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Machines that learn to segment images: a crucial technology
for connectomics
Viren Jain, H Sebastian Seung and Srinivas C Turaga

Connections between neurons can be found by checking

whether synapses exist at points of contact, which in turn are

determined by neural shapes. Finding these shapes is a

special case of image segmentation, which is laborious for

humans and would ideally be performed by computers. New

metrics properly quantify the performance of a computer

algorithm using its disagreement with ‘true’ segmentations of

example images. New machine learning methods search for

segmentation algorithms that minimize such metrics. These

advances have reduced computer errors dramatically. It

should now be faster for a human to correct the remaining

errors than to segment an image manually. Further reductions

in human effort are expected, and crucial for finding

connectomes more complex than that of Caenorhabditis

elegans.
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Imaging technologies have influenced biology and neuro-
science profoundly, starting from the cell theory and the
neuron doctrine. Today’s golden age of fluorescent
probes has renewed the belief that innovations in micro-
scopy lead to new discoveries. But much of the excite-
ment over imaging overlooks an important technological
gap: scientists not only needmachines for making images,
but also machines for seeing them.

With today’s automated imaging systems, it is common to
generate and archive torrents of data. For some exper-
iments, the greatest barrier is no longer acquiring the
images, but rather the labor required to analyze them.
Ideally, computers would be made smart enough to
analyze images with little or no human assistance. This
is easier said than done — it involves fundamental pro-

blems that have eluded solution by researchers in artificial
intelligence for half a century.

One of these problems is image segmentation, the partition-
ing of an image into sets of pixels (segments) correspond-
ing to distinct objects. For example, a digital camera user
might like to segment an image of a room into people,
pieces of furniture, and other household objects. A radi-
ologist may need the shapes and sizes of organs in anMRI
or CT scan. A biologist may want to find the cells in a
fluorescence image from a microscope. Engineers have
tried to make computers perform all of these tasks, but
computers still make many more errors than humans.

Recently there has been progress in answering two basic
questions about image segmentation.

1. Given two different segmentations of the same image,
how can the amount of disagreement between them be
quantified?

2. Given a space of segmentation algorithms, how can a
computer be used to search for a good algorithm?

In the past few years, the first question has been
addressed by the introduction of metrics that mathemat-
ically formalize our intuitive notions of ‘good’ segmenta-
tion. These metrics penalize topological disagreements
between segmentations, and are less sensitive to small
differences in boundary locations [3!,4!!]. The new
metrics are significant, because they can be applied to
quantify the performance of a computer algorithm by
measuring its disagreement with ‘true’ segmentations of a
set of example images (generally provided by humans).
Good metrics are absolutely essential for progress in
research. Without them it is not even possible to tell
whether progress is being made.

The second question has been answered by formulating
the search as an optimization. Use a computer to search
for an algorithm that minimizes disagreement with the
true segmentations, as measured by the new metrics
[5!!,4!!]. Such automated search is called machine learning
from examples. It is distinct from the conventional
approach, in which a human directly designs a good
algorithm using intuition and understanding. Many still
adhere to the conventional approach, which has produced
a huge number of papers over decades of research.a But

a A Google Scholar query for the phrase ‘image segmentation’ yields
over 200 000 references.
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empirical results have shown that machine learning pro-
duces superior accuracy (see the Berkeley Segmentation
Benchmark at http://www.eecs.berkeley.edu/Research/
Projects/CS/vision/bsds/bench/html/algorithms.html).
The utility of machine learning has already become
accepted for other computer vision tasks such as object
recognition [6], and we expect that it will become stan-
dard for image segmentation as well.

The above innovations are quite general, but applications
to just two image domains will be discussed in this review.
Research on segmenting ‘natural’ images, or photographs
of ordinary scenes, began in the late 1960s [7]. Research
on segmenting serial electron microscopic (serial EM)
images of neurons began in the 1970s [8], and has largely
applied algorithms or ideas that were originally developed
for natural images. But in the past few years, this niche
area has given rise to innovations that have yet to be
applied to natural images.

Note that natural images are two-dimensional (2d),
while serial EM images are three-dimensional (3d).
The ideas discussed in this review are applicable to
both types of images, and more generally to arbitrary
dimensionality. Serial EM produces a 3d image one slice
at a time, generating a ‘stack’ of 2d images [9]. By
segmenting serial EM images of neurons, one can find
their shapes, including the trajectories of their axons and
dendrites. The shapes of neurons are important because
they determine whether neurons contact each other. By
checking all contact points for synapses, it is possible to
map all the connections between neurons, to find a
connectome [10]. This process was carried out for the
nematode Caenorhabditis elegans in the 1970s and
1980s [11]. Although the C. elegans connectome contains
just 7000 connections between 300 neurons, it took over
a decade to find. Most of the time was spent on image
analysis, which was performed without the aid of com-
puters.

Recent advances in serial EM [12–15] have revived in-
terest in finding connectomes. These improved methods
promise to produce images of larger volumes of brain
tissue.b A cubic millimeter is estimated to require up to
hundreds of thousands of person-years of human effort to
segment manually [17]. From such numbers, it is obvious
that the need for automated segmentation has become
even more acute.

This review focuses only on image segmentation. We will
not address the automation of synapse detection, because
this important problem is little studied so far. Arguments
for the importance of connectomes to neuroscience can
be found elsewhere [18,19]. Finally, we do not address

reconstruction of isolated neurons from the sparse images
generated by light microscopy. In the limit of well-iso-
lated neurons, this is not a problem of segmenting
multiple objects, but rather of finding the best description
of a single object as a tree.

The segmentation problem
The following two definitions of the segmentation pro-
blem are equivalent.

Definition 1. Segmentation as partitioning Partition the
image into sets of pixels called segments, which corre-
spond to distinct objects.

Definition 2. Segmentation as an equivalence relation
Decide whether each pair of pixels belongs to the same
object or different objects.

Definition 1 is more intuitive to most people, while
Definition 2 is useful for some of the formalism described
below. The definitions are equivalent because of the
mathematical fact that any partitioning corresponds to
an equivalence relation.

It is common to display the result of segmenting an image
by a region coloring, which assigns colors to the pixels of an
image, such that different colors correspond to different
objects. Example colorings are shown in Figure 1. A color-
ing may reserve a special color for pixels which do not
belong to any object. These pixels belong to boundaries
between objects, or the background. It is trivial to turn a
coloring into a partitioning: two pixels belong to the same
segment if and only if they have the same color. A coloring
is a nonunique representation of a segmentation, since any
permutation of colors leads to the same partitioning.c

Boundary detection
As their first stage, many segmentation algorithms per-
form the computation of

Boundary detection. Decide whether each pixel belongs
to a boundary between objects.

The result of this computation is a boundary labeling, a
black-and-white image in which white pixels correspond
to boundaries, and black pixels correspond to interiors of
objects (see Figure 1).

A second stage transforms the boundary labeling into a
segmentation (as in Definition 2) by using connectedness as
an equivalence relation between pixels. Two interior
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b The FIB-SEM method also produces high resolution images, but it
is not yet clear whether it can be scaled up to larger volumes [16].

c A coloring is also a nonlocal representation, in the sense that the
coloring of different pixels cannot be done independently. Imagine a
thought experiment in which every pixel in an image is assigned to a
different person. Even if all people know the correct segmentation,
there is no way for them to indicate it through coloring, unless they
communicate with each other. This is not the case for boundary detec-
tion or affinity graph labeling.
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pixels are said to be connected if there exists a path
between them that traverses only interior pixels in the
boundary labeling. Connected sets of interior pixels (con-
nected components) correspond to segments of a parti-
tioning or coloring.

Separating the segmentation computation into two stages
is natural, because the two stages involve nonlocal pro-
cessing to different degrees. The second stage of parti-
tioning is inevitably nonlocal because it involves finding
out whether pairs of pixels are connected, and these
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Figure 1

Segmentation of various types of images. (a) Natural image from the Berkeley Segmentation Dataset [1!], scanning EM image of mouse cortical
neurons (image courtesy of the Lichtman lab, annotation by Daniel Berger), fluorescent image of actin-labeled Drosophila melanogaster cells [2]. In all
cases, segmentation has been provided by human annotation. (b) Cross-sections of a dendrite (red) and axon (green) in an EM image of hippocampus,
colored by hand using ITK-SNAP software, and 3d reconstructions of the axon making a synapse onto a spine of the dendrite, assembled from EM
images of a series of 30 nm slices. (image courtesy of the Lichtman lab, and annotation by Daniel Berger).
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pixels may be distant from each other. And even if the two
pixels are nearby, the path connecting them might travel
arbitrarily far away.

As shown in Figure 1, the first stage of boundary detection
would ideally be nonlocal also, because there are difficult
locations in the image where boundaries cannot be accu-
rately detected without contextual information from dis-
tant pixels. But for most locations, nearby pixels are
sufficient for making the correct decision. Therefore,
many boundary detection algorithms consider only local
information. This constraint limits accuracy, but it also
improves speed — a practical compromise. Local
boundary detectors generally look for abrupt changes
in various properties such as intensity, color, and texture
[20,21,8]. Such algorithms are said to be gradient-based,
because the abrupt changes are found by thresholding
some kind of spatial derivative.

Because local boundary detectors are quite inaccurate
(Figure 2), their output is often fed to a subsequent stage
of computation that is supposed to use contextual infor-
mation to correct the errors. The Canny edge detector was
a simple version of this idea [22]. More sophisticated
methods included relaxation labeling [23], nonlinear dif-
fusion [24], Markov random fields [25,26] which can
sometimes be optimized efficiently using graph cuts
[27], active contours [28], and level sets [29,30].

These methods all involve interesting mathematics, and
their proponents like to focus on the differences between
them. We prefer to regard the methods as more similar
than different. All define a dynamics (or an optimization)
of auxiliary variables associated with the pixels. Each
variable is updated depending on a linear combination
of variables from neighboring pixels, as well as some kind
of nonlinear operation. Iteration of the dynamics propa-
gates information over long distances.

Nonlinear diffusion [31], Markov random fields opti-
mized by graph cuts [32,33!], level sets [34,35!,36,37],
and active contours [38–41] have also been applied to EM
images of neurons, mostly in the last decade.

In practice, the above algorithms generate analog values
rather than binary labels. These values are sometimes
interpretable as the probability that a pixel belongs to a
boundary. The analog boundary labeling, or boundary
map, can be thresholded to produce a binary labeling,
which is then used to find connected components.

In EM images, even a small rate of missed boundary pixels
in theboundarymapcan result in anundersegmentationby
the connected components procedure. In practice, this is
prevented by using a low threshold for boundary detection
resulting in a large false positive rate, but a low false
negative rate, and thus fewer mergers [42!!].

The regular watershed algorithm is an alternative
approach to creating a segmentation from a boundary
map [43]. This approach is distinct from connected com-
ponents, but is closely related. The watershed algorithm
tends to oversegment the image, producing many more
segments than objects. This is because there is a water-
shed domain for each local minimum of the boundary
map, and local minima are typically very numerous.
Therefore, watershed is generally augmented by schemes
for damping local minima or merging watershed domains
to form larger segments.

Affinity graph labeling
Boundary detection is not the only possible first stage for a
segmentation algorithm. An alternative is to label the
edges of an affinity graph, which consists of nodes corre-
sponding to image pixels.

Affinity graph labeling. Label each affinity graph edge to
indicate whether its pixels belong to same or different
objects.

Each edge label is called an affinity. As with a boundary
labeling, a second stage of computation is required to
transform the affinity graph into a segmentation. This
second stage has two goals.

The first goal is the resolution of inconsistencies. Suppose
that an affinity graph is fully connected, containing all
possible edges between nodes. Then labeling its edges
would seem to specify an equivalence relation between
pixels, as in Definition 2 of segmentation. But the edge
labelsmay violate the property of transitivity, andhence be
inconsistent with an equivalence relation. These incon-
sistencies must be resolved to produce a segmentation.

The second goal is to supply missing information. If the
affinity graph is only partially connected, then it only
partially specifies an equivalence relation. Therefore the
second stage of computation must decide about the miss-
ing edges of the graph, as well as resolve inconsistencies.

Both of these goals can be accomplished by defining con-
nectedness in the graph to be an equivalence relation.Two
nodes are said to be connected in the graph if there exists a
path between them traversing only edges with affinity
equal to one. The affinity graph is partitioned into con-
nected sets of nodes by the second stage of computation.

Various types of connectivity have been used in affinity
graphs. One type of partial connectivity contains edges
only between adjacent or nearest neighbor (NN) pixels.
Such a NN graph has been used for EM images [44!!] as
well as natural images [45]. A NN affinity graph is quite
similar to a boundary labeling.d The only difference is
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d But note that an affinity graph has the opposite sign convention as a
boundary labeling, which can be confusing.
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that boundaries are located at the midpoints between
pairs of adjacent voxels, rather than at the voxels them-
selves. Adjacent voxels can belong to different objects in
a NN affinity graph, but not in a boundary labeling.e

This can be advantageous for representing segmenta-
tions of EM images with limited spatial resolution.
Where neurites become very thin, there may not be
enough voxels to represent both the interiors of the
neurites as well as the boundaries between them.f

This problem is solved by representing boundaries
using edges between voxels (Figure 3a). Also, if the 3d
image is composed of aligned 2d images of physical
slices, errors in alignment can cause voxels of two
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Figure 2

Context and ambiguity in neurite tracing. (a) Larger context is needed to identify an object boundary due to a ‘gap’ in an image boundary. (b) Larger
context is needed to trace an object through an area where it becomes very thin. There is also context in the third dimension, which is not shown here.
(Original image courtesy of Kevin Briggman, Moritz Helmstaedter, and Winfried Denk.)

e In a boundary labeling, boundaries are represented by voxels that do
not belong to any cell, but rather to extracellular or ‘outside’ space. A
NN affinity graph does not need to assign voxels to boundaries, since it
uses edges to represent boundaries. However, it has the option of
assigning voxels to extracellular space, in which case they end up being
disconnected from each other and from all cells [44!!]. This means that a
NN affinity graph is more powerful than a boundary labeling, in the
sense that it can represent more partitionings of the image. Of course,
this power is achieved by including more information: there are more
edges in a NN affinity graph than voxels in a boundary labeling.

f Here the true interpretation of the image may be ambiguous based
on local information, but can become unambiguous when more context
is included.
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different cells to end up adjacent to each other across
two slices, with no extracellular space between them
(Figure 3b).g

An affinity graph can also contain edges between pairs of
voxels that are not nearest neighbors. Then it is less like a

boundary labeling. An affinity graph can represent a
segment that consists of a set of voxels that is discon-
nected in the image, as long as the set is connected in the
graph. This is useful for EM images with limited spatial
resolution, as thin neurites can ‘break’ when they
become less than one voxel in diameter. Although such
neurites are disconnected in the image, they can be
connected by long-range edges in the affinity graph.
Similarly, if the 3d image is composed of aligned 2d
images of physical slices, errors in alignment can cause
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Figure 3

Affinity graphs are a more powerful output representation than boundary labelings. The nodes of the graph represent pixel locations, while edges
between nodes indicate affinities. Boundary pixels are represented as circled nodes lacking edges. The graph allows for objects to be separated by
boundaries that are less than a pixel wide as in regions marked a in the x–y plane or b in the x–z plane. Objects that would have been split due to
misalignment of 2d image slices can be connected by graph edges spanning different image slices as in c. Affinity graphs are shown here for two-
dimensional images, but can also be defined in three or higher dimensions.

g Another way of dealing with this problem is to compute a super-
sampled output image that has higher resolution than the input image
[46!].
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a thin neurite to end up disconnected in the image
(Figure 3c).h

All these advantages of the affinity graph can be sum-
marized in a single bottom line: connectedness is based
on the definition of adjacency, and this definition is more
flexible in an affinity graph than in a boundary labeling.

As with boundary detection, achieving the highest
accuracy at labeling an edge of an affinity graph would
require contextual information from distant pixels in the
image. But in practice, local algorithms are often used for
the sake of speed. For nearest neighbor edges, the defi-
nition of local is basically the same as it was for boundary
detection. For labeling long-range edges, an algorithm is
said to be local if its output depends only on the two
image patches surrounding the two pixels connected by
the edge. The affinity is generally computed using some
measure of similarity of the two image patches, based on
properties such as intensity, color, and texture [45].

As with boundary labelings, it is common for algorithms to
generate analog values rather than binary labels for the
affinity graph edges. These values are sometimes inter-
pretable as the probability that an edge connects two
pixels that belong to the same object. These analog values
can be thresholded to produce a binary edge labeling,
which is then used to find connected components.

In addition to connected components, many other algor-
ithmshavebeenproposed for partitioning an affinity graph.
These are supposed to correct the errors and inconsisten-
cies produced by local computation of the affinity graph
labeling. Spectral methods have been applied to produce a
hierarchical partition of the affinity graph [47]. An analog of
the watershed algorithm can be defined for graphs through
the minimum spanning tree [48,49].

Manual creation of segmentation datasets
Two broad classes of segmentation algorithms were
defined above, those that involve boundary detection
and affinity graph labeling. Rather than describing more
classes of algorithms, we move now to a different subject,
that of evaluating performance. Surprisingly, this issue
was not confronted seriously until the 2000s. Previously,
researchers had evaluated algorithms subjectively, by
inspecting performance on a few images. Without objec-
tive and quantitative means of evaluation, it was difficult
to tell which algorithms were better.

Usually it is easy to evaluate performance in computer
science. Many computational tasks, like multiplying
numbers or inverting matrices, have simple and precise

mathematical specifications, so that it is straightforward to
measure speed and accuracy. But no explicit specification
exists for image segmentation and other tasks in computer
vision. There is no way to evaluate performance without
resorting to empirical means.

This was first done in a systematic way by the introduction
of the Berkeley Segmentation Dataset [1!]. Its creators
collected natural images, and employed humans to seg-
ment them. Both images and segmentations were made
publicly available. Researchers could quantify and com-
pare the performance of their computer algorithms by
measuring disagreement with the human segmentations
using a common dataset. More recently, researchers have
created similar datasets that containEM images alongwith
segmentations [46!,5!!,44!!,4!!,50!]. So far one of them is
publicly available [50!].

To manually segment a 2d image, a human can use
standard computer software for drawing or painting. In
boundary tracing, the human draws contours at the bound-
aries of objects. In region coloring, the human paints the
interiors of objects with different colors. These methods
can be extended to 3d images by allowing the user to
annotate 2d slices.

The software packages RECONSTRUCT [51], Tra-
kEM2 [52], and KLEE (Moritz Helmstaedter, personal
communication) are capable of boundary tracing of EM
images. As illustrated in Figure 1, ITK-SNAP [53] can be
used for region coloring of biomedical images.

For segmenting neurons, there is an alternative that is
faster and capturesmost of the shape information.Ahuman
can draw a line along the axis of a neurite, with the
capability of adding branch points. This functionality is
implemented by the software packages TrakEM2, Ele-
gance (S Emmons, unpublished data) and KNOSSOS (M
Helmstaedter, unpublished data). Such skeleton tracing is
more than ten times faster than full segmentation [17].
SSECRETT [37] andPiet (J Lichtman, unpublished data)
allow thedroppingof ‘breadcrumbs,’ inorder to summarize
neurons as sets of points. This is a bit less information than
skeletons, which include the lines connecting the points.

Neuro3D [34] and NeuroTrace [36,37] are software
packages for semi-automated tracing of neurites that
combine active contours or level sets with a graphical
user interface. For each 2d image slice, the computer
suggests a contour for the boundary of the neurite. The
human user either accepts this contour or corrects it.
NeuroTrace utilizes parallel computation with GPUs to
speed up the level set computation.

Metrics of segmentation performance
The introduction of common segmentation datasets is
essential for allowing researchers to properly quantify and
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regions that are disconnected in the image. Such an object can still be
connected in an affinity graph with long-range edges.
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compare the performance of their computer algorithms.
But datasets alone are not enough. It turns out that
defining a proper metric for measuring disagreement
between segmentations is a nontrivial problem. Only
recently have good solutions been proposed.

In general, a metric can be used to compare any pair of
segmentations. Most commonly, one of the segmenta-
tions comes from a computer, and the other from a
human. If the human segmentation is regarded as the
‘truth,’ then the metric measures the error of the com-
puter. Therefore we will often use the term ‘error’ inter-
changeably with ‘metric.’ Metrics can also be used to
compare two human segmentations. Consistency of
human segmentations is an important indication of
whether it makes sense to regard them as the ‘truth’
[46!,1!,54!!].

Figure 4 illustrates the difficulty of defining a good
metric. A human segmentation of an EM image is com-
pared with the segmentations produced by two hypothe-

tical computers. Which computer is better? A naive
method of evaluation is to count the number of pixels
on which the computer boundary labelings disagree with
the human boundary labeling. By this metric, the pixel
error, the two computers are equally good. But this
evaluation is inconsistent with our intuitive notion of a
good segmentation. In computer segmentation A, the red
object in the human segmentation is missing, the yellow
object in the human segmentation is split into two
objects, and the blue and green objects in the human
segmentation are merged into one. In other words, com-
puter segmentation A contains three errors: a deletion, a
split, and a merger. (There is also a small hole, which
would not lead to an error in finding connectomes.) A split
is caused by the incorrect detection of a spurious
boundary, while a merger is caused by an incorrect gap
in a boundary. Computer segmentation B contains the
same objects as the human segmentation. The shapes are
slightly different, but there are no genuine disagreements
at all. In short, Computer B is intuitively superior to
Computer A, but the pixel error does not reflect that.

8 New technologies
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Figure 4

Three measures of segmentation quality. A ground truth segmentation can be used to quantify the performance of different segmentation algorithms
(A and B). Machine learning algorithms require such error metrics in order to automatically optimize their parameters to improve performance. Pixel
error measures the number of misclassified pixels in the boundaries of two segmentations. While simple to compute, it classifies pixels as errors
even when there is no real change in the segmentation. Segmentations A and B have the same pixel error. Warping error penalizes misclassified
pixels that lead to topological errors (red = deletion, green = merger, yellow = split, and blue = hole in Segmentation A). Segmentation A has more
warping error than Segmentation B. Rand error is a clustering measure that counts the number of pixel pairs that are incorrectly grouped.
Segmentation A has more Rand error than Segmentation B. The Berkeley metric (not illustrated) introduced in [1] assigns Interpretation A lower error
than Interpretation B (see [4] for details).

Current Opinion in Neurobiology 2010, 20:1–14 www.sciencedirect.com



Figure 4 suggests that the ideal metric should

! tolerate minor differences in boundary location,
! and strongly penalize topological disagreements like

splits and mergers.

For image segmentation in general, we have appealed to
intuition to motivate these properties. But their import-
ance is even more clear in the particular application of
connectomics. As mentioned earlier, split and merger
errors have serious consequences, causing the many con-
nections on a stretch of neurite to be erroneous. In contrast,
an error inboundary location can cause anerror in detecting
a synapse at that particular location. Furthermore, the error
in boundary localization must be so large that it prevents
the synapse from being assigned to the correct neuron.

The pixel error has neither of the two ideal properties
above. The Berkeley Segmentation Dataset was intro-
duced with a set of metrics that have the first property
[1!]. But the Berkeley metrics are unsatisfactory because
they may not penalize topological errors (such as small
gaps in a boundary) that could lead to large differences in
segmentations [55,4!!]. Indeed, when applied to the
segmentations in Figure 4, the Berkeley metrics assign
lower error to the intuitively worse interpretation of
Computer A.

A new metric called the warping error [4!!] possesses both
of the desired properties listed above. To compute the
metric, the human boundary labeling is warped to match
the computer boundary labeling. This is done by flipping
pixels of the human boundary labeling that do not change
its topology, and also reduce disagreement with the com-
puter. The topological constraints are enforced by using
the idea of a simplepoint, borrowed from thefield of digital
topology [56].A geometric constraint is also imposedbynot
allowing boundaries to shift more than some distance
cutoff. After warping is complete, the remaining pixel
disagreements constitute the warping error. In Figure 4,
thewarping error of ComputerA consists of just five pixels,
all true topological disagreements with the human. Com-
puter B has zero warping error, conforming to our intuitive
notion that it is superior to Computer A.

The Rand error is a second metric with the two desired
properties. It was originally proposed for data clustering
[57], and only recently adopted as a metric for image
segmentations [3!]. Let us say that two pixels are ‘con-
nected’ in a segmentation when they belong to the same
region. The Rand error is defined as the fraction of pixel
pairs that are connected in one segmentation but not in
the other. A split or a merger produces large Rand error,
while a small shift in boundary location produces little
Rand error. In Figure 4, Computer B is again superior to
Computer A by the Rand error (data not shown), which
matches our intuitive ranking.

Machine learning from examples
Earlier we listed a number of conventional algorithms for
image segmentation. Such algorithms are found through a
collective search conducted by a community of many
human experts. Each researcher proposes new algorithms
and compares them with old ones. The new metrics
described above make it possible to perform the com-
parisons properly.

But quantitative metrics enable a different approach to
research: use a computer to automatically search for new
and better algorithms. This machine learning approach

! defines a space of algorithms that take images as input
and produce segmentations as output,

! and instructs the computer to ‘learn,’ that is search the
space for an algorithm that optimizes a metric of
segmentation performance.

This could be explained to corporate executives as ‘man-
agement-by-objective.’ Instead of telling the computer
how to segment images, we quantitatively define the
objective of image segmentation. The computer figures
out its own way to achieve that objective.

Some researchers have resisted the machine learning
approach. They prefer to design algorithms directly,
based on their intuitive understanding of image segmen-
tation. But machine learning has yielded superior per-
formance in the Berkeley Segmentation Benchmark [1!].
Perhaps this is because our intuitions about image seg-
mentation are not particularly good. Although we are
conscious of the results of visual computations by our
brains, many of the processes leading to these results
are unconscious and inaccessible to introspection. This is
the reason that visual psychologists and neuroscientists
have to struggle to understand how our brains perform
visual tasks, though vision itself is effortless for us.

Research on machine learning of image segmentation
initially used the naivemetric of the pixel error. A classifier
was trained to perform the task of boundary detection by
measuring its pixel error relative to a dataset of true
boundary labelings. Even with this primitive metric,
machine learning delivered superior performance at seg-
menting natural images as compared to the classic Canny
edge detector and a second-momentmatrix based detector
related to corner detection techniques [1!,58!]. Studies on
EM images have also shown the superiority of machine
learning as compared toHessian-based ridge detection and
anisotropic smoothing [42!!,54!!,59,33!,60!,61].

In management-by-objective, it is crucial to define the
objective correctly, lest employees try to achieve the
wrong goals. Similarly, it is crucial for machine learning
to optimize a good performance metric. As we saw earlier,
pixel error is not a good segmentation metric. The Rand
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and warping errors are metrics that formalize our intuitive
notions of good segmentation. These metrics have stimu-
lated the latest phase of machine learning research on
image segmentation. Maximin Affinity Learning of Ima-
ge Segmentation (MALIS) trains a boundary detector by
minimizing its Rand error [5!!]. Boundary Learning by
Optimization with Topological Constraints (BLOTC)
trains a boundary detector by minimizing warping error
[4!!]. Recent work suggests that these new machine
learning methods improve accuracy substantially over
machine learning based on pixel error.

Designing versus learning features
Above we have portrayed the machine learning approach
as searching for an algorithm that transforms the input
into the desired output.

input "!learned
output

It is common to break this transformation into two stages.

input "!designed
feature vector "!learned

output

The first stage is designed by hand, and computes a
‘feature vector,’ the components of which signify the
presence or absence of various features in the input. Only
the transformation of the feature vector into the desired
output is learned.

The first stage embodies the designer’s understanding of
the computation, while the second stage encapsulates the
designer’s ignorance. If the designer’s understanding is
fairly complete, a simple algorithm will suffice for the
second stage. Machine learning is easier if the class of
algorithms to be searched is simpler, for two reasons.
First, searching for an algorithm that performs well on the
training set generally takes less time (less computational
complexity). Second, the result of the search tends to
generalize better to novel inputs. This means that fewer
examples need be collected for the training set, which can
be a major reduction in human labor (less sample com-
plexity). Intuitively, it makes sense that learning will be
easier when it takes advantage of prior knowledge.

In areas such as speech recognition [62,63] or visual object
recognition [64], researchers have devoted significant
effort to designing good features. Research on segment-
ing natural images has also identified good features, such
as gradients of intensity, color, and texture [1!]. Research
on EM image segmentation has mostly relied on features
that were originally introduced for natural images
[42!!,54!!,59,33!,61], although recent work has intro-
duced features specifically designed for EM image
analysis [65,66!]. The transformation of the feature vector
into the boundary map has been learned by a number of
methods, including random forest [42!!,33!], boosting
[59], and multi-layer perceptrons [54!!,61].

A less common approach is to learn the entire transform-
ation from input to desired output, dispensing with a
hand-designed first stage. This is sometimes called ‘end-
to-end’ learning [67].i This approach is attractive when
the researcher lacks sufficient understanding to design
good features. Furthermore, it is not adversely affected if
the researcher’s intuitions about the computational task
are actually incomplete or erroneous. End-to-end learning
has the disadvantage that it may require more examples
and more computational time. However, training sets for
EM images can contain millions of labeled voxels, which
appears to be sufficient for producing superior general-
ization performance with end-to-end learning [4!!].j

Furthermore, computers are now fast enough to make
such learning practical.

A convolutional network (CN) is a convenient and power-
ful class of algorithms for end-to-end learning of image
segmentation [72!,46!,44!!]. A CN is organized in layers,
each of which performs a set of linear convolutions and
pixel-wise nonlinear transformations.k A CN can imple-
ment gradient-based boundary detection by appropriate
choice of the convolution filters. A CN can also perform
approximate inference for Markov random field models
[46!]. Therefore machine learning based on CNs is likely
to perform at least as well as these relatively simple hand-
designed algorithms. Since CNs may employ hundreds of
filters that involve tens of thousands of free parameters
[46!,5!!,44!!,4!!], machine learning may also find a more
complex algorithm that significantly outperforms the ones
designed by hand. Indeed, this has turned out to be the
case in some empirical studies [46!,4!!]. While CNs can
be time-consuming to train, this problem is somewhat
alleviated by fast GPU implementations [73].l

Designing features is analogous to micromanagement,
while learning them is analogous to pure management-
by-objective. In fact, there is a spectrum between fully
learned and fully designed. Future research should be
able to identify the best mixture of learning and design,
which may vary depending on the particular application.
It will be important to use good metrics like the Rand or
warping error to decide between the relative merits of
various approaches.
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j Active learning is another approach to minimizing the use of training
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k Note that most research on CNs has used them to implement image-

to-label transformations [72]. These networks are more precisely called
convolution-subsampling networks, as they employ subsampling to
discard positional information.

l While CNs require long training time, once trained they are faster
than many other boundary detectors when applied to novel images.
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Harnessing human effort efficiently
Let us shift now from fundamental ideas in computer
vision to their application in practical systems for con-
nectomics. Suppose that we would like to segment a large
dataset of EM images. Note that a single segmentation
error can lead to a large number of erroneous connections
in a connectome. For example, if an axon is connected
with the wrong cell body, then all of its synapses will be
erroneously assigned to the wrong neuron. Unfortunately,
state-of-the-art segmentation algorithms still make many
errors per neuron. In short, connectomics requires extre-
mely accurate segmentation, and current algorithms are
far from achieving this. Much more research will be
required to fully automate image analysis.

In the near future, semiautomated segmentation will be
the best strategym:
1. Humans manually segment a subset of the data to

create a training set.
2. Machine learning is applied to find an image

segmentation algorithm.
3. The algorithm is applied to the rest of the image data

to produce a candidate segmentation, which contains
errors.

4. Humans correct the errors, editing the candidate
segments through split and merge operations.

Making this semiautomated pipeline efficient means
minimizing human effort, which is mainly consumed
by Steps 1 and 4. For the pipeline to be useful, it must
consume less human effort than fully manual segmenta-
tion. The problem of reducing the human effort in Step 1
was discussed in the previous section on design versus
learning of features.

For the final ‘editing’ of Step 4, special software is
necessary for allowing humans to interact with the com-
puter, and perform the splitting and merging operations.
Such software is still in its infancy, so there are few
quantitative results about human effort in the literature.
One study has claimed greater than tenfold reduction in
human effort compared to manual segmentation
[54!!,84]. Such comparisons are encouraging, but they
should be regarded as preliminary. Even estimates of the
speed of manual segmentation vary over a tenfold range
[17], so further studies will be needed for a clearer
picture.

Note that the Rand and warping errors used in Step 2 can
be regarded as proxies for the human effort consumed by
Step 4, which is expected to be roughly proportional to
the number of split and merge errors to be corrected.

Step 4 poses another interesting challenge, which is to
develop methods and software that allow multiple
humans to cooperate by interacting with the computer
to generate segmentations. This could enable higher
accuracy by averaging out the ‘noise’ in the judgments
of individual humans. ‘Crowdsourcing’ could also be used
to recruit larger numbers of humans over the Internet to
edit computer segmentations [74,75].

Learning to split and merge
In the semiautomated pipeline described above, Step 4
is performed by humans. It would make sense to auto-
mate this step also — so that computers perform the
merge and split operations. Most efforts along these
lines have used a first stage of boundary detection to
generate an oversegmentation. In other words, the
computer is made to err on the side of splitting, produ-
cing only small fragments of objects. These fragments
are sometimes called ‘superpixels’ [76] or ‘supervoxels’
[42!!]. Then the goal is to merge fragments to form
correct segments.

This approach is increasingly common for natural image
segmentation [76–80]. For EM image segmentation,
some researchers have found superpixels in each 2d slice
of an image stack, and then designed decision criteria to
merge superpixels across slices to generate 3d objects
[81!,41,54!!,82,60!].

One can also apply machine learning to this problem,
using human-generated merge and split operations as
training data. Andres et al. performed boundary detec-
tion with a random forest classifier, and merged the
resulting 3d supervoxels using a second random forest
classifier [42!!]. Such work is still in its infancy. Further
research is needed on models for making split and
merge decisions, and on applying machine learning to
such models.

While an oversegmentation is a popular starting point,
another possibility is to start from a candidate segmenta-
tion with a more even distribution of split and merge
errors.n This strategy could bemore efficient, whether the
split and merge operations are performed by human or
computer.

Outlook
New performance metrics, as well as machine learning
methods based on these metrics, are transforming
research on image segmentation.These innovations have
largely been driven by the goal of segmenting serial
EM images of neurons. One might ask why this niche
application has played a disproportionately important
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m A more limited use of the computer is to automatically generate full
segmentations starting from manual skeleton tracings. ‘Putting flesh on
the bones’ can require less human effort than generating full segmenta-
tions manually, and is important for identifying points of contact be-
tween neurons (M Helmstaedter, unpublished data).

n Here also the candidate segments could be called ‘superpixels’ or
‘supervoxels,’ although in the original meaning this term was defined as
an indivisible group of voxels [76].
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role. One reason is that the shapes of neurons are highly
complex, making accurate segmentation extremely dif-
ficult, and forcing researchers to try new ideas. A second
reason is that a serial EM image actually possesses a ‘true’
segmentation, which neuroscientists really want to
know. In contrast, the notion of a segmentation is not
completely well-defined for natural images, as evidenced
by the fact that human segmentations of images in the
Berkeley dataset often disagree substantially. Research-
ers may not have a strong incentive to achieve very low
error rates, since this may be fundamentally impossible
anyway.

As described above, machine learning approaches have
created new algorithms for segmenting EM images with
outstanding accuracy relative to conventional algorithms.
For the first time, semiautomated segmentation is becom-
ing faster than purely manual segmentation (though more
precise quantification of this claim is needed). This is an
important milestone, demonstrating the utility of compu-
terized image segmentation, but it is just the beginning. It
is important to further reduce human effort consumed by
semiautomated segmentation. How can computer
accuracy be improved even further? And more funda-
mentally, why should we believe that further gains are
possible at all?

As mentioned earlier, boundary detection usually starts
with a local computation that is based on a limited field of
view. Accuracy is improving due to machine learning, but
performance will eventually saturate due to difficult
locations that are inherently ambiguous. There exists
no algorithm that can perform well at these locations
based on a limited field of view, so machine learning
cannot be expected to find one.

In principle, the solution to this problem is simple:
increase the field of view. If the boundary detector is
allowed to use more contextual information, some of the
difficult locations will be disambiguated. Research on EM
image segmentation is likely to progress by steps that
increase the field of view. At each step, performance will
increase as researchers succeed in exploiting the new
contextual information. When performance saturates,
the field of view will be increased again.

What are the challenges involved in increasing the field of
view? First, the computation may become slower, due to
the demands of processing more information. In 3d,
doubling the length of the field of view increases the
volume by almost an order of magnitude.

Second, a larger field of view will not simply provide more
contextual information, but information of a different
type. Utilizing it may require a computation that is quite
different. Therefore, it is unrealistic to proceed by simply
scaling up a single monolithic computation to an arbitra-

rily large field of view.o One possibility is to modify
existing boundary detection techniques to perform multi-
scale computation [83], by combining separate compu-
tations at multiple spatial resolutions.

If boundary detection is followed by another stage of
automating splitting and merging of supervoxels, this
could potentially provide an efficient and powerful means
of dealing with added context. Each supervoxel should be
represented by a descriptor more compact than its raw
voxels. Ideally, future research will yield shape descrip-
tors that allow fast and accurate decisions about split and
merge operations.
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79. GuC, Lim J, Arbeláez P,Malik J:Recognition using regions. IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition. 2009.
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