train of
action potentials. This input-output transformation is
shaped by the specific composition of ion channels, out
of the many possible types, that are embedded in the
neuron’s membrane. Experimentally, characterizing this
transformation relies on injecting different stimuli to the
neuron while recording its output; but which of the many
possible stimuli should one apply? This combined
experimental and theoretical study provides a general
theoretical framework for answering this question, exam-
ining how different stimuli constrain the space of faithful
conductance-based models of the studied neuron. We
show that combinations of intracellular step and ramp
currents enable the construction of models that both
replicate the cell’s response and generalize very well to
novel stimuli e.g., to ‘‘noisy’’ stimuli mimicking synaptic
activity. We experimentally verified our theoretical predic-
tions on several cortical neuron types. This work presents a
novel method for reliably linking the microscopic mem-
brane ion channels to the macroscopic electrical behavior
of neurons. It provides a much-needed rationale for
selecting a particular stimulus set for studying the input-
output properties of neurons and paves the way for
standardization of experimental protocols along with
construction of reliable neuron models.

Effective Stimuli for Reliable Neuron Models
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We next turn to constraining models by ramp current injection

(Figure 3b). Surprisingly, when attempting to generalize to step

currents using models that were trained on ramp currents, an

increase on the size of the training set did not yield better

generalization for the response to step currents and the

distribution of the generalization errors was very broad (Figure 3b).

In order to determine the impact of the nature and number of

stimuli used to constrain models on the conductance values of

successful solutions, we portray in Figure 3c the spread of

parameter values found at the end of the parameter optimization

process, as well as simulations of all points on a grid [29]. The

spread of solutions consistent with one step stimulus was

considerably larger than that of solutions consistent with four

(ratio of areas 0.24; Figure 3c, light and dark blue areas for one

and four stimuli, respectively, shown in two dimensional space).

Note that though visualization is difficult beyond three dimensions,

the calculation of the consistency of points on a grid with each

stimulus can be readily performed on the high dimensional grid.

This reduction in area with increasing number of training set

stimuli can be seen for most individual conductance dimensions

when considered separately as well (Figure S1a).

When considering models constrained on ramp currents we

again find that for most conductances an increase in the number of

stimuli leads to reduction in the spread of successful solutions

(Figure S1b). However, the relative size of the area of solutions

consistent with four ramp and step current stimuli (Figure 3d blue

areas marked with stimulus icon) in relation to the area of

intersection (Figure 3d dark blue) is much larger for ramp currents

than step currents. Thus, a solution chosen at random from those

consistent with step currents is far more likely to be in the area of

intersection, i.e. to be consistent with responses to both ramp and

step currents. This is directly in line with the more successful

generalization from step current responses to responses to ramp

currents than vice versa. We note that the different ways in which

stimuli ‘‘carve out’’ zones in parameter space is highly relevant to

the problem of solution non-uniqueness and return to this subject

in the Discussion.

To ensure that the asymmetric generalization is not due to an

inherent difficulty with constraining models to match responses to

ramp stimuli we quantified the ability of models trained on ramp

currents to generalize within stimulus, e.g., to other ramp current

stimuli not encountered during the parameter constraining

Figure 1. From experimental data to acceptable conductance-based neuron model. (a) Data is collected from voltage responses to a set of
repeated intracellular current injections (steps, ramps, noise currents) recorded from single cells’ somata. Two repetitions of a step current injection
are shown. Two traces with fairly large differences were chosen to highlight the variability. (b) The voltage traces are characterized using a set of
features (e.g. firing rate, height of action potentials). For each feature both the experimental mean and standard deviation (SD) are obtained from 15
repetitions of the same stimulus. (c) The generic form of a model to be constrained consists of a reconstructed morphology and an assumed set of
membrane ion channels (including their kinetics but not their densities, gi). (d) A multiple objective, genetic algorithm-based process of stochastic
optimization is applied in order to obtain values for gi that minimize the distance between the experimentally measured set of features and those of
the model. The convergence of the average error is shown by the blue curves, one curve for each of three independent applications of the model
constraining procedure (e) For the many possible solutions at the final iteration, a selection criterion of two experimental SDs in each feature is used
for choosing a subset of solutions (sets of gi values); these are considered acceptable models. Shown are two out of the six features considered for
step stimuli (see Materials and methods) (f) An example of the response of two different successful models to a step current input as in a. Two models
with fairly large differences were chosen to highlight the variability. The reconstructed L5 pyramidal cell shown in c is used throughout Figures 1–6.
doi:10.1371/journal.pcbi.1002133.g001

Effective Stimuli for Reliable Neuron Models
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procedure. We find that, in contrast to the between stimulus

generalization, addition of stimuli results in decreased generaliza-

tion error (Figure 4a, difference between one and four ramp

stimuli, P,0.0001). We compared this to the within stimulus

generalization in step currents and found it to be qualitatively

similar (Figure 4b, difference between one and four step stimuli,

P,0.0001).

Step or ramp currents are clearly not likely currents for a

neuron to encounter in its natural setting. Thus, we consider in

Figure 5 the ability of models constrained with these simple stimuli

to predict more physiological noise current injections. We

employed the gamma coincidence factor (GCF) [30,31] in order

to measure how well-locked is the timing of model APs generated

in response to noisy current injection to the APs recorded

experimentally in response to the same current (across multiple

experimental repetitions of the current injection). Two different

noisy currents were used, one with high mean and low standard

deviation (noise type 1) and one with low mean and high standard

deviation (noise type 2). We find that models trained on two steps

currents and two ramp currents were the best predictors of the

experimental AP times that were generated in response to both

noisy currents. When comparing the number of APs coincident

between the voltage responses derived from two repetitions of the

current input, the number of model APs coincident with those of

any given experimental repetition was over 90% of the number of

APs consistent between two different experimental repetitions

(Figure 5a black traces experimental voltage, black dots experi-

mental AP times, red trace model voltage response, red dots model

AP times; GCF 0.9160.03). Very similar accuracy was obtained

for the second type of noise current (GCF 0.9260.04, Figure S2a).

Responses to noise currents can themselves be used to constrain

the model by attempting to maximize the temporal fidelity of the

model to the experimental AP times. Indeed, models trained on

responses to noisy currents achieve a perfect within model

accuracy of GCF = 1. Generalization within stimulus type (to the

other noisy current type) was also highly successful (Figure 5b GCF

Figure 2. Training and Generalization paradigm. Example - training on responses to step currents and generalizing to responses for ramp
currents. (a) Experimental voltage responses recorded from rat layer 5 pyramidal cell (depicted in Figure S1c) to three depolarizing current steps
(lower blue) are used as the training set; the experimental response to the largest step current, #3, is displayed in black. (b) Model response to step
current #3 following training on the three current steps. (c) Model response (red trace) to a new stimulus, in this case a ramp current (lower red trace
in d). (d) Experimental response to the same ramp current. Comparison between model prediction and experimental data, using feature-based
distance functions, enables one to quantify the accuracy of the generalization procedure (see Figure 3). In this case the average feature error was
approximately 1.5 in units of the experimental standard deviation.
doi:10.1371/journal.pcbi.1002133.g002

Effective Stimuli for Reliable Neuron Models
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0.9560.09). However, models trained on noisy currents poorly

matched responses to step and ramp current inputs (Figure 5c, 5d

average feature error 2.5860.85 and 2.9260.97 respectively in

experimental SD units). The discrepancies in feature values fell

beyond 2.5 experimental SD units, more than twice as much as

the between stimulus generalization error of step currents. In

addition, the spread of parameter values of successful solutions was

very broad (not shown). Thus, the generalization from responses to

noise currents to that of simple currents was asymmetric, with the

combined step and ramp currents generalizing well to noise

currents but not vice versa.

We determined the accuracy of generalization from all different

training sets to all generalization test sets (Table 1). We find that

the combined set of ramp and step stimuli was the most effective in

Figure 3. Asymmetric generalization for step and ramp current stimuli. (a) Models were trained on step currents and generalization tested
on ramp currents. Mean and standard deviation of training error (blue) and generalization (red) for increasing number of stimuli included in the
training set. (b) Models were trained on ramp stimuli and tested for generalization on step stimuli. (c) Space of acceptable solutions for two out of
eight ion channel conductances used in this study. Transient sodium (gNa) and fast potassium (gKv3.1) conductances are shown for models trained
on one current step (region in light blue) and models trained on four currents steps (dark blue). (d) Space of acceptable solutions for both step and
ramp stimuli (four stimuli in each case) for the two ion channels depicted in (c). The intersection area (darker blue) represents solutions that are
consistent with both stimuli types.
doi:10.1371/journal.pcbi.1002133.g003

Effective Stimuli for Reliable Neuron Models
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generalizing to responses of both the simple and noise current

injections. Among the single stimuli, the step stimulus was the most

successful. Additionally, we find that though adding stimulus

intensities improves the generalization error, the added benefit of

including additional stimulus intensities of the same type in the

training set drops after more than three stimulus intensities.

We note that there is no theoretical guarantee that models that

generalize well to a certain type of stimulus will also generalize well

to different ones. An important class of stimuli are stimuli that

continuously sweep through a range of frequencies, sometimes

referred to as ‘‘chirp’’ or ‘‘zap’’ stimuli [32]. Though we did not

explore the space of such stimuli extensively in our experiments,

for the data we have we find that models trained on the combined

step and ramp stimuli generalize well to subthreshold frequency

sweeps (Figure S3).

Results presented so far pertained to models of a rat layer V

pyramidal cell. In order to assess the generality of the results we

applied the analyses described above to four additional cells. These

cells provided examples of different cell types (pyramidal,

interneuron), different ages (juvenile, adult) and different animals

(rat, mouse). We were able to generate successful CBMs for each of

the cells selected (shown in Figure 6a). We found that, in general,

the major results highlighted above are consistent across all cells.

Namely, the combined set of step and ramp stimuli was the most

effective and achieved very high temporal precision values

(Figure 6b). The generalization error was reduced as the number

of stimuli increased (Figure 6c) and the generalization between

stimuli was asymmetrical, with this set capable of matching

responses to noisy currents, but not vice versa.

Discussion

To the best of our knowledge, this is the first study to rigorously

quantify and successfully incorporate the concept of generalization

into the construction of experimentally-constrained conductance-

based neuron models (CBMs). Several previous studies have fit

models to surrogate data [33,34,35,36] or to experimental data

[29,36,37] but none have systematically compared the general-

ization of models derived from different experimental stimuli to

novel stimuli. Furthermore, it is the first study showing a

systematic successful application of automated parameter con-

straining of CBMs for a wide set of different stimuli types, different

neuron-types and different animals. For the five cells studied, we

obtained general results regarding the utility of different stimuli

types in constraining CBMs. We believe that the paradigm we

propose should hold also for other neuron types (e.g., hippocampal

CA1 pyramidal cells) but this requires further exploration.

Quantitative characterization of the utility of different
stimuli

Importantly, by considering the ability of CBMs trained on one

stimulus type to predict the responses to a set of different stimuli,

we provide a simple and valuable way of measuring the utility of a

certain stimulus in generating faithful CBMs. Clearly, evaluating

the utility of a given stimulus is of great practical importance not

only to those directly involved in biophysical modeling but also to

experimentalists as it will provide an objective method of selecting

which stimuli to be applied experimentally to a neuron in the

limited time of stable recording. Notably, despite its centrality to

the modeling effort, this subject has evoked little systematic study,

perhaps due to the technical difficulty of generating CBMs that

generalize well to experimental data (for surrogate data see ref.

[38]). Evaluation of the utility of different stimuli has been

performed for simpler biophysical models, such as integrate and

fire type models [39]. However, the stimuli found are typically

closely tied to the specific phenomenological nature of the model

assumed (e.g., a stimulus tailored to accurately measured the AP

Figure 4. Within stimulus generalization. (a) Models were trained on ramp stimuli and tested for generalization on ramp stimuli Mean and
standard deviation of training error (blue) and generalization (red) for increasing number of stimuli included in the training set. (b) Models were
trained on step currents and generalization tested on different intensities of step currents.
doi:10.1371/journal.pcbi.1002133.g004

Effective Stimuli for Reliable Neuron Models
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threshold) and are thus not always applicable to models of a

different nature (e.g. models that do not have an explicit

parameter for the threshold, such as CBMs).

For the step and ramp currents studied here, we find that

multiple suprathreshold intensities of two second long step and

ramp currents are required to generate faithful models. For the

number of stimulus intensities studied here additional intensities

reduce the generalization error (Figures 3,4). Yet, the added

benefit of stimuli beyond three intensities diminishes. For the noise

currents, we find that ten second long stimuli were sufficient to

generate models that generalize well for different noise currents.

For each of the stimuli, we use ten repetitions to estimate the

Figure 5. Generalization based on step+ramp stimuli outperforms generalization based on noisy stimuli. (a) Models were trained on a
combined set of step and ramp stimuli (schematics at left, blue) and tested for generalization on noisy inputs. Experimental response (black) is
displayed along with one model response (red). Timing of spikes is highlighted by corresponding color dots at top. GCF value 0.92 (b) Generalization
of models, trained using the type 1 noisy stimulus, to the type 2 noisy stimulus (black – experimental response; red – model response to type 2 noisy
input). GCF value 0.93 (c) Generalization of models trained using the type 1 noisy stimulus to step current pulses (black – experimental response, red
– response to type 2 noisy input). (d) Generalization of models trained on type 1 noisy input to ramp current pulses. Note considerable mismatch in
both c and d.
doi:10.1371/journal.pcbi.1002133.g005

Effective Stimuli for Reliable Neuron Models
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intrinsic variability. A combined set of step and ramp stimuli was

able to achieve even better generalization (Table 1). Thus, training

sets combining different stimuli are expected to be more effective

than single stimulus sets in their generalization as we indeed find

(see below).

The success of the step stimulus in generating predictive
CBMs

To what do we attribute the success of step stimuli in

generalizing to other stimuli? More generally, what could make

one stimulus more useful than another in generating models that

generalize to a wide variety of stimuli? The intuition behind the

success of the step stimulus relies on a combination of the nature of

the stimulus itself and single-cell biophysics. The ion-channels

expressed by a neuron exhibit a wide range of time constants, from

the very brief (less than a millisecond) to the very long (hundreds of

milliseconds and more). Different stimuli activate these membrane

ion channels to different degrees. If a certain channel is only

partially activated by a given stimulus, the contribution of this

channel to shaping the model dynamics (and hence the sensitivity

of its parameter values) will not be well estimated.

The slow transition through voltage prior to firing an AP elicited

by ramp currents strongly inactivates transient currents (e.g., fast

inactivating Na+ channels). Thus, if only ramp currents are present

in the training set, the parameter constraining procedure has no

opportunity to ‘‘learn’’ of the possibility of transient activation,

leading to an underestimate of the sensitivity of parameter values

of transient channels. When this model is challenged with the need

to generalize to depolarizing step stimuli, in which the degree of

inactivation prior to the first AP is much smaller, the full sensitivity

of transient channels comes into play and some of the models fail

to generate accurate responses. In contrast, white noise (or noise

smoothed by a short correlation time) is essentially a continuous

series of transients. This rapid transition between voltage values is

ineffective at activating channels with longer time constants.

Hence, the sensitivity of channels with long time constants (e.g.

slow inactivating potassium channels such as Kp) is underestimat-

ed by models trained solely on noise currents. In other words,

noise currents are composed only of transient responses and ramp

currents lack a strong transient. Step currents, on the other hand,

contain both an initial strong transient followed by a sustained

level of depolarization. Thus, they are able to activate both

transient channels and channels with long time constants, yielding

more accurate estimates of their contribution to the overall

response of the cell. Note, that had we been dealing with a linear

system, white noise would be sufficient to determine its transfer

properties and no other stimuli would be required [40]. However,

neurons are of course highly nonlinear systems.

The intuitive description above is in line with the quantitative

results regarding the effectiveness of generalization from different

stimuli i.e., the failure of models trained on ramps to generalize to

step currents, (Figure 3), the failure of models trained on noise

currents to generalize to steps and ramps (Table 1) and the spread

of acceptable parameter values (Figure 3). Notably, the intuitions

developed are relevant not only to the specific model itself (as

would be the case with phenomenological models) but also to the

general understanding of the function of different ion channels in

sculpting neuronal dynamics since the models directly incorporate

the experimentally derived dynamics of specific channels. In

summary, despite the simple and artificial nature of the step

current, it is more successful in constraining the dynamics of the

neuron than the synaptic-like noisy stimuli that more closely mimic

the conditions a neuron might encounter in-vivo. Thus, we point

out that the similarity to natural conditions should not be the only

reason for selecting stimuli. Indeed, one must in addition consider

how the stimuli might be used to uncover the underlying

biophysical dynamics.

Quantitative characterization of the parameter space
Mapping the portion of parameter space [29] corresponding to

solutions consistent with a given stimulus provides a both intuitive

and quantitative view of the effect of different stimuli on model

reliability. Different stimuli carve-out different shaped zones in

parameter space (see Figure 3). The degree to which two zones

overlap is an indication of how well the models will generalize

from one to the other, as only those models found in the

intersection area are consistent with both. Thus, if one of the

stimuli is chosen to train the model, the portion of the area found

outside of the intersection area corresponds to models that will fail

to generalize to the other stimulus. By combining different stimuli

in the training set we obtain different intersections of these zones.

Ultimately, we are interested in finding effective intersections that

will reduce the space of solutions as efficiently as possible to the

intersection of all stimuli measured. Naturally, as we add more and

Table 1. Summary of generalization errors for different training stimuli.

Training Stimuli
Gen. to Steps Error
(mean ± sd)

Gen. to Ramps Error
(mean ± sd)

Gen. to Noise type 1
(gamma coinc. factor)

Gen. to Noise type 2
(gamma coinc. factor)

Step (4 intensities, 2
seconds length each)

0.7460.18 1.3060.82 0.8860.05 0.8760.06

Ramp (4 intensities,
2 seconds length each)

2.3860.69 0.6860.15 0.8060.05 0.8560.07

Step+Ramp (2 intensities
of step, 2 intensities of ramp,
2 seconds length each)

0.8160.35 0.9260.41 0.9160.03 0.9260.04

Noise 1 (8 seconds length) 2.5860.85 2.9260.97 1.0060.00 0.9560.09

Noise 2 (8 seconds length) 2.8160.74 2.6360.91 0.9460.07 1.0060.00

Left column denotes the five training sets employed: step current pulses only, ramp current pulses only, combined step and ramp current pulses and the two noise
inputs. Models were generated by each one of these training sets and tested on four different generalization sets (top row): steps, ramps and type 1 and type 2 colored
noise currents (see Materials and methods). Accuracy of generalization to step and ramp currents is measured as the average 6 sd of all feature-based errors across all
six features, for the acceptable models (lower values indicate greater accuracy). Accuracy of generalization to colored noise current injections is given by the precision of
spike timing as quantified by the average gamma coincidence factor value (higher values are more accurate; see Materials and methods). Italicized text indicates within-
stimulus generalization, regular indicates between stimulus generalization.
doi:10.1371/journal.pcbi.1002133.t001
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more stimuli at some point the zones will fail to intersect any

longer, indicating that we have tasked our models too far and must

either choose a different model or less ambitious requirements.

Notably, we believe that this provides a very useful framework for

tackling the problem of non-uniqueness in the solution space.

Importantly, this will allow more detailed exploration of the spread

and composition of different membrane channel conductances for

a given neuron type and even comparisons between the same

neuron type at a different stage of neuronal maturation, or

between different neuron types and different species.

In summary, we have demonstrated that, given the experimen-

tal response to different stimulus types (and several repetitions of

each) and based on the theoretical framework presented here, we

can construct faithful CBMs of different neuron types that can

accurately predict the responses to both simple and noisy current

injections that were not used during model construction. This

suggests that the models generated indeed capture the neuron’s

dynamics. We emphasize that modeling studies should report not

only the similarity of models to the data used in their generation

(training error) but should also reserve some of their data for

examining the generalization (or predictive) quality of the models.

We note however that there is no guarantee that models that

generalize well to a certain stimulus will also generalize well to

other stimuli and this issue requires more careful exploration with

many stimuli. Our development of a framework to quantitatively

test the utility of different stimuli and our finding that some stimuli

are more advantageous in constraining CBMs than other stimuli

has prompted us to start exploring experimentally and theoreti-

cally the effectiveness of more sophisticated stimulus protocols in

constraining neuronal models. Ultimately, the goal is to find the

optimal (and minimal) set of stimuli that ensure accurate

generalization to a wide set of diverse stimuli. There are numerous

possible options for the different forms of stimuli that could be

injected within a fixed time, for instance frequency sweeps that

explore frequency response and resonant properties of neurons

[32,41] or more complicated noisy stimuli that alternate between

Figure 6. Constraining conductance-based models for different neuron types. (a) Experimental response (black traces) to a 2 second long
step current pulse (lower trace, black) and model response (blue traces) to the same current pulse; training set consisted of the combined step and
ramp currents. (b) Generalization was tested on the high mean, low variability type 1 noisy current pulse (bottom grey). Experimental response
(black) and one model response (red) are shown along with corresponding color dots indicating timing of APs. GCF values: 0.91, 0.89, 0.92 top to
bottom respectively (c) Generalization error (red) and training error (blue) for models trained on step currents and generalization tested on ramp
currents. Cell 2 - L5 pyramidal cell from a juvenile rat (p16); cell 3 - fast-spiking interneuron, juvenile rat (p16); Cell 4 - pyramidal cell from a young
mouse (p34). Corresponding morphology is shown at left.
doi:10.1371/journal.pcbi.1002133.g006
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different noise parameters [42,43]. This is a subject that is

presently under active pursuit.

Materials and Methods

Ethics statement
Wistar rats (17–19 days old) and one x98 mouse [44] were

quickly decapitated according to the Swiss national and institu-

tional guidelines.

Slice preparation and cell identification
The brain was carefully removed and placed in ice-cold artificial

cerebrospinal fluid (ACSF). 300 mm thick parasaggital slices were cut

on a HR2 vibratome (Sigmann Elektronik, Heidelberg, Germany).

Slices were incubated at 37uC for 45–60 min and then left at room

temperature until recording. Cells were visualized by infrared

differential interference contrast videomicroscopy utilizing a VX55

camera (Till Photonics, Gräfeling, Germany) mounted on an upright

BX51WI microscope (Olympus, Tokyo, Japan). Cells were patched

in slices ,1.8 mm lateral to the midline and above the anterior

extremity of the hippocampus 60.8 mm, corresponding to the

primary somatosensory cortex [45,46,47]. Thick tufted layer 5 PCs

(rat and mouse) were selected according to their large soma size and

their apparent large trunk of the apical dendrite. Layer 6 fast-spiking

interneurons were selected according to their multipolar soma shape.

Care was taken to use only ‘‘parallel’’ slices, i.e. slices that had a

cutting plane parallel to the course of the apical dendrites and the

primary axonal trunk. The cell type was confirmed by biocytin

staining revealed by standard histochemical procedures [48].

Chemicals and solutions
Slices were continuously superfused with ACSF containing (in

mM) 125 NaCl, 25 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 2 CaCl2,

1 MgCl2, and 25 D-glucose, bubbled with 95% O2 – 5% CO2.

The intracellular pipette solution (ICS) contained (in mM) 110 K-

gluconate, 10 KCl, 4 ATP-Mg, 10 phosphocreatine, 0.3 GTP, 10

N-2-hydroxyethylpiperazine-N9-2-ethanesulfonic acid (HEPES),

and 13 biocytin, adjusted to a pH 7.3–7.4 with 5 M KOH.

Osmolarity was adjusted to 290–300 mosm with D-mannitol

(35 mM). The membrane potential values given were not

corrected for the liquid junction potential, which was approxi-

mately 214 mV. All chemicals were from Sigma-Aldrich

(Steinheim, Germany) or Merck (Darmstadt, Germany).

Electrophysiological recordings
Whole cell recordings (1–3 cells simultaneously) were performed

with Axopatch 200B amplifiers (Molecular Devices, Union City,

CA) in the current clamp mode at a bath temperature of 3461uC
during recording. Data acquisition was performed with an ITC-

1600 board (Instrutech Co, Port Washington, NY), connected to a

Macintosh running a custom written routine under IgorPro

(Wavemetrics, Portland, OR). Sampling rates were 10 kHz, and

the voltage signal was filtered with a 2 kHz Bessel filter. Patch

pipettes were pulled with a Flamming/Brown micropipette puller

P-97 (Sutter Instruments Co, Novato, CA) and had an initial

resistance of 3–4 MW. During recording the series resistance was

10, 10, 11, 17, or 22 MW and bridge balanced. Miniature

excitatory postsynaptic potentials (mEPSPs) were blocked with

10 mM CNQX and occasionally with 40 mM AP5.

Stimulation protocols
Three different types of stimuli were applied. Stimuli were

scaled with a constant factor k M (1, 2, 2, 2.5, 3) so that the cells

fired with moderate mean frequencies of 2–20 Hz, high enough to

obtain enough spikes for analysis, yet low enough not to over

stimulate the cells and shorten their life span. Six depolarizing step

currents of 2 s duration and increasing amplitudes (100–2256k

pA) were applied. Five depolarizing ramp currents, 2 s rising

phase (from 0 to 125–2506k pA) and symmetrically decaying

falling phase, were injected (only rising phase was used in this

study). In addition, we apply Ornstein-Uhlenbeck [49] (OU)

colored noise processes that are considered to represent the

current that might arrive at the soma of a cell as a result of the

summation of the activation of many synapses in the cell’s

dendritic arbor [50]. We employ two different 20 s long OU

processes with identical correlation time (2 ms) but different

statistics. One is generated with a mean of 506k pA and SD of

1006k pA (hereby referred to as noise type 1). The other mirrors

this process by having a mean of 1006k pA and SD of 506k pA

(hereby referred to as noise type 2). We repeatedly inject the

different currents in order to measure response variability. Each

stimulus was repeated 10–20 times.

Neuron model
All simulations were performed in the NEURON simulation

environment [51]. The morphology of 5 cortical neurons from rat

and mouse somatosensory cortex was derived from reconstruction

of in-vitro stained cells. The number of compartments employed

differed from cell to cell, all cells contained more than a hundred

compartments. Specific axial resistance was 150 Vcm and

capacitance was 1 mF. The following ion channels were assumed

to be present in the membrane of the modeled soma: Transient

sodium channel-Na, Delayed potassium channel-Kd, Slow

inactivating persistent potassium channel-Kp, fast non-inactivating

potassium channel Kv3.1 channel, high-voltage-activated calcium

channel Ca, calcium dependent K channel - SK, Hyperpolariza-

tion-activated cation current – Ih, M-type potassium channel Im,

for full details see ref. [27]. The dynamics of these channels were

described using Hodgkin and Huxley formalism [1]. As all the

experimental recordings in this work were performed from the

cell’s somata and for the sake of simplicity, the modeled dendrites

were assumed to be passive. The maximal conductance of all eight

channels along with the leak reversal potential and leak

conductance in the soma and dendrite served as free parameters,

yielding a total of eleven free parameters in the model. The

allowed range for the conductances can be found in ref. [27].

From data to conductance-based model
An overview of the procedure by which we generate

conductance-based models (CBMs) from an experimental data

set is presented in Figure S1. We begin by recording the responses

(Figure S1a) of the cell to intracellular current injection. Responses

are then analyzed by the extraction of a set of features (Figure

S1b), which are used to generate feature-based distance functions

(see below). Next, we use the reconstructed morphology (Figure

S1c) to generate the compartmental model of that cell and assume

a set of 8 ion channels to be present in the soma membrane of the

model cell. Together the reconstructed morphology and the

assumed ion channels compose the model skeleton. When

combined with a set of specific values for the free parameters

they together constitute a single CBM for that neuron.

A stochastic optimization procedure is employed to constrain

the parameters of the model in accordance with the experimental

data. We employed a multiple objective optimization (MOO)

algorithm which operates by genetic algorithm optimization [52].

The algorithm evaluates 300 sets of parameter values in parallel

and iteratively seeks to reduce the error, which measures the

discrepancy between model and experiment (Figure S1d). As the
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algorithm is stochastic in nature, we repeat the optimization

procedure ten times in order to reduce the chance that the

optimization procedure fails to converge. Thus, at the end of the

optimization procedure, 3000 parameter sets, i.e. 3000 tentative

models of the cell are obtained along with their corresponding

error values. We then choose only those models that pass the

acceptance criterion of a model-experiment mismatch no greater

than two SD in each feature (Figure S1e). Ultimately, we end up

with a set of models that closely match the experimental voltage

responses (Figure S1f).

Distance functions
The discrepancy between the target experimental data (a train

of spikes in response to a set of current stimuli) and model

simulation of the response was measured using feature-based

distance functions [27]. Features to be fitted were extracted from

the firing response of the neuron (e.g. number of action potentials

(APs), spike height). The value of each feature was derived from

the experimental responses. The model response to the same

stimulus was then analyzed in an identical fashion. The model-to-

experiment distance value, for this feature, was measured by the

distance of the model feature value from the experimental mean,

in units of experimental SD. These distance functions have two

main advantages. First, they address experimental variability by

considering the distance of a model in relation to the experimental

SD. Second, they are expressed in well defined, not arbitrary, units.

For step pulses, we employ a set of six features: the number of

action potentials (APs) during the pulse, the time to the first AP

from stimulus onset, the accommodation index (a measure of the

accommodation in the rate of APs during the stimulus [27]), the

width of an AP at half height, the average height of an AP, and the

average depth of the after hyperpolarization (AHP) as defined by

the minimal voltage point. For ramp currents, as the height of APs

decreases during the stimulus response, we considered not only the

average height of APs and the depth of AHPs but also the slope of

a linear fit to the change as an additional feature. For the noise

stimuli we do not use feature-based distance functions, but rather

the gamma coincidence factor [30,31] - an index measuring the

coincidence of AP times in relation to the neuron’s intrinsic

reliability. The index is normalized from 0 to 1, a value of 0

indicates that a model does no better than a Poisson train and a

value of 1 indicates that the model and experimental repetitions

have as many coincident spikes on average as do two experimental

repetitions. Note, that in this context the objective of optimization

is to maximize this value.

Assessing utility of different stimuli
In order to assess the utility of different stimuli in generating

neuron models that generalize well both within stimulus and

across stimuli we generate models with training sets that are

equally matched in terms of the length of the experimental data.

Namely, we consider four different training sets: step current

pulses only (four intensities of two second long step currents), ramp

current pulses only (four intensities of two second long ramp

currents), combined step and ramp currents (two intensities of two

second long step currents and two intensities of two second long

ramp currents) and noise currents (eight seconds of OU noise

process current injection). For each of these training sets, we test

the generalization of the model to four different conditions: step

currents, ramp currents and two different noise currents. Five

intensities of step and ramp currents can be potentially employed

to both train and test generalization. Stimuli used during the

parameter constraining process (e.g. the four step currents used by

the first training set) are excluded from the generalization test.

Multiple objective optimization
As we typically employ several feature-based distance functions

per stimulus and we often use more than one stimulus for the

optimization, we obtain multiple distance function values for each

model-experiment comparison. To obtain a single value a weight

vector is used to sum all the different distance functions. Here we

employ a different approach termed multiple objective optimiza-

tion (MOO) [53]. This approach maintains the multiple distance

measures and does not employ a weight vector. Instead, the

relation between distance measures is that of domination: solution i is

said to dominate solution j if for all distance functions the values of

solution i are no greater than those of solution j and for at least one

distance function the value of solution i is strictly lower than that of

solution j. The purpose of a multiple objective optimization

procedure is to find the best possible tradeoffs between the distance

functions, termed the Pareto front.

Optimization algorithm
We employ a genetic algorithm (GA) based optimization

algorithm designed for multiple objective optimization named

NSGA-II [52]. This algorithm is an elitist (GA) with a parameter-

less diversity preserving mechanism. We custom implemented this

algorithm in NEURON. We find that the algorithm almost always

converges after 1000 iterations of evaluation of the full set of

parameter values. As a safety factor, 1500 iterations were used. We

repeated each given optimization ten times.

Analysis of solution space
The spread of successful solutions in parameter space for a given

stimulus type can be explored by simply marking the location of

each point corresponding to a solution. However, it is difficult to

determine in this fashion whether a certain region of parameter

space is consistent with more than one stimulus as the points

themselves will almost surely not coincide. An additional

disadvantage is that many of the solutions are the result of the

same optimization run and thus contain artificial correlations due

to the closely linked nature of solutions generated by a single

optimization run. To overcome these two difficulties we

complement our analysis by additional simulation of the response

of a large set of points placed on a high-dimensional grid [29] to all

(step and ramp) stimuli used in the experiments. This approach is

extremely computationally expensive. However, it overcomes the

above-mentioned difficulties: as the same points are simulated for

all conditions, one can easily ascertain which are the conditions

consistent with each point. Secondly, as all points are generated on

the grid there are no unknown artificial correlations between

them. Lastly, this approach allows visualization of projections of

the space of solutions consistent with each stimulus (see Figure 2).

Supporting Information

Figure S1 Successful solution conductance values for all
ion channels. (a) Normalized conductance values for all eleven

ion channels modeled. Black dots - models trained on one current

step; red dots - model trained on four step current stimuli. Note

that for most conductances the range of acceptable values

decreases with the number of stimuli. (b) Corresponding plot for

models constrained using either one (black) or four (red) ramp

stimuli.

(TIF)

Figure S2 Generalization to second noise type. (a) Models

were trained on a combined set of step and ramp stimuli

(schematics at left, blue) and tested for generalization on a high
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mean low standard deviation noisy current injection (type 2,

bottom). Red trace shows model response to stimulus, black trace

one experimental trace. AP times highlighted by correspondingly

colored dots. (b) Corresponding plot for models trained on the low

mean high standard deviation noisy current injection (type 1). Blue

trace shows model response, black experimental; colored dots

highlight AP times.

(TIF)

Figure S3 Generalization of model constrained by step
and ramp stimuli to ‘‘chirp’’ stimuli. a. Experimental

subthreshold response (black line) of layer 5 pyramidal cell shown

in Figure 1–5 to sinusoidal stimuli of increasing frequency with

time (‘‘chirp’’ stimuli). The generalization result of a model of that

cell, trained on the combined step and ramp stimulus set is

depicted in red. b. Responses to five experimental repetitions of

the chirp stimulus. For each of the repetitions, the height of

successive local peaks was normalized to the height of the first

peak. The attenuation of the peaks with time corresponds to

increasing chirp frequency. The mean of the experimental traces is

shown in thick black, the five individual repetitions experimental

plots in thin gray and model response is shown in thick red. Note

the accurate, but not perfect match between model and

experiments. c. Due to the lack of experimental suprathreshold

chirp responses, we generated surrogate data for these stimuli by

first fitting a model of the same pyramidal cell, using step and

ramp current injections, then generating surrogate data from that

neuron by simulating injections of different stimuli including

suprathreshold chirp stimuli and collecting surrogate data from the

model neuron. Later, new acceptable models were generated from

the surrogate step and ramp stimuli data, and their generalization

to the surrogate suprathreshold chirp stimuli data was tested.

Voltage traces for the surrogate chirp stimuli are shown in black

and AP times marked above as circles (note that APs were cut).

Superimposed in red is the response of model the for the chirp

stimulus, that was generated from the surrogate data. In the

bottom, marked by Amp. 2, AP times are shown with the same

convention for a stronger amplitude chirp. Many of the AP times

were accurately reproduced.

(TIF)
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