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Abstract
Vast information from the neurosciences may enable
bottom-up understanding of human intelligence; i.e.,
derivation of function from mechanism.  This paper
describes such a research program: simulation and
analysis of the circuits of the brain has led to derivation of
a specific set of elemental and composed operations
emerging from individual and combined circuits. We
forward the hypothesis that these operations constitute the
“instruction set” of the brain, i.e., the basic mental
operations from which all complex behavioral and
cognitive abilities are constructed, establishing a unified
formalism for description of human faculties ranging
from perception and learning to reasoning and language,
and representing a novel and potentially fruitful research
path for the construction of human-level intelligence.

Introduct ion

There are no instances of human-level intelligence other
than ourselves.  Attempts to construct intelligent systems
are strongly impeded by the lack of formal specifications
of natural intelligence, which is defined solely in terms of
observed and measured human (or animal) abilities, so
candidate computational descriptions of human-level
intelligence are necessarily under-constrained.  This
simple fact underlies Turing’s proposed test for
intelligence: lacking any specification to test against, the
sole measures at that time were empirical observations of
behavior, even though such behaviors may be fitted by
multiple different hypotheses and simulated by many
different proposed architectures.

Now, however, there is a large and growing body of
knowledge about the actual machinery that solely
computes the operations of human intelligence, i.e.,
human brain circuitry.  By studying the structural
(anatomical) and functional (physiological) mechanisms
of particular brain structures, the operations that emerge
from them may be identified via bottom-up analysis.  The
resulting algorithms often have unforeseen characteristics,
including hierarchical structure, embedded sequences,
hash coding, and others (see, e.g., Granger et al., 1994;
Kilborn et al., 1996; Shimono et al., 2000; Rodriguez et
al., 2004).  Considered initially in isolation, the
anatomical system-level layout of these circuits in turn
establishes how the individual operators are composed
into larger routines.  It is hypothesized that these
operators, comprising the “instruction set” of the brain,

constitute the basic mental procedures from which
allmajor behavioral and cognitive operations are
assembled.  The resulting constructs give rise to
unexpected, and unexpectedly powerful, approaches to
complex problems ranging from perception to higher
cognition.

The following sections introduce minimal relevant
background from neuroscience, to provide a “primer” for
those neurobiological components from which
computational abstractions will be constructed.  The
emphasis is on deriving constraints that limit hypotheses
to those concordant with known biology.  Conforming
hypotheses are then presented, and sample computational
realizations of these are introduced and characterized.

Organizat ion of  the human brain

Figure 1 depicts primary elements of the mammalian
forebrain (telencephalon), shared across all mammal
species and growing to become far and away the
dominant set of structures in human brain.  In the figure,
sensory input is received by posterior cortex (PC), via
diencephalic (non-forebrain) thalamic nuclei (T), whereas
motor outputs are produced via interactions between
anterior cortex (AC) and the elements of the striatal
complex or basal ganglia (S, striatum; P, pallidum).
Mammalian brains scale across several orders of
magnitude (from milligrams to kilograms; mice to
mammoths), yet overwhelmingly retain their structural
design characteristics.  As the ratio of brain size to body
size grows, particular allometric changes occur, defining
differences between bigger and smaller brain designs. As
in parallel computers, connections among components are
among the most expensive attributes, strongly
constraining design.  As the brain grows, those structures
and connection pathways that grow disproportionately
large are highly likely to be the most indispensable
machinery, as well as developing into the key components
of human brain that may set human intelligence apart
from that of other mammals. Figure 1b illustrates the
three largest changes that occur:
1) Connection pathways between anterior and posterior

cortex (“fasciculi”) grow large.
2) Output pathways from striatal complex change

relative size: the recurrent pathway back to cortex via
thalamus increases relative to the descending motor
pathway.
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3) Descending output from anterior cortex to brainstem
motor systems (pyramidal tract) grows large.

These changes grow disproportionately with increased
brain-body ratio, becoming notably outsized in humans.
In relatively small-brained mammals such as mice, the
primary motor area of neocortex is an adjunct to the
striatally driven motor system.  Whereas damage to motor
cortex in mice causes subtle behavioral motor
impairments, damage to motor cortex in humans causes
complete paralysis.  In this example of “encephalization
of function” (Jackson, 1925; Ferrier, 1876; Karten, 1991;
Aboitiz, 1993; Striedter 1997) motor operations are

increasingly ‘taken over’ by cortex as the size of the
pyramidal tract overtakes that of the descending striatal
system.  In mammals with large brain-body ratios, the
role of the striatal complex is presumably altered to
reflect that its primary inputs and outputs are now anterior
neocortex; in other words, it is now primarily a tool or
“subroutine” available for query by anterior cortex.  For
computational purposes, its operations then are most
profitably analyzed in light of its dual utility as organizer
of complex motor sequences (in small brained mammals)
and as informant to anterior cortex (in large brained
mammals).

Figure 1.  Telencephalic organization in small-brained (a) and large-brained (b) mammals.  Posterior cortex (PC)
receives primary sensory input (vision, audition, touch) via thalamus and interacts with anterior cortex (AC),
which in turn forms loops with striatum (S) and pallidum (P).  Pallidum and anterior cortex both produce
movement output (dotted box).  Brain growth results in differential (allometric) growth of components and
interconnects.  In particular, disproportionate growth occurs in posterior-anterior connections (1); recurrent return
paths form a strong AC→S→P→T→AC loop (2), and motor functions increasingly depend on cortical input (3).

Str iata l Complex
The striatal complex or basal ganglia, the primary brain
system in reptiles and second-largest structure in humans,
is a collection of disparate but interacting structures.
Figure 2 schematically illustrates the primary components
included in the modeling efforts described herein.
Distinct components of the basal ganglia exhibit different,
apparently specialized designs. For comparative purposes,
note that “S” in figure 1 corresponds to all that is labeled
“matrisomes” and “striosomes” in figure 2, and “P” in
figure 1 corresponds to all that is labeled “GPe” and
“GPi” (pallidum, or globus pallidus, pars interna and
externa) in figure 2.  Three additional small but crucial
components of basal ganglia shown in figure 2 are
subthalamic nucleus (STN), tonically active cholinergic
neurons (TANs), and substantia nigra pars compacta
(SNc).  These modules are connected via a set of varied
neurotransmitter pathways including GABA, glutamate
(Glu), dopamine (DA), acetylcholine (ACh), and
Substance P (Sp) among others, each affecting multiple
receptor subtypes.  Neurotransmitter-receptor pathways

can be roughly classified as excitatory (i.e., activating
their targets), inhibitory (suppressing activity in their
targets) and modulatory (altering the strength of the other
two types.

The entire striatal system can be understood in terms
of four subassemblies: i) cortex → matrisome projections
(action); ii) cortex →  striosome projections (evaluation);
iii) SNc dopamine (DA) projections to both matrisomes
and striosomes (learning); and iv) TAN projections to
matrisomes (exploration).

i) Cortex → matrisomes (action):
Two separate pathways from cortex through matrisomes
involve different subpopulations of cells: i) MSN1
neurons project to GPi → thalamus → cortex; ii) MSN2
neurons insert an extra step: GPe → GPi → thalamus →
cortex.  MSN and GP projections are inhibitory
(GABAergic), such that cortical excitatory activation of
MSN1s causes inhibition of GPi cells, which otherwise
inhibit thalamic and brainstem regions.  Hence MSN1
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cells dis-inhibit, or enhance, cortical and brainstem
activity.  In contrast, the extra inhibitory link intercalated
in the MSN2 pathway causes MSN2s to decrease the
activity of cortex and brainstem neurons.  These two
pathways through MSN1 and MSN2 cells are thus termed
“go” and “stop” paths, respectively, for their opposing
effects on their ultimate cortical and motor targets.

Coordinated operation over time of these pathways can
yield a complex combination of activated (go) and
withheld (stop) motor responses (e.g., to stand, walk,
throw), or correspondingly complex “thought” (cortical)
responses.  These action responses will be subsequently
modified by calculations based on action outcomes, as
described below. 

Figure 2.  Schematic diagram of components and connection systems of striatal complex (basal ganglia).
Medium spiny neurons (MSNs) in matrisome and striosome systems each receive cortical inputs.  Striosomes
form an inhibitory loop with SNc; matrisomes output to GP and thence back to cortex via thalamus (v.thal).
Primary connections are denoted as excitatory (arrows), inhibitory (blocks) or modulatory (circles).    (See text).

ii) Cortex → striosomes (evaluation):
The cortex →  striosome path initially triggers what

can be thought of as an “evaluation” signal corresponding
to the “expected” reward from a given action.  As with
cortex → matrisomes, these expected reward responses
can be initially “pre-set” to built-in default values but will
be modified by experience (e.g., sensor measures).  Each
cortically-triggered action (via cortical-matrisome path)
will activate a corresponding “reward expectation” via
striosomes.  Striosomes will then inhibit SNc as a
function of that expected reward.

iii) SNc feedback → matrisomes & striosomes (learning):
In addition to input from striosomes just described,

SNc receives input from the environment conveying
“good” or “bad” state measurement information; i.e., if
the action just performed resulted in a good outcome,
SNc’s activity is increased (“reward”) whereas if the
action resulted in an undesired state, SNc is decreased
(“punishment”).  SNc simply compares (e.g., subtracts)
this input against its input from striosomes.  The resultant
difference between the actual reward and the striosomal
“expectation,” either a positive or negative resultant,
becomes input back to both striosomes and matrisomes.
In both cases, this calculated positive or negative resultant
from SNc increases or decreases the strength of
connections from cortex to MSN units.  In matrisomes, if
connection strength is increased, then the same input will
tend to select the same output action, with increased
probability.  If decreased, then that cortical input’s

tendency to select that action will diminish, and other
possible actions will compete to be the outcome from this
cortical input.  Similarly, in striosomes, strengthening or
weakening connections between active cortical inputs and
their striosomal targets will either increase or decrease the
size of the future “expectation” produced by striosomes
from this cortical input.  Thus the system adjusts its
selection of actions based on its experience of outcomes
from those actions.

iv) TANs → matrisomes (exploration):
TANs receive inhibitory inputs from striosomes, and

provide input to matrisomes.  TANs can be thought of as
a semi-random or “X” factor affecting matrisomes’ choice
of action from a given cortical input.  For actions that
have a negative expected reward (or a relatively small
positive one), the inhibitory effect from striosomes onto
TANs will be correspondingly small, and TANs
modulatory effect on matrisomal action-selection will be
unimpeded, leading to high variability in the matrisomal
process of selecting actions from their cortical input.  For
actions that elicit a strongly positive expected reward
from striosomes, the result will be strong striosomal
inhibition of TANs, reducing their “X-factor” effect on
matrisomes, lessening the variability of response (i.e.,
increasing the reliability with which an action will be
selected by cortical inputs alone, without TANs’ outside
influence).  The resulting behavior should appear
“exploratory,” involving a range of different responses to
a given input.  The mechanism provides a form of
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“sensitivity analysis,” testing the effects of slight
variations in the process of selecting actions from input
states.

The overall system can be thought of in terms of an
adaptive controller, beginning with pre-set responses to

inputs, tracking the outcomes of those responses, and
altering behavior to continually improve those outcomes,
as in reinforcement learning algorithms (Schultz et al.,
1997; Schultz 2000; Dayan et al., 2000; see Table 1).

Table 1. Simplified basal ganglia algorithm
1) Choose action A.  Set reward_estimate ← 0

Set max_randomness ← R > 0
2) randomness ← max_randomness – reward_estimate
3) reward ← Eval( A + randomness )
4) If reward > reward_estimate then

A ← A + randomness
reward_estimate ← reward

5) goto step 2)

Tha lamoco rt ica l  system
Neurons throughout neocortex are organized into
relatively stereotypical architectures (Figure 3a).
Although cortical studies describe some (subtle but
potentially crucial) differences among various cortical
regions (e.g., Galuske et al., 2000; Gazzaniga, 2000), the
overwhelmingly shared characteristics justify
longstanding attempts to identify common basic
functionality, which may be augmented by special
purpose capabilities in some regions (Lorente de No,
1938; Szentagothai, 1975; Keller & White, 1989; Rockel
et al., 1980; Castro-Alamancos & Connors, 1997;
Braitenberg & Schuz, 1998; Valverde, 2002).

Two parallel circuit types occur, involving
topographic projections of certain restricted thalamic
populations and broad, diffuse projections from the
remaining thalamic neurons. These two populations of
thalamic cells, respectively termed “core” and “matrix”
(no relation, confusingly enough, with “matrix” in
striatum), are distinguishable by their targets, topography,
and chemistries (Jones, 2001).

These two loops are activated as follows: peripheral
inputs activate thalamic core cells, which in turn
participate in topographic activation of middle cortical
layers; e.g., ear → cochlea → auditory brainstem nuclei
→  ventral subdivision of medial geniculate (MGv) →
primary auditory cortex (A1) (see Freund et al., 1985;
1989; Peters & Payne, 1993).  Other cortical layers are
then activated in a stereotypical vertically organized
pattern: middle layers →  superficial →  deep layers.
Finally, deep layer (layer VI) projections return
topographically to the originating core thalamic nucleus,
both directly and via an inhibitory intermediary (the
nucleus reticularis).  This overall “core” loop pathway is
depicted in Figure 3b.

In contrast, matrix nuclei receive little or no
peripheral sensory input, and are instead most strongly
driven only by corticothalamic feedback (Diamond et al.
1992).  Thus, once sensory inputs activate the core loop,

then feedback from deep layers activates both core and
matrix thalamic nuclei via these corticothalamic
projections (Mountcastle 1957; Hubel & Wiesel 1977; Di
et al. 1990); the matrix thalamus then provides further
inputs to cortex (Figure 3c).  Unlike core thalamic input,
both feedforward and feedback pathways between cortex
and matrix thalamus are broad and diffuse rather than
strongly topographic (Killackey & Ebner, 1972, 1973;
Herkenham 1986; Jones 1998).

Three primary modes of operating activity have
typically been reported for thalamic neurons in these
corticothalamic loops: tonic, rhythmic and arrhythmic
bursting.  The latter appears predominantly during non-
REM sleep whereas the first two appear during waking
behavior (McCarley et al., 1983; Steriade & Llinas, 1988;
McCormick & Bal, 1994).  There is strong evidence for
ascending influences from ancient conserved brain
components (e.g., basal forebrain) affecting the
probability of neuronal response during the peaks and
troughs of such “clocked” cycles.  The most excitable
cells will tend to fire in response even to slight afferent
activity whereas less excitable neurons will only be
added in response to stronger input;  this excitability
gradient selectively determines the order in which
neurons will be recruited to respond to inputs of any given
intensity (see, e.g., Anton et al., 1991) during any
particular active cycle during this clocked or synchronous
behavior.

Axons of inhibitory interneurons densely terminate
preferentially on the bodies, initial axon segments, and
proximal apical dendrites of excitatory pyramidal cells in
cortex, and thus are well situated to exert powerful control
over the activity of target excitatory neurons.  When a
field of excitatory neurons receives afferent stimulation,
those that are most responsive will activate the local
inhibitory cells in their neighborhood, which will in turn
inhibit local excitatory cells.  The typical time course of
an excitatory (depolarizing) postsynaptic potential (PSP)
at normal resting potential, in vivo, is brief (15-20 msec),
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whereas corresponding GABAergic inhibitory PSPs can
last roughly an order of magnitude longer (80-150 msec)
(Castro-Alamancos and Connors, 1997).  Thus excitation
tends to be brief, sparse, and curtailed by longer and
stronger feedback lateral inhibition (Coultrip et al., 1992).

Based on the biological regularities specified, a
greatly simplified set of operations has been posited
(Rodriguez et al., 2004).  Distinct algorithms arise from
simulation and analysis of core vs. matrix loops (see
Tables 2 & 3).

Figure 3. Thalamocortical loops.  Complex circuitry (a) can be thought of in terms of two
embedded loops: one (b) largely topographic, and incorporating negative feedback (− ) ; the other
(c) largely non-topographic, and driven by positive feedback (see text). 

Thalamocortical “core” circuits.  In the core loop,
simulated superficial cells that initially respond to a
particular input pattern become increasingly responsive
not only to that input but also to a range of similar inputs
(those that share many active lines; i.e., small Hamming
distances from each other), such that similar but
distinguishable inputs will come to elicit identical patterns
of layer II-III cell output, even though these inputs would
have given rise to slightly different output patterns before
synaptic potentiation.  These effects can be described in
terms of the formal operation of clustering, in which
sufficiently similar inputs are placed into a single
category or cluster.  This can yield useful generalization
properties, but somewhat counterintuitively, it prevents
the system from making fine distinctions among members
of a cluster.  For instance, four similar inputs may initially
elicit four slightly different patterns of cell firing activity
in layer II-III cells but after repeated learning / synaptic
potentiation episodes, all four inputs may elicit identical
cortical activation patterns.  Results of this kind have been
obtained in a number of different models with related
characteristics (von der Malsburg, 1973; Grossberg, 1976;
Rumelhart & Zipser, 1985; Coultrip et al., 1992; Kilborn
et al., 1996).

Superficial layer responses activate deep layers (V
and VI).  Output from layer VI initiates feedback
activation of nucleus reticularis (N.Ret) (Liu and Jones
1999), which in turn inhibits the core thalamic nucleus

(Fig 3b).  Since, as described, topography is preserved
through this sequence of projections, the portions of the
core nucleus that become inhibited will correspond
topographically to those portions of L.II-III that were
active.  On the next cycle of thalamocortical activity, the
input will arrive at the core against the background of the
inhibitory feedback from N.Ret, which has been shown to
last for hundreds of milliseconds (Cox et al., 1997; Zhang
et al., 1997).  Thus it is hypothesized that the predominant
component of the next input to cortex is only the un-
inhibited remainder of the input, whereupon the same
operations as before are performed.  Thus the second
cortical response will consist of a quite distinct set of
neurons from the initial response, since many of the input
components giving rise to that first response are now
inhibited.  Analysis of the second (and ensuing) responses
in computational models has shown successive sub-
clustering of an input:  the first cycle of response
identifies the input’s membership in a general category of
similar objects (e.g., flowers), the next response (a
fraction of a second later) identifies its membership in a
particular subcluster (e.g., thin flowers; flowers missing a
petal), then sub-sub-cluster, etc.  Thus the system
repetitively samples across time, differentially activating
specific target neurons at successive time points, to
discriminate among inputs.  An initial version of this
derived algorithm arose from studies of feedforward
excitation and feedback inhibition in the olfactory
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paleocortex and bulb (Ambros-Ingerson et al., 1990;
Gluck & Granger 1993), and was readily generalized to
non-olfactory modalities (vision, audition) whose
superficial layers are closely related to those of olfactory
cortex, evolutionarily and structurally (Kilborn et al.,
1996).  The method can be characterized as an algorithm
(Table 2).

Analysis reveals the algorithm’s time and space
costs.  The three time costs for processing of a given input
X are: i) summation of inputs on dendrites; ii)
computation of “winning” (responding) cells C; iii)
synaptic weight modification.  For n learned inputs of
dimensionality N, in a serial processor, summation is
performed in O(nN) time, computation of winners takes
O(n) time, and weight modification is O(N log n).  With
appropriate parallel hardware, these three times reduce to
O(log N), O(log n), and constant time respectively, i.e.,

better than linear time. Space costs are similarly
calculated: given a weight matrix W, to achieve complete
separability of n cues, the bottom of the constructed
hierarchy will contain at least n units, as the leaves of a
tree with log Bn hierarchical layers, where B is the
average branching factor at each level.  Thus the complete
hierarchy will contain ~ n[B/(B-1)] units, i.e., requiring
linear space to learn n cues (Rodriguez et al., 2004).

These costs compare favorably with those in the
(extensive) literature on such methods (Rodriguez et al.,
2004).  Elaboration of the algorithm has given rise to
families of computational signal processing methods
whose performance on complex signal classification tasks
has consistently equaled or outperformed those of
comparable methods (Coultrip and Granger, 1994;
Kowtha et al., 1994; Granger et al., 1997; Benvenuto et
al., 2002; Rodriguez et al., 2004).

Table 2. Simplified Thalamocortical Core Algorithm
for input X
     for C  ∈   win(X,W)
          W j  ⇐   W j  + k(X –  C)
     end_for
X ⇐  X –  mean(win(X,W))
end_for

where 
X = input activity pattern (vector);  W = layer I synaptic weight matrix;
C = responding superficial layer cells (col vector); k = learning rate parameter;
win(X,W) = column vector in W most responsive to X before lateral inhibition [∀j, max(X · Wj) ]

Thalamocortical “matrix” circuits.  In contrast to the
topography-preserving projections in the “core” loop
between core thalamus and cortex, the diffuse projections
from layer V to matrix nuclei, and from matrix nuclei
back to cortex (Fig 3c) are modeled as sparsifying and
orthogonalizing their inputs, such that any structural
relationships that may obtain among inputs are not
retained in the resulting projections.  Thus input patterns
in matrix or in layer V that are similar may result in very
different output patterns, and vice versa.  As has been
shown in previously published studies, due to the
nontopographic nature of layer V and matrix thalamus,
synapses in layer V are very sparsely selected to
potentiate, i.e., relatively few storage locations (synapses)
are used per storage/learning event (Granger et al., 1994;
Aleksandrovsky et al., 1996; Rodriguez et al., 2004).  For
purposes of analysis, synapses are assumed to be binary
(i.e., assume the lowest possible precision: synapses that
are either naïve or potentiated).  A sequence of length L
elicits a pattern of response according to the algorithm
given previously for superficial layer cells.  Each
activated superficial cell C in turn activates deep layer
cells.  Feedforward activity from the matrix thalamic
nucleus also activates layer V.  Synapses on cells
activated by both sources (the intersection of the two

inputs) become potentiated, and the activity pattern in
layer V is fed back to matrix.  The loop repeats for each
of the L items in the sequence, with the input activity
from each item interacting with the activity in matrix
from the previous step (see Rodriguez et al., 2004).

Activation of layer V in rapid sequence via
superficial layers (in response to an element of a
sequence) and via matrix thalamus (corresponding to
feedback from a previous element in a sequence) selects
responding cells sparsely from the most activated cells in
the layer (Coultrip et al., 1992) and selects synapses on
those cells sparsely as a function of the sequential pattern
of inputs arriving at the cells.  Thus the synapses
potentiated at a given step in layer V correspond both to
the input occurring at that time step together with
orthogonalized feedback arising from the input just prior
to that time step.  The overall effect is “chaining” of
elements in the input sequence via the “links” created due
to coincident layer V activity corresponding to current
and prior input elements. The sparse synaptic potentiation
enables layer V cells to act as a novelty detector,
selectively responding to those sequential strings that
have previously been presented (Granger et al., 1994).
The implicit data structures created are trees in which
initial sequence elements branch to their multiple possible
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continuations (“tries,” Knuth, 1997).  Sufficient
information therefore exists in the stored memories to
permit completion of arbitrarily long sequences from just
prefixes that uniquely identify the sequence.  Thus the
sequence “Once upon a time” may elicit (or “prime”)
many possible continuations whereas “Four score and
seven” elicits a specific continuation.

The resulting algorithm (see Table 3) can be
characterized in terms of computational storage methods
that are used when the number of actual items that occur
are far fewer than those that in principle could occur.  The
number of possible eight-letter sequences in English is
26^8 ≈ 200,000,000,000, yet the eight-letter words that
actually occur in English number less than 10,000, i.e.,
fewer than one ten-millionth of the possible words.  The
method belongs to the family of widely-used and well-

studied data storage techniques of “scatter storage” or
“hash” functions, known for the ability to store large
amounts of data with great efficiency.  Both analytical
results and empirical studies have found that the derived
matrix loop method requires an average of less than two
bits (e.g., just two low-precision synapses) per complex
item of information stored.  The method exhibits storage
and successful retrieval of very large amounts of
information at this rate of storage requirement, leading to
extremely high estimates of the storage capacity of even
small regions of cortex.  Moreover, the space complexity
of the algorithm is linear, or O(nN) for n input strings of
dimensionality N; i.e., the required storage grows linearly
with the number of strings to be stored (Granger et al.,
1994; Aleksandrovsky et al., 1996; Rodriguez et al.,
2004).

Table 3. Simplified Thalamocortical Matrix Algorithm
for input sequence X(L)

for C ∈  TopographicSuperficialResponse(X( L))
for V(s) ∈  C ∩ NNtResponse(X( L-1))

Potentiate( V(s) )
    NNt(L)  ⇐ NontopographicDeepResponse(V)

end_for
end_for

end_for

where L = length of input sequence;
C = columnar modules activated at step X(L);
V(s) = synaptic vector of responding layer V cell,
NNt(L) = response of nonspecific thalamic nucleus to feedback from layer V.

Combined telencephalic algorithm operation and the
emergence of complex specializations.  In combination
with time dilation and compression algorithms arising
from amygdala and hippocampal models (Granger &
Lynch, 1991; Granger et al., 1994; Kilborn et al., 1996), a
rich range of operations is available for composition into
complex behaviors.  From the operation of
thalamocortical loops arises the learning of similarity-
based clusters (Table 2) and brief sequences (Table 3),
yielding the primary data structure of thalamocortical
circuitry: sequences of clusters.  These are embedded into
thalamo-cortico-striatal  loops which enable
reinforcement-based learning of these sequences of
clusters.  The output of any given cortical area becomes
input (divergent and convergent) to other cortical areas, as
well as receiving feedback from those cortical areas.
Each such region in the thalamo-cortico-striatal
architecture performs the same processing on its inputs,
generating learned nested sequences of clusters of
sequences of clusters.

Auditory cue processing.  Figure 4a illustrates a
spectrogram (simplified cochleogram) of a voice stream
(the spoken word “blue”), as might be processed by

presumed auditory “front end” input structures.
Proceeding left to right (i.e., in temporal order) and
identifying “edges” that are readily detected (by simple
thresholding) leads to creation of brief sequences /
segments corresponding to these edges as in Figure 4b.

The learned cortical sequences (characterized as line
segments) correspond to constituents of the signal.  As
multiple instances of the signal are learned, some features
will be strengthened more than others, corresponding to a
statistical average of the signal rather than of any specific
instance.  Outputs from cortical areas are input to other
cortical areas, combining individual pairwise sequences
into sequences of sequences (actually sequences of
clusters of sequences of clusters, etc.), and statistics are
accreted for these by the same mechanisms.  The result is
a widely distributed set of synaptic weights that arise as a
result of training on instances of this kind.  (There is
contention in the literature as to whether such learned
internal patterns of synaptic weights are
“representations,” a term that has baggage from other
fields.  Without engaging this controversy, we use the
expression as a term of convenience for these patterns of
weights.)  These differ from many other types of
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representations, in that they are not strict images of their
inputs but rather are statistical “filters” that note their
sequence of features (or sequence of sequences) in a
novel input, and compete against other feature filters to
identify a “best partial match” to the input.  It is notable

that since each sequence pair simply defines relative
positions between the pair, they are independent of
particular frequencies or exact time durations.

Figure 4. Spectrogram and sample illustration of learned cortical sequences

Figure 5 illustrates two different instances of the utterance
“blue” that, after learning, can be recognized by the
algorithm as members of the same category, since they
contain many of the same organization of relational
elements (sequences of clusters, and sequences of clusters
of sequences of clusters), whereas other utterances
contain distinguishing differences.  These representations,
arising simply from distributed patterns of synaptic
strengthening in the described brain circuit networks,
have desirable properties for recognition tasks.

The “best partial match” process can pick out
candidate matches from a stream of inputs.  Thus the
detector for “blue” and that for “bird” identify their
respective targets in a continuous utterance (e.g., “the
blue bird”). Recognition systems traditionally have
difficulty with segmentation, i.e., division of a stream into
parts.  In the proposed recognition scheme, recognition
and segmentation are iteratively interleaved: identification
of the sequence components of a candidate word in the
stream gives rise to a candidate segmentation of the
stream.  Competing segmentations (e.g., from sequence
components of other words overlapping) may overrule
one segmentation in favor of an alternative.

The figure illustrates the nested nature of the
operation of the thalamo-cortico-striatal loops.  Initial

processing of input a) involves special-purpose “front
ends” that in the model are carried out by (well-studied)
Gabor filters and edge detection methods, producing a
first internal representation of sequences as seen in Figure
4.  Each successive stage of processing takes as input
some combination of the outputs of prior stages.  Thus the
brief sequences in Figure 4b become input to a copy of
the same mechanism, which identifies sequences of the
sequences (5b).  Downstream regions then identify
sequences of those sequences, and so on (5c,d).  With
learning, the resulting set of relative feature positions
comes to share substantial commonalities that are partial-
matched, as in the two different utterances of the word
“blue” in the top and bottom frames of Figure 5.

Visual image processing.  Once past the initial,
specialized “primary” cortical sensory regions,
thalamocortical circuits are remarkably similar (though,
as mentioned, differences have been found, with unknown
implications).  Moreover, the vast majority of cortical
areas appear to receive inputs not originating just from a
single sensory modality but from conjunctions of two or
more, begging the question of whether different internal
“representations” can possibly be used for different
modalities.

Figure 5.  Two utterances and illustration of learned nested sequences (see text).  Spectrogram input (a) is processed
by an auditory front end (primarily Gabor filters) for edge detection (Figure 4b); the resulting edges are treated as short
sequences (b); subsequently, sequences of those sequences, and sequences of sequences of sequences, etc. (b, c, d) are
successively identified.  The resulting learned downstream data structures are used for partial matching in recognition.
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Auditory cortical regions arise relatively early in
mammalian evolution (consistent with the utility of non-
visual distance senses for nocturnal animals) and may
serve as prototypes for further cortical elaboration,
including downstream (non-primary) visual areas.  It is
here hypothesized that, although primary cortical regions
perform specialized processing, subsequent cortical
regions treat all inputs the same, regardless of modality of
origin.  The physiological literature suggests particular
visual front end processing (arising from retina, LGN,
early cortical areas) resulting in oriented line and curve
segments comprising an image.  From there on, images
may be processed as sounds, though due to recruitment of
front end visual processing, arbitrary covert “movements”
through an image are assumed to occur, rather than

processing being limited to an arbitrary “left to right”
corresponding to the flow of time in an auditory image.
I.e., it is as though auditory processing were a callable
subroutine of visual processing.  Thus, after initial
processing of an image (such as part of Figure 6a)
(performed in this case via oriented Gabor filters (6b) at
different frequency parameter settings, to roughly
approximate what has been reported for visual front end
processing from many sources over many years), the
resulting segments (pairwise sequences) are composed
into sequences of sequences (6c), etc until, over training
trials, they become hierarchical statistical representations
of the objects (e.g., letters) on which they have been
trained (6d).

Figure 6.  Nested sequences of clusters identified in images (see text).  As in audition, inputs (a)
scanned by filters (b) give rise to edges that are stored as sequences (c) and constructed into
nested sequence structures (d).

As with auditory data, this method leads to
representations that iteratively alternate recognition and
segmentation; i.e., there exists no separate segmentation
step but rather candidate segments emerge, as recognizers
compete to identify best partial matches in an image.
Further characteristics shared with auditory processing
include a number of invariances: translation, scaling and
distortion, as well as resistance to partial occlusion.
Again, these invariances are not add-on processing

routines but rather emerge as a result of the processing.
Since the sequences, and sequences of sequences, record
relative relationships as opposed to absolute locations,
and since the front end filtering occurs across multiple
size and frequency scales, recognition of a small A in a
corner proceeds just like that of a large centered A.  And
since the result is merely a best partial match (Figure 7a),
a partially distorted (Figure 7b) or occluded (7c) image
may match to within threshold.

Figure 7.  Emergent invariances from the derived methods.  The nested (hierarchical) structure of the
internal representations enables partial best-matching of distorted (a), scaled (b) or partially occluded (c)
versions of the input.
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Figure 8. Learned internal representations, and trajectories (see text).  Simulated cortico-striatal loops learn
via trial and error to traverse a maze; shown are internal representations of learned reward and punishment
information before (a, b) and after (c, d) ten thousand trials traversing the space from various starting points.
A robot learns a similar internal map (e) of an environment with colored visual cues (f), shortening from
initial random (g) to efficient (h) traversals.

Navigation.  Presentation of locations containing a hard-
coded artificial desirable “goal” state, and sequential
reinforcement training from various starting locations,
causes the system to improve its approaches to the goal
from arbitrary starting points.  Figure 8 shows the internal
representations (a,c) constructed in the striatal complex as
a result of training trials, and illustrates sample
trajectories (b,d) to the goal from five starting points, both
before (a,b) and after (c,d) this training.  The
representations correspond to the learned positive and
negative “strengths” of four candidate movement
directions (N,S,E,W), along with a resultant vector, at
each location in the grid.  Figures 8e-f show the
corresponding internal representation (e) from
photographs (f), enabling a robot navigating a simple
visual environment to learn from initial reinforced trials
(g) to improve its traversals from different starting
locations (h).

Hierarchical grammatical structure.  It is notable that
the emergent data structure of the thalamo-cortico-striatal
model, nested sequences of clusters, is a superset of the
structures that constitute formal grammars, i.e., ordered
sequences of “proto-grammatical” elements, such that
each element represents either a category (in this case a
cluster), or expands to another such element (nesting), just
as rewrite rules establish new relations among
grammatical elements.

The incremental nature of the data structure (nested
sequences of clusters) enables it to grow simply by adding
new copies of thalamo-cortico-striatal (TCS) loops,
corresponding to the incremental addition of “rules”
acquired by the grammar, adding to the power of the
resulting behavior that the data structure can give rise to.
As more telencephalic “real estate” is added, the data

structures that are constructed correspond to both longer
and more abstract sequences, due to iterative nesting.  In
the model, though all “regions” are identical in structure,
they receive somewhat different (though overlapping)
inputs (e.g., certain visual features; certain combinations
of visual and auditory features).  After exposure to
multiple inputs, regional specializations of function (e.g.,
human voices vs. other sounds; round objects vs. angular
objects) arise due to lateral competition among areas,
giving rise to “downstream” regions that, although
performing the same computational function, are
selectively performing that function on different aspects
of their “upstream” inputs, thus becoming increasingly
dedicated to the processing of particular types of inputs.
Within each such area, data structures become
increasingly abstract, each one matching any of a number
of different inputs depending not on their raw perceptual
features but on the relations among them.

As these nested structures are built up incrementally,
successively more complicated behaviors arise from their
use.  This is specifically seen in examples above.  E.g., in
Figure 5, successive processing of the input, carried out
by increasingly downstream components of the model,
identifies first a simple set of features and relations
among those features; then successively more complex
nested relations among relations.  Thus small-brained
mammals may acquire relatively small internal grammars,
enabling learning of comparatively simple mental
constructs, whereas larger-brained mammals may learn
increasingly complex internal representations.  That is,
changing nothing of the structure of thalamocortical
loops, only the number of them, can in this way give rise
to new function.

The extensible (generative) nature of human
language has typically been explained in terms of
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grammars of this kind: from a given grammar, a
potentially infinite number of outputs (strings in the
language) can be produced.  Humans uniquely exhibit
rapidly-acquired complex grammatical linguistic
behavior, prompting the search for uniquely human brain
regions that could explain the presence of this faculty in
humans and its absence in other primates (see, e.g.,
Hauser et al., 2002; Fitch and Hauser 2004; O’Donnell et
al., 2005; Preuss 1995; 2000; Galuske et al., 2000).  The
modeling described herein leads to a specific hypothesis:
that human language arises in the brain as a function of
the number of thalamo-cortico-striatal loops.  With the
addition of TCS modules, some become increasingly
dedicated to communication due to their inputs, just as
some other areas become increasingly dedicated to
particular subsets of visual inputs.  Rather than wholly
new brain modules that differentially process language,
the evolutionary addition of TCS modules leads to the
incremental acquisition of linguistic abilities.  This
growth need not be linear; grammars have the property of
exhibiting apparently new behaviors due to the addition of
just a few rules.  There is a fourfold difference in overall
brain size between humans and our closest primate
relations (chimps, bonobos), and a far greater size
difference if just the anterior cortical areas underlying
language abilities are considered.  There are no living
apes or hominids with brain sizes between those of
humans and other primates.  If human language arises
directly from increased TCS loops, then the present
“computational allometry” argument suggests that
intermediate prelinguistic or protolinguistic abilities may
have been present in early hominids, even though not in
extant primates.  The conjecture is consistent with a broad
range of constraints that are argued to rule out alternative
hypotheses (see, e.g., Pinker 1999; Pinker & Jackendoff
2005).

The processing of linguistic input, then, need not be a
different function from that of other brain processing, but
rather the same computational faculties present in smaller
brains, now applied in far larger numbers.  With an
understanding of the specific nature of these
computations, it is possible to see how they operate on
simpler (e.g., perceptual) inputs as well as complex
(linguistic) inputs, differing enormously in the depth of
processing and thus the size of the constructed grammars.

Con clusio ns
Procedures that seem easy and natural to humans (e.g.,
language) and even to other animals (image recognition,
sound recognition, tracking), have been notoriously
difficult for artificial systems to perform.  Many of these
tasks are ill-specified, and the only reason that we know
that our current engineering systems for vision and
language can be outperformed is that natural systems
outperform them.

Human brains arose via a series of intermediaries and
under a range of different conditions, without any set of
computational plans or top-down principles.  Thus brains
and their constituent circuits are not “optimized” for any
particular task but represent earlier circuits co-opted to
perform new jobs, as well as compromises across multiple
tasks that a given circuit may have to participate in under
different circumstances.  Bottom up analysis of circuits,
without targeting any “intended” or “optimized”
functions, leads to a  set of computational units that may
comprise the complete “instruction set” of the brain, from
which all other operations are composed.  The
overwhelming regularity of cortical structures, and of
large loops through cortical and striatal telencephalon,
suggests the universality of the resulting composite
operations.

The basic algorithms that have been derived include
many that are not typically included in proposed
“primitive” or low-level sets: sequence completion,
hierarchical clustering, retrieval trees, hash coding,
compression, time dilation, reinforcement learning.
Analysis indicates the algorithms’ computational
efficiency, showing that they scale well as brain size
increases (Rodriguez et al., 2004).  Application of these
derived primitives gives rise to a set of unusual
approaches to well-studied tasks ranging from perception
to navigation, and illustrates how the same processes,
successively re-applied, enable learning of data structures
that account for generative human language capabilities.

Persistent questions of brain organization are
addressed.  For instance: How can replication of roughly
the same (neocortical) circuit structure give rise to
differences in kind rather than just in number?
Thalamocortical and corticostriatal algorithms must be
constituted such that making more of them enables
interactions that confer more power to larger assemblies.
This property is certainly not universal (e.g.,
backpropagation costs scale as the square of network size,
and do not solve new kinds of problems simply by
growing larger).  As discussed, it is the nature of the
particular data structures formed by the telencephalic
algorithms, nested sequences of clusters, and their relation
to grammars, that enables simple growth to generate new
capabilities.

What relationships, if any, exist between early
sensory operations and complex cognitive operations?
The specific hypothesis is forwarded here that, beyond
initial modality-specific “front end” processing, all
telencephalic processing shares the same operations
arising from successive thalamo-cortico-striatal loops.
Complex “representations” (objects, spaces, grammars,
relational dictionaries) are composed from simpler ones;
“cognitive” operations on these complex objects are the
same as the perceptual operations on simpler
representations; and grammatical linguistic ability is



AI Magazine 27:15-32 (2006) Granger: Engines of the brain

12

constructed directly from iterative application of these
same operators.

Many systems that learn statistically and
incrementally have been shown to be inadequate to the
task of learning rule-like cognitive abilities (Pinker,
1999).  We have here illustrated that unusual data
structures of grammatical form arise directly from models
that contain the anatomical architectures and
physiological operations of actual brain circuits,
demonstrating how this class of circuit architecture can
avoid the problems of extant models and give rise to
computational constructs of a power appropriate to the
tasks of human cognition.  Ongoing bottom-up analyses
of brain circuit operation may continue to provide novel
engineering approaches applicable to the seemingly
intractable problems of cognition.
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