
John von Neumann Institute for Computing

Novel Brain-Derived Algorithms Scale Linearly
with Number of Processing Elements

Jeff Furlong, Andrew Felch,
Jayram Moorkanikara Nageswaran, Nikil Dutt,

Alex Nicolau, Alex Veidenbaum, Ashok Chandrashekar,
Richard Granger

published in

Parallel Computing: Architectures, Algorithms and Applications ,
C. Bischof, M. Bücker, P. Gibbon, G.R. Joubert, T. Lippert, B. Mohr,
F. Peters (Eds.),
John von Neumann Institute for Computing, Jülich,
NIC Series, Vol. 38, ISBN 978-3-9810843-4-4, pp. 767-776, 2007.
Reprinted in: Advances in Parallel Computing, Volume 15,
ISSN 0927-5452, ISBN 978-1-58603-796-3 (IOS Press), 2008.

c© 2007 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/volume38

Novel Brain-Derived Algorithms Scale Linearly with
Number of Processing Elements

Jeff Furlong1, Andrew Felch2, Jayram Moorkanikara Nageswaran1, Nikil Dutt1,
Alex Nicolau1, Alex Veidenbaum1, Ashok Chandrashekar2, and Richard Granger2

1 University of California, Irvine
Irvine, CA 92697, USA

E-mail: {jfurlong, jmoorkan, dutt, nicolau, alexv}@ics.uci.edu
2 Dartmouth College

Hanover, NH 03755, USA
E-mail: {andrew.felch, ashok.chandrashekar, richard.granger}@dartmouth.edu

Algorithms are often sought whose speed increases as processing elements are added, yet at-
tempts at such parallelization typically result in little speedup, due to serial dependencies intrin-
sic to many algorithms. A novel class of algorithms have been developed that exhibit intrinsic
parallelism, so that when processing elements are added to increase their speed, little or no
diminishing returns are produced, enabling linear scaling under appropriate conditions, such
as when flexible or custom hardware is added. The algorithms are derived from the brain cir-
cuitry of visual processing10, 17, 8, 9, 7. Given the brain’s ability to outperform computers on a
range of visual and auditory tasks, these algorithms have been studied in attempts to imitate
the successes of real brain circuits. These algorithms are slow on serial architectures, but as
might be expected of algorithms derived from highly parallel brain architectures, their lack
of internal serial dependencies makes them highly suitable for efficient implementation across
multiple processing elements. Here, we describe a specific instance of an algorithm derived
from brain circuitry, and its implementation in FPGAs. We show that the use of FPGAs in-
stead of general-purpose processing elements enables significant improvements in speed and
power. A single high end Xilinx Virtex 4 FPGA using parallel resources attains more than a
62x performance improvement and 2500x performance-per-watt improvement. Multiple FP-
GAs in parallel achieve significantly higher performance improvements, and in particular these
improvements exhibit desirable scaling properties, increasing linearly with the number of pro-
cessing elements added. Since linear scaling renders these solutions applicable to arbitrarily
large applications, the findings may provide a new class of novel approaches for many domains,
such as embedded computing and robotics, that require compact, low-power, fast processing el-
ements.

A Introduction

Brain architecture and computer architecture have adapted to two very different worlds of
computation and costs. While computers use connected central processors with central
memory storage, the mammalian brain evolved low-precision processing units (neurons)
with local memory (synapses) and very sparse connections. From a typical engineering
view, brains have a demonstrably inferior computing fabric, yet they still outperform com-
puters in a broad range of tasks including visual and auditory recognition. We propose
that these brain circuit components are designed and organized into specific brain circuit
architectures, that perform atypical but quite understandable algorithms, conferring unex-
pectedly powerful functions to the resulting composed circuits.

In this paper we first present the components of a visual brain circuit architecture
(VBCA), and an overview of visual object recognition. We then show a parallel algo-

767

Figure 1. The components of our system are shown. The shaded blocks are targeted for parallelization on FPGAs.

rithm derived for the VBCA, and we demonstrate their application to a particular visual
recognition benchmark of known difficulty (the “Wiry Object Recognition Database”5

from CMU). We characterize the inefficiencies of mapping this intrinsically parallel al-
gorithm onto general purpose CPUs, and then describe our implementation in FPGAs, and
we analyze the resulting findings.

A.1 Background

Neurons in the eye are activated by light, and send information electrically to the thalamo-
cortical system, which is the focus of our work. Thalamo-cortical circuits, constituting
more than 70% of the human brain, are primarily responsible for all sensory processing as
well as higher perceptual and cognitive processing.

It has long been noted that the brain operates hierarchically20, 21: downstream regions
receive input from upstream regions and in turn send feedback, forming extensive cortico-
cortical loops. Proceeding downstream, neural responsiveness gains increasing complexity
in types of shapes and constructs recognized, as well as becoming independent of the exact
location or size of the object (translation and scale invariance)3. Early visual components
have been shown to respond to simple constructs such as spots, lines, and corners,13; simu-
lations of these capabilities have been well-studied in machine vision. Further downstream
regions are selectively activated in response to assemblies of multiple features, organiz-
ing the overall system into a hierarchy12, 14, 22. Our work shows simulations of presumed
intermediate stages in these cortical hierarchies, selectively responding to particular fea-
ture assemblies composed of multiple line segments. In particular we present processors
of three segments (“line triples”). This highly simplified architecture is shown to be very
effective on difficult visual applications such as the CMU database. It is hoped that imple-
mentations of further downstream areas will extend the work to more abstract perceptual
and cognitive processing17, 9

Key components in the implemented system are briefly described here. A given set of
features activates particular regions that we refer to loosely as receptive fields (RF). Any
two shapes are as similar as the number of activated neurons shared in their activation pat-
terns. As a result of sparse population codes, most neurons are inactive; this concept is
represented in a highly simplified form as sparse bit-vectors. The intrinsic random connec-
tivity tends to select or recruit some areas to respond to some input features (RFs). Neurons
train via increments to their synaptic connections, solidifying their connection-based pref-
erences. After a simulated “developmental” phase, synapses are either present or absent
and each neuron’s level of activation can be represented as the bit vector.

768

Neurons activate local inhibitory cells which in turn de-activate their neighbors; the
resulting competition among neurons is often modeled as the K best (most activated) “win-
ners” take all or K-WTA6, 17, 8, 9, which our model incorporates.

These K winners activate a next set of neurons, termed RF2. As objects are viewed,
these RF2 neurons are synaptically trained, becoming “recognizers” of classes of objects.
RF2 activation can in turn be used in “top-down” or feedback processing, to affect the RF1
detectors based on what the RF2 cells “think” is being recognized.

The model described here uses 8192 neurons to represent the first set of input feature
detectors (RF1) and 1024 neurons for RF2; other configurations exhibit comparable be-
haviour. Intuitively, increasing the number of neurons can be used to increase the number
of classes of objects that can be recognized. The architecture modeled is depicted schemat-
ically in Fig. 1. The shaded regions are those that are targets for FPGA implementation.

A.2 Application
The Wiry Object Recognition Database (WORD)5 from CMU was used to provide a dif-
ficult dataset dependent on shape-based recognition. The database contains a series of
videos, in which a barstool is placed in several different office environments. The goal is
to determine where in the videos the barstool is located. Successful identification requires
a bounding box to enclose the location of the stool in the video frame, within 25% of the
stool’s actual area.

In top-down processing, thresholds are used to convert the activations of the second
set of neurons, those for classes of objects, from data on expected shapes to data on ac-
tual shapes. This conversion builds recognition confidence, and confidence above another
threshold indicates an actual guess of a recognized visual object. The guesses create bound-
ing boxes that correspond to a particular area of the field of view.

It is important to note that the VBCA system learns, i.e., improves and generalizes its
performance with experience. Instead of merely recognizing objects based on predeter-
mined criteria, our system acquires information about expected and actual shape locations.
The system’s ability to recognize many different objects of the same type, such as variants
of stools, increases as it views and learns more objects.

A.3 Related Work
Several models of the neocortex have been proposed previously. Some models contain
no hierarchical structure, but are accelerated by hardware, even FPGAs23, 19. Others do
contain hierarchy, but not hardware acceleration16, 15. Some have simulated hierarchical
neocortical structures, and suggested that implementations of their models in FPGA fab-
rics would achieve better results, but have not actually done so and do not report object
recognition results18. A previous implementation of the K-WTA network on a FPGA has
yielded speeds similar to those of a desktop computer11. No similar work has shown hier-
archical cortical models that operate in real-time.

B VBCA Algorithm

The entire VBCA algorithm is currently executed on two systems. We use a general pur-
pose CPU to capture inputs and perform high-level computations, while the predominantly

769

Initialize:

 load RF1 with 8192 entries of size 120 bits (ROM)

 load RF2 with 1024 entries of size 8192 bits

(RAM)

Capture Video Frame:

 extract 400 to 600 line segments (32 bits each)

 group 20,000 to 100,000 line triples (30 bits each)

depending on scene complexity

Calculate LSH:

 let lshVector be a locality sensitive hash (LSH)

based on frame and line data

RF1 Compute:

//Computes the dot product of RF1 neurons with a

//120 bit vector based on input frame data;

//Additionally computes a threshold so that about 512

//RF1 neurons are active

 popRAM[] = array of 8192 elements of 7 bits each

 sums[] = array of 121 elements of 13 bits each

 for i=1…8192

 for j=1…20

 popCount = popCount + Max(0, 8 -

Abs(lshVector - RF1[i]))

 lshVector = lshVector >> 6

 RF1[i] = RF1[i] >> 6

 popRAM[i] = popCount

 sums[popCount] = sums[popCount] + 1

K-WTA Compute:

//Computes a vector indicating what RF1 neurons are

//receptive

 i=120

 while totalSum < 512 || i != 0

 totalSum = totalSum + sums[i--]

 threshold = i

 threshold2 = popCount / 4

 for i=1…8192

 if popRAM[i] > threshold

 midVector[i] = 1

 else

 midVector[k] = 0

RF2 Compute:

//Computes dot products between the resultant

//midVector and all RF2 neurons; Outputs the RF2

//index if the population count of the dot prodcut is

//over threshold2

 popCountROM[] = array of 2^8192 elements of 13

bits each

 //(ROM can be distributed to reduce size)

 for i=1…1024

 popCount = popCountROM[midVector &

RF2[i]]

 if popCount > currentMax

 currentMax = popCount

 if popCount >= threshold2

 output index i

 output threshold2

 output currentMax

Evaluate Learning:

 input results from RF2 Compute

 analyze highly receptive neurons to determine if

they should learn

 modify RF2 neurons (to be similar to frame data)

based on learning

RF2 Update:

 if applicable, send updates to RF2 as a result of

learning

Figure 2. Detailed pseudocode for the components of the Visual Brain Circuit Architecture (VBCA) algorithm.

bottom-up or feed-forward computations, exhibiting highly parallel operation, can be sent
to FGPAs. Final post-processing is also performed on the general purpose CPU. The op-
timized VBCA algorithm is shown in Fig. 2, which represents in more detail all of the
components of Fig. 1.

As can be seen in the visual brain circuit algorithm, some sections contain a massive
amount of potential parallelism, while others sections may contain sequential code or offer
very little parallelism. For example, the process of capturing frame data is very well suited
for general purpose CPUs. Line segment extraction has been researched extensively and
well developed algorithms already exist, so we have not attempted to perform this calcula-
tion on FPGAs. While we have implemented the Calculate LSH code on general purpose
CPUs and FPGAs, we have found it more efficient on CPUs because the computations are
small, but with notable memory requirements. With optimizations to software code, it may
be possible to execute these setup tasks in real-time on a general purpose CPU.

The sections termed RF1 Compute, K-WTA Compute, and RF2 Compute offer high de-
grees of parallelism, just like the human brain, and we target these operations on FPGAs.
These three sections are the components of bottom-up or feed-forward computations. To
run these calculations in real-time with a reaction time of one second, we need to demon-

770

strate a speedup of 185x over that of optimized CPU code, if we analyze 100,000 line
segment triples per frame.

After processing line triples in the RF2 Compute section, the results can be streamed
back to the CPU, where top-down learning occurs in the section Evaluate Learning. For
simplicity, we also call this section post-processing.

Though we have a software implementation of how we believe this post processing
component works, it is likely to be optimized in the future. These optimizations, some
of which may include mapping the computations to more FPGAs, may offer speedups
to satisfy overall real-time constraints. However, an evaluation of these post-processing
calculations is only practical when the previous computations run in real-time.

C FPGA Implementation

Here we detail the parallel feed-forward computations and show that the their FPGA im-
plementation is more computationally efficient than that on general purpose CPUs.

Consider the RF1 Compute section of the algorithm. This code could contain 8192
parallel processing elements, each with 20 parallel subcomponents. These subcomponents
can be small, six bit functional units. However, a classic data convergence problem exists,
because each of the 20 partial sums must be added together.

By building small FPGA logic elements that can be replicated, we have introduced just
four parallel processing elements, each with 20 subcomponents. These small calculations
are wasteful on a general purpose CPU because not all 64 bits of its datapath can be utilized.

The K-WTA Compute loop is a very simple comparison loop iterated 8192 times.
Again, 8192 processing elements could be used in the optimal case. These elements can
be small blocks of logic because the necessary comparison is only on seven bits of data.
After each iteration, only one bit of output is generated. A fast 64 bit processor is unlikely
to show great utilization because the datapath is simply too big. In our implementation, we
have again built four small parallel functional units.

The most complex part of the algorithm is that of the RF2 Compute logic. The 8192 bit
dot product is performed by ANDing a data value (midVector) with one of 1024 elements
in the RF2 array. The number of binary ones in this resultant dot product must be counted
(termed “population count”), and compared to a variable threshold. We have found that
the most efficient method for the population count is to store population count values in a
lookup table (ROM). Simply, the data to be counted is used as an address to the ROM, and
the data stored at that address is the actual population count. Because it is not feasible to
store all 28192 elements in one ROM, we add parallelism by distributing the data.

In the optimal case, 1024 processing elements could compute all of the RF2 calcula-
tions in approximately one cycle. However, this is not realistic because the required logic
and routing resources is far too great.

On a general purpose CPU, the simple dot product operation can take a significant
amount of cycles, because the data must be partitioned to manageable 64 bit widths. How-
ever, on FPGAs, we can utilize 256 bit processing elements, and partition our population
count ROM into blocks of eight bits each. More specifically, we utilize 32 parallel lookup
ROMs and replicate them 16 times each. By doing so, we are able to compute 4096 bits
of dot product per cycle, instead of just 64 bits on a CPU cycle. The use of parallelism
on the loop and within each functional unit in that loop reduces the number of cycles from

771

millions on a general purpose CPU, to just thousands on an FPGA.
We have carefully chosen the level of parallelism to be used on each of the three sec-

tions of the algorithm. By doing so in the method presented, each section requires about
the same number of cycles to finish its computation. Hence, we can pipeline each section,
to produce a data streaming system, increasing the speed by about a factor of three.

Our implementation has been verified in post place and route simulation models. Be-
cause of the extremely limited number of Xilinx Virtex 4 FX140 devices at the time of
this writing, we have been unable to implement our design in a physical FPGA. Our fi-
nal performance enhancements can be seen in Table 1, which also compares the results
with that of a general purpose CPU. We have demonstrated a 62.7x speedup on a single
FPGA, while proving a speedup per $1000 factor that is significantly better than that of
CPUs. In addition, the speedup per watt on FPGAs is a 2500x improvement over that of
general-purpose CPUs.

Much of our circuit design is dedicated to the RF2 Compute section. The amount of
logic and memory required is greatest for this part of the algorithm. Overall, our model
requires approximately 9.6 Mbit of on-chip memory, limiting our design to only a few
specific FPGAs that contain that much BRAM. Table 2 shows our FPGA utilization for the
entire design, including a basic I/O interface.

Device Cycles Freq. Time Speedup Cost Speedup Power Speedup
(MHz) (us) ($) / $1K (W) / W

Intel Core2 Duo 5423430 2930 1851 1.00x 2000 0.500 65.0 0.0154
XC4VFX140 2242 76.00 29.50 62.7x 10000 6.27 1.63 38.5

Table 1. The Xilinx Virtex 4 FPGA has a much longer cycle time, but ultimately requires less computational
time. It also has better speedup per $1000 and speedup per watt ratios.

Number of RAMB16s 548 out of 552 99%
Number of Slices 38896 out of 63168 61%

Number of DSP48s 0 out of 192 0%
Number of PowerPCs 0 out of 2 0%

Table 2. The amount of BRAM required for our design is very large, while logic resources to support the BRAM
are also considerable.

C.1 Parallel FPGAs

If we consider all optimal cases of the three VBCA components, where logic resources are
unlimited, we could complete all required computations in as little as four clock cycles. Of
these cycles, two are required for internal pipelining, and two are required for data com-
putation. The required clock period for such massively parallel small processing elements
would be great. However, by dividing our ideal unlimited logic resources between parallel
FPGAs, we can address the intangibility problem and the long clock period problem.

Utilizing parallelism across multiple FPGAs, instead of purely within a single FPGA,
is possible because we have built a data streaming design where our FPGA calculations

772

do not share data between each other. The only data that must be replicated among all
FPGAs are the RF1 elements, the RF2 elements, and the ROM based lookup tables for
RF2. Hence, we can create a client/server model, where the general purpose CPU sends
lshVectors to each FPGA. which can then return results to the CPU for post processing.

Under ideal assumptions, by simply extrapolating our results with a single FPGA and
ignoring I/O demands, we find that using 2048 parallel FPGAs is optimum. This scenario
exploits all potential feed-forward parallelism, and requires just four pipelined clock cycles
for a feed-forward calculation. The associated computational time is merely 52.63 ns, a
speedup of over 35000x under perfect conditions.

However, creating such a client/server system requires a detailed analysis of the band-
width requirements of multiple FGPAs, which can limit overall system feasibility.

The input bandwidth for the FPGA is quite small. Our pipelined calculations start with
a 120 bit lshVector, which must be sent every 29.50 us to sustain the pipeline. That data
corresponds to a rate of 4.07 Mbps.

The output bandwidth depends upon how many RF2 activations occur. Because the
K-WTA algorithm has a K that is dependent upon the RF1 activations, the number of
activations can be between 0 and 1024. In the case where 1024 activations occur, the
FPGA must send 10 bits per activation, over a 29.50 us period of time. This data yields a
rate of 347.1 Mbps.

Our targeted Xilinx Virtex 4 FX140 FPGA is, at the time of this writing, available on
development boards with three distinct I/O interfaces. First, the PCI-X 133 interface is
supported, which supports a maximum shared bandwidth of about 8.5 Gbps1. Because
we must connect these PCI-X 133 interfaces indirectly to our CPU, we cannot utilize all of
this bandwidth. Today’s CPU motherboards only support about three PCI-X 133 interfaces,
limiting the amount of FPGAs in our parallel system. Even with just three parallel FPGAs,
our optimal speedup improves from 62.7x to 188.1x, just above our 185x speedup needed.

The second interface supported by the development boards is PCIe x1/x2/x4/x82. The
PCIe interfaces support rates of 2.0, 4.0, 8.0, and 16.0 Gbps for each direction, respec-
tively for x1, x2, x4, and x8 lanes. Again, however, current CPU motherboards only sup-
port about four PCIe slots, limiting parallelism to four FPGAs. With this parallelism, our
optimal speedup increases to 250.8x, well above our 185x requirement.

Finally, the third supported interface is Fibre Channel2. This interface supports up to
about 2.0 Gbps on the FPGA side. However, these connections can be linked to a 4.0 Gbps
Fibre Channel switch, which can connect to our server CPU via a 4.0 Gbps Fibre Channel
interface. Hence, the number of interfaces is no longer our limiting factor, but the amount
of bandwidth needed. Because our output bandwidth only requires about 347 Mbps, we
can use up to 11 parallel FPGAs on 4.0 Gbps of system bandwidth. At this rate, our optimal
speedup jumps to 689.7x, which would be fast enough to process additional frames of data
and/or decrease the system’s reaction time.

Because development boards with multiple Xilinx Virtex 4 FX140 FPGAs do not cur-
rently exist, we cannot utilize more than one FPGA per interface. However, in the future,
it may be possible to link multiple FPGAs to one interface, allowing for more performance
enhancements, and in the case of PCI interfaces, allow for greater bandwidth utilization.

We have considered the optimal speedups for parallel FPGAs. However, some effi-
ciency loss should be expected, due to bus contention periods, data transfer bursts, etc.
Despite this small loss, we do not expect the final speedup to be less than 185x, our re-

773

Figure 3. The results of our neocortical VBCA model compares very similarly to that of the EOP-AS model,
showing accuracy between 20% and 70%. EOP-AS was estimated from the reported accuracy on “other room”
tests of 22%4.

quired speedup for real-time.
Our general purpose CPU driving the inputs to the FPGAs and collecting the results

has been independently tested at a data rate of 1.1 Gbps. This rate is similar to that which
would be required for three to four parallel FPGAs. The general purpose CPU may actually
allow for far greater parallel FPGAs, but we have not yet tested the I/O beyond this limit.

C.2 Visual Object Recognition Accuracy

Accelerating the targeted computations is only valuable if the entire algorithm performs
well in visual object recognition. At the time of this writing, the only other published
results for accuracy on the Wiry Object Recognition Database, as mentioned in Section
1, is that of Ref. 4. That work uses an aggregation sensitive version of the cascade edge
operator probes (EOP-AS), and differs significantly from our algorithm.

Fig. 3 compares our results with the aforementioned. As can be seen, the VBCA model
achieves similar recognition accuracy to that of EOP-AS. As the systems increase guesses,
from one to five, the probability of finding the sitting stool in the image increases from
20% to 70%, respectively. Both models produce very good results.

However, our model shows massive parallelism is possible; and, in our work, we have
implemented part of that parallelism to produce results significantly faster. In the work of
Ref. 4, they “assume access to large amounts of memory and CPU time,” noting that all
component computations on one 1.67 GHz Athlon CPU require “approximately one day”4.

D Conclusion

We have presented a visual processing algorithm (VBCA) derived from brain circuitry,
shown that its accuracy is comparable to the best reported algorithms on a standard com-

774

puter vision benchmark task, and shown that the algorithm can improve linearly with the
addition of parallel processing elements. We have found our algorithm works most effi-
ciently by using many small computational units coupled with flexible or custom hardware,
which can be implemented in FPGAs. A single Xilinx Virtex 4 FX140 FPGA provided
about a 62x performance improvement over general purpose CPUs in the feed-forward
computations, four FPGAs could provide enough speedup to perform computations in
real-time, and 11 FPGAs could allow more frames to be processed per second for a shorter
reaction time. The speedup per dollar and speedup per watt ratios are orders of magnitude
better on FPGAs compared to CPUs.

D.1 Future Work

The superior performance of brain circuits on many tasks may be in part due to their un-
usual operation, using highly parallel algorithms to achieve unusually powerful computa-
tional results. These brain circuit methods have been especially difficult to study empiri-
cally due to their slow operation on standard processors, yet they perform excellently when
implemented on appropriate parallel systems. It is hoped that the methods presented here
will enable further brain circuit modelling to test larger and more complex brain systems.

The work described here has been limited by several factors. While we have met all of
our very high memory requirements, additional on-chip FPGA memory (BRAM) would
allow us to study the effects of increased RF2 size. Also, increased logic would allow us
to add even more parallelism to our design, to better mimic the massive parallelism found
in the brain, which can improve overall performance. Lastly, improved interfaces, such as
additional PCIe slots or 8.0 Gbps Fibre Channel ports, could double our current speedups.

With new Xilinx Virtex 5 LX330 FPGAs, we can hope to reimplement our design
and achieve further improvements. That FPGA includes more on-chip memory, faster
logic resources, and overall more logic resources. Such a solution addresses several of our
current limitations. Speedups beyond what we have already demonstrated could allow for
even shorter reaction times or additional frames per second of analyzed data.

Many systems including embedded computations, especially robotics, would benefit
from extremely compact, low-power, fast processing, which has been elusive despite ef-
forts in these fields. Further exploration of novel intrinsically parallel algorithms and their
low-power parallel implementation may confer substantial benefits to these areas of re-
search.

Acknowledgements

The research described herein was supported in part by the Office of Naval Research and
the Defense Advanced Research Projects Agency.

References

1. ADM-XRC-4FX Datasheet. http://www.alpha-data.com/adm-xrc-4fx.html
2. ADPe-XRC-4 Datasheet. http://www.alpha-data.com/adpe-xrc-4.html
3. C. Bruce, R. Desimone and C. Gross, Visual properties of neurons in a polysensory

area in the superior temporal sulcus of the macaque, Neurophysiol, 46, 369–384,
(1981).

775

4. O. Carmichael, Discriminative techniques for the recognition of complex-shaped ob-
jects, PhD Thesis, The Robotics Institute, Carnegie Mellon University, Technical Re-
port CMU-RI-TR-03-34, (2003).

5. O. Carmichael and M. Hebert, WORD: Wiry Object Recognition Database, Carnegie
Mellon University, (2006). http://www.cs.cmu.edu/ owenc/word.htm

6. R. Coultrip, R. Granger and G. Lynch, A cortical model of winner-take-all competition
via lateral inhibition, Neural Networks, 5, 47–54, (1992).

7. A. Felch and R. Granger, The hypergeometric connectivity hypothesis: Divergent per-
formance of brain circuits with different synaptic connectivity distributions, Brain Re-
search, (2007, in press).

8. R. Granger, Brain circuit implementation: High-precision computation from low-
precision components, in: Replacement Parts for the Brain, T. Berger, D. Glanzman,
Eds., pp. 277–294, (MIT Press, 2005).

9. R. Granger, Engines of the brain: The computational instruction set of human cogni-
tion, AI Magazine, 27, 15–32, (2006).

10. R. Granger, Neural computation: Olfactory cortex as a model for telencephalic pro-
cessing, Learning & Memory, J. Byrne, Ed., pp. 445–450, (2003).

11. C. Gao, and D. Hammerstrom, Platform performance comparison of PALM network
on Pentium 4 and FPGA, in: International Joint Conf. on Neural Networks, (2003).

12. J. Haxby, M. I. Gobbini, M. Furey, A. Ishai, J. Schouten and P. Pietrini, Distributed
and overlapping representations of faces and objects in ventral temporal cortex, Sci-
ence, 293, 2425–2430, (2001).

13. D. Hubel, and T. Wiesel, Receptive fields and functional architecture in two nonstriate
visual areas (18 and 19) of the cat, J. Neurophysiol, 28, 229–289, (1965).

14. Y. Kamitani and F. Tong, Decoding the visual and subjective contents of the human
brain, Nat.Neurosci, 8, 679–685, (2005).

15. D. Mumford, On the computational architecture of the neocortex, Biological Cyber-
netics, 65, 135–145, (1991).

16. R. Rao and D. Ballard, Predictive coding in the visual cortex: a functional interpre-
tation of some extra-classical receptive-field effects, Nat Neurosci, 2, 79–87, (1999).

17. A. Rodriguez, J. Whitson and R. Granger, Derivation and analysis of basic computa-
tional operations of thalamocortical circuits., J. Cog. Neurosci., 16, 856–877, (2004).

18. B. Resko, et al., Visual Cortex Inspired Intelligent Contouring, in: Intelligent Engi-
neering Systems Proceedings, September 16-19, (2005).

19. J. Starzyk, Z. Zhu and T. Liu, Self Organizing Learning Array, IEEE Trans. on Neural
Networks, 16, 355-363, (2005).

20. J. Szentagothai, The module concept in cerebral cortex architecture, Brain Research,
95, 475–496, (1975).

21. F. Valverde, Structure of the cerebral cortex. Intrinsic organization and comparative
analysis of the neocortex, Rev. Neurol., 34, 758–780, (2002).

22. G. Wallis and E. Rolls, A model of invariant object recognition in the visual system,
Prog. Neurobiol, 51, 167–194, (1997).

23. R. K. Weinstein and R. H. Lee, Architecture for high-performance FPGA implemen-
tations of neural models, Journal of Neural Engineering, 3, 21–34, (2006).

776

