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Abstract. In a series of lectures given at the California Institute of Tech-
nology in 1952, John von Neumann laid the foundations of the theory of
reliable computation by machines built from unreliable components. This
paper surveys the developments that have taken plsce in the theory since *
that time. :

L. Introduction. In January 1952, John von Neumann gave a series of five
lectures at the California Institute of Teqhnologyi Notes of these lectures
were revised by von Neumann and published in 1956 [vN56]. It is fair to say
that von Neumann’s paper founded the theory of reliable computation with
unreliable components. The goal of this paper is to give an account of the
developments that have taken place in that theory.

Von Neumann’s paper, like his earlier The general and logical theory of au-
tomata [vNS51a], his later The computer and the brain [vN58), and the posthu-
mously published Theory of self-reproducing automata [vN66], was written in
heady times, the fragrance of which can still be savored in Wiener’s Cyber-
netics [Wied8]. It was a time of heightened optimism about the prospects
for understanding communication, computation, observation, control, self-
correction, and self-reproduction, both in natural and artificial systems, and
a time of growing awareness of the interrelationships among them. Vor Neu-
mann’s bibliography in [vN56] cites papers by Kleene [K156], McCulloch and
Pitts [McCP43], Shannon [Sh48], Szilard [Sz29], and Turing [Tu36], and
emphasizes the connections among mathematics, physics, and biology.

2. Von Neumann’s model. To study reliable computation with unreliable
components presupposes a satisfactory model for computation with reliable
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components. The model used by von Neumann is roughly speaking the “neu-
ral net” of McCulloch and Pitts [McCP43], with the adjunction of a finite
probability space to model the failures of components. Since the neural nets
he discusses are all in fact “combinational” in nature, most later workers
have used a model that is inherently combinational, such as the “network of
gates” of Muller [Mul56], and we shall follow that practice here.

A precise discussion of errors in networks of gates requires a distinction
between two types of errors, which (following a suggestion of Peter Gacs) we
shall call “failures” and “deviations”. If the output of a gate ‘is not what we
expect from the inputs to that gate, we shall say that the gate “fails™. If the
output of a gate is not what we expect from the inputs to the network, we
shall say that the output “deviates”; this may be due to a failure of that gate
or to the propagation of failures from antecedent gates.

The occurrence of deviations may depend on the inputs to the network
as well as on the locations of failures. We shall always be interested in the
reliability of the network for the least favorable choice of the inputs. Thus
we assume that an adversary to the network, with knowledge of the network,
chooses the inputs to the network; then the failures are determined by a
process to be described below.

The question of how to model failures is not completely straightforward;
consider the following two quotations from [vIN56}].

It is the author’s conviction, voiced over many years, that
error should be treated by thermodynamical methods, and
be the subject of a thermodynamical theory, as information
has been, by the work of L. Szilard and C. E. Shannon,|...].

The.simplest assumption concerning errors is this: With ev-
ery basic organ is associated a positive number ¢ such that in
any operation, the organ will fail to function correctly with
the (precise) probability &. This malfunctioning is assumed
to occur statistically independently of the general state of the
network and of the occurrence of other malfunctions. A more
general assumption, which is a good deal more realistic, is
this: The malfunctions are statistically dependent on the gen-

. eral state of the network and on each other. In any particular

B state, however, a malfunction of the basic organ in question
has a probability [...] which is < e.

Here we have a statement of philosophy together with two concrete models.
The philosophy is certainly consistent with that adopted by Wiener [Wie49]
and Shannon [Sh48], in which “noise”, the source of unreliability, is modeled
as a random process with known parameters. Von Neumann’s first model,
with its parenthetical “precisely”, adheres to this philosophy: the gates be-
have unreliably, but they can be relied upon to behave unreliably! If the value
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of ¢ is sufficiently small, then von Neumann shows that such gates can be as-: '
sembled to form a network that simulates (except with a modest probability
of deviation) a given network of perfectly reliable gates. But gates with prob-i.!
ability of failure precisely & can also be assembled to form “random numbcr“
generators” with known statistical properties. Now random number genera-

tors can in many cases be eliminated from networks of perfectly reliable gates !
(see Adleman [Ad78]), but it seems unlikely that this elimination can be ac- |
complished without substantial increase in size. In any event, in this model

it is certainly ndt true that a network that computes reliably in the presence
of failures would necessarily continue to do so in their absence. Thus, in -
this first model, the failures add to as well as detract from the computational

resources. ;

The second, more “realistic” model, is ambiguous because of the phrase !
“general state of the network”™. When this ambiguity is resolved in what
seems the most natural way, the counterintuitive features of the first model -
disappear, and some new attractive features (which will be mentioned later)
replace them. (For a more complete discussion of the relationships among :
these and other models, see Pippenger [Pi88b].) This second model is not '
completely consistent with the “thermodynamic” philosophy, however; the '
arbitrary dependence of probabilities on the general state of the network has !
an adversarial aspect akin to that of “Maxwell’s demon”. |

Fortunately, it is not necessary to resolve the disparity between these two |
models. All of the negative results we shall discuss can be formulated for the
first model, and all of the positive results for the second, so each result is
automatically applicable to the other model.

An attractive féature of von Neumanri’s model is that it assumes the failure
probability of the components to be fixed while contemplating arbitrarily
large networks; Thus, larger and larger networks rust tolerate more and more |;
failures. This may be contrasted with studies of networks that tolerate a |
fixed number of failures, independent of the size of the network, or which
tolerate a large number of failures only if they are well dispersed. Such
schemes include the well-known “triple-modular redundancy” (Lyons and
Vanderkulk [LV62]) and “quadded logic” (Tryon [Tr60], [Tr62]), as well as
some schemes related to error-correcting codes (see Armstrong [Ar61] and
Ray-Chaudhuri [R61], for example). Von Neumann’s model also assumes §
that all gates are unreliable; this contrasts with theories in which some reliable J;
gates may also be used in critical portions of the network (see Muchnik and }
Gindikin [MucG62], Kirienko [Ki64, Ki70], Ulig [U74], and Ortyukov [Or78] ¥
for results along these lines). z

Another feature of von Neumann’s model is that it considers the evaluation
of a Boolean function on one set of Boolean arguments, rather than consider-
ing the evaluation of one function on many disjoint sets of arguments. This
feature is best understood by consulting works that take a contrary stand,
such as Winograd and Cowan [WinCé63], in the light of subsequent results
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concerning the evaluation of functions on many disjoint sets of arguments
(see Ulig [U74] and Paul [Pa76]).

3. Computability and complexity. The main result that i§ proved in von
Neumann’s paper is the following. Fix a basis B of Boolean functions (we
shall always assume B to be finite, and “complete” in the sense of Post
[Pod1]). For all sufficiently smalt ¢ > 0, there exists a § < 1/2 with the
following property. Every Boolean function is computed by a network over
B that deviates with probability at most § when its gates fail with probability
at most &. The supremum of the & for which there exists such a § < 1/2 will
be denoted &o(B). For 0 < ¢ < go(B), the infimum of the § with the cited
property will be denoted dy(B, ¢).

Three prominent features of von Neumann’s argument are (1) that g(B) <
1/2 for all finite bases B, (2) that do(B,¢) > ¢ for all 0 < & X &(B), and (3)
the network of unreliable gates may have greater depth (or “delay”), by a
constant factor depending on B, ¢, and 4, than a network of reliable gates
computing the same function. This situation is in marked contrast with that
of reliable communication over an unreliable channel. There, a channel (say,
a binary symmetric channel with error probability &) has a positive cz?pacity
C(e) = 1+elogye+ (1 —e)log,(1 —¢) for all € < 1/2, and any probability of
incorrect decoding 6 > 0 is achievable (see Shannon [Sh48]). This contrast
is evidently due to the fact that in the case of communication, it is assumed

- that coding and decoding can be performed without error, while in the case
of computation, any coding and decoding must be done by components that
are themselves subject to failure.

It is natural to ask whether this contrast is inherent, or whether it might
be avoided by some more sophisticated argument. Pippenger [Pi88a] showed
that for any finite, complete basis B, g(B) is bounded below 1/2, at least
if the computation is done by a formula with unreliable gates, rather than
a network (a formula is a network in which the output of any gate serves
as an input to at most one other gate). Furthermore, the ratio of the depth
of the unreliable formula to that of a reliable formula is bounded above
1. Feder [F88] has extended these results to networks, and also shown that
do(B, &) is bounded above ¢ in this case. Unfortunately, all of these negative
results differ quantitatively from the positive results that emerge from von
Neumann’s analysis, even when this analysis is carried to its natural limit
(see Pippenger [Pi87]). Indeed, while the negative results give bound§ that
are analytic functions of ¢ (like Shannon’s capacity), the positive result givesa
ratio of unreliable depth to reliable depth that is a “devil’s staircase” function:
a function that is monotonic and continuous, but constant throughout each
of a countably infinite collection of intervals.

After establishing the possibility of reliable computation with unreliable
components and ascertaining the effect on depth, von Neumann turned to
assessing the effect on the size (or “cost”) of the network. He came to the
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conclusion that a function computed by a network of [ reliable gates could
be computed by a network of O(/log!) unreliable gates (where the constant
implicit in the O;Ilotation depends on B, ¢, and 6). He drew this conclusion
by considering a method of converting a network of reliable gates into one
of unreliable gates by (1) replacing each reliable gate by an “executive organ”
comprising O(log/) unreliable gates; (2) replacing each wire by a “bundle”
of O(log!) wires; and (3) introducing “restoring organs” (comprising O(log!)
unreliable gates) that correct the deviations caused by the executive organs.
The analysis he gave is not entirely satisfactory, however; it considers the
operation of the network for a single choice of the inputs, and assumes that

- certain interconnections are made “at random” in the restoring organ. Now
- there must be a particular pattern of interconnection that performs as well
" as the average pattérn for a particular input, but there is no guarantee that

the same patternof interconnection will perform well for all inputs.” Thus
this argument cannot deal with a situation where the input to the network is
chosen by an adversary with knowledge of the network, as we have assumed
in our models.

A rigorous proof for these models was given by Dobrushin and Ortyukov
[DO77b]. They also give an example of a function of n arguments (namely,
the sum modulo 2 of n arguments) computed by a network of O(n) reliable
gates but requiring (n log n) unreliable gates. (As is customary in computer
science, we use Q(... ) to denote a lower bound that holds “eventually”, rather
than merely “frequently”.) Pippenger [Pi85], on the other hand, gives an
example of a function requiring O(n) gates, whether reliable or unreliable. It
seems to be difficult to give any simple criterion for when the extra logarithm
appears.

It should be mentioned that the method of [DO77a] cannot give a lower
bound larger than Q(nlogn), and in particular cannot give Q(llog!) unless
{ = O(n). It would be of interest to develop techniques that give larger lower
bounds; since many such techniques are available for networks of reliable
“monotone” gates (see Wegener [We87], for example), and since monotone
gates suffice for the correction of deviations, it would be natural to try first
to find such lower bounds for networks of unreliable monotone gates.

In discussing these results on the sizes of networks, we have not explicitly
indicated the dependence of the results on B, ¢, and 6. In the theory of
networks of reliable gates, it is an important principle that changing B from
one finite and complete basis to another can affect the size and depth of
optimal networks by at most constant factors (see Muller [Mul56]). It is not
at all obvious that this principle carries over to networks of unreliable gates;
indeed, for the model in which gates fail with probability precisely ¢ it seems
unlikely that it holds, since there appears to be no way to construct a network
over a basis that imitates the behavior of a gate not in that basis. For the
second model, however, it can be shown that changing B, ¢, and & (within
obvious limits) can affect the size and depth of optimal networks by at most
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constant factors (see Pippenger [Pi88b]). This justifies the imprecision of the
O- and Q-notation that we have used above and will use often throughout
the rest of the paper.

4. Explicit constructions. As we have seen, both von Neumann’s original
plan for the restoring organ and Dobrushin and Ortyukov’s implementation
of it depend on random interconnections. This method of proof is familiar
from Shannon’s communication theory; it provides an existence proof but
no explicit construction. Von Neumann was interested in the deterministic
simulation of randomness from both a mathematical and a philosophical
point of view, as is evident from the following well-known passage from
[vN51b].

Any one who considers arithmetical methods of producing
random digits is, of course, in a state of sin. For, as has
been pointed out several times, there is no such thing as a
random number—there are only methods to produce random
numbers, and a strict arithmetic procedure of course is not
such a method. (It is true that a problem that we suspect of
being solvable by random methods may be solvable by some
rigorously defined sequence, but this is a deeper mathematical
question than we can now go into.)

It is natural then, that he tried to supply an explicit construction for the
restoring organ, and conjectured that a certain permutation (based on the re-
versal of binary digits) would serve as the basis for such a construction. From
today’s perspective, von Neumann’s suggestion seems rather naive; it is vague
enough to evade definitive refutation, but there is no evidence in its favor.
In recent years, however, several provably correct explicit constructions have
‘been given.

The first such explicit construction was given by Pippenger [Pi85]; it de-
pends on the explicit construction of graphs with certain special spectral
properties. These graphs (essentially “expanding graphs”) have themselves
been the subject of a long quest for explicit constructions. Contributions
by Margulis [Mar75] and by Gabber and Galil [GabG81] were refined by
Jimbo and Maruoka [JM87]; the use of Jimbo and Maruoka’s graph in Pip-
penger’s construction yields restoring organs with about 257 gates per wire.
Fortunately, subsequent work by Lubotzky,.Phillips, and Sarnak {LubPS88]
on “Ramanujan graphs” allows this constant to be deflated to about 2%, still
too large to be practical, but at least no longer ridiculous. Peter Gécs has
pointed out that another explicit restoring organ can be fashioned from the
“approximate halvers” that constitute the fundamental building block of the
celebrated Ajtai-Komlds-Szemerédi sorting network [AKS83a, AKS83b]; this
also depends on explicit constructions for expanding graphs, and leads to
similar constants to the ones cited above.
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Before leaving the subject of explicit restoring organs, it should be men-
tioned that the explicit constructions for expanding graphs are all based on
the action of a discrete group on a finite set, where the discrete group con-
tains at least a free group on two generators. The proofs given by Gabber
and Galil and by iimbo and Maruoka both have a certain resemblance to
von Neumann’s proof that a group containing a free group on two generators
cannot have an invariant mean [vIN29}; so it may not be too arrogant to be-
lieve that von Neumann would have been delighted by this resolution of his
problem. ’

5. Generic and*linear functions. One of the cenlral features of Shafinon’s
theory of communication is that it associates with an unreliable channel a
real number (called the “capacity” of the channel) that summarizes the in-
formation carrying ability of the channel in an absolute and quantitative
way. It has been the dream of von Neumann’s successors to associate with
an unreliable gate a real number that summarizes the information processing
ability of the gate in a similar way. This can clearly be done if we look at
the depths of networks, as has been mentioned in §3. (The resulting number
depends on some of the details of the model, but the situation is not substan-
tially different in this respect from that of communication.) The O(/log/)
estimate of von Neumann, together with the Q(/log/) bound of Dobrushin
and Ortyukov [DO77a], would seem to dash all hopes of establishing simi-
lar results for the sizes of networks, since it suggests that reliable gates are
stronger in a “non-Archimedian” way than unreliable ones. Recent results
have, however, given rebirth to some of these hopes.

Muller [Mul56] showed that “almost all” Boolean functions of n Boolean
arguments are computed by networks the minimum possible size of which is
©(2"/n). (Here ©(...) denotes both O(...) and Q(...).) This result (like its
precursor for networks of relay contacts, due to Shannon [Sh49]) is proved
in two steps: an upper bound of O(2"/n) is proved by explicit construction
that applies to all (rather than almost all) functions of »n arguments; then
a lower bound of (2"/n) is proved by a counting argument that compares
the number of networks of a given size with the number of functions of a
given number of arguments. The estimates given by Muller in this way differ
by substantial constant factors; it was Lupanov [Lup58] who showed that
more delicate methods give constant factors that asymptotically coincide,
thus providing an exquisitely precise theory of the complexity of almgst all
functions. Lupanov’s result is that almost all functions of n arguments are
computed by networks the minimum possibie size of which is asymptotic to
p(B)2"/n, where p(B) is a constant that depends on the basis B in a known
and easily determinable way.

Pippenger [Pi85] showed that all functions of n arguments are computed
by networks with O(2"/n) unreliable gates. Comparing this with the lower
bound of Muller shows that for almost all functions, the minimum possible
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numbers of reliable and unreliable gates differ at most by a constant factor,
depending on the basis B, the gate failure probability ¢, and the network
deviation probability 4. The methods used by Pippenger are comparable
to those of Muller in their crudity; but Uhlig [U87a, U87b] has used the

-more delicate methods of Lipanov to derive an upper bound asymptotic to
o(B,¢e,8)2"/n, where o(B,¢,8) — p(B) as & — 0. It would be of great interest
to obtain an asymptotically matching lower bound of this form, for it would
justify considering p(B)/o(B,¢,0) as a “capacity” for unreliable gates in the
basis B.

Von Neumann’s theory deals with the computation of an arbitrary Boolean
function, rather than with particular functions (such as arithmetic operations)
to which special methods may apply. Nevertheless, the computation of linear
functions occupies a special place. The first hint that this is so appéars in a
paper of Elias [E58], in which he analyzes two-argument Boolean functions
-and points out an essential difference between “exclusive-or” (or addition
modulo 2) and “inclusive-or”. Specifically, certain forms of coding that are
possible for exclusive-or (or its complement) are impossible for inclusive-or
(and the functions obtained from it-by complementing the function and its
arguments in some combination). The negative result is developed in subse-
quent papers by Peterson and Rabin [PeteR59], Winograd {Win62, Win63],
Pradhan and Reddy [PrR72], and Ahlswede [Ah84]. Winograd’s result, for
example, can be formulated as follows: let ¢: {0,1}* — {0,1}" be a code
that preserves componentwise inclusive-or (that is, ¢(x V y) = ¢(x) V ¢(y))
and has minimum distance d. Then d/n and k/n cannot both be bounded
away from zero as n — oo.

If inclusive-or is replaced by exclusive-or, the situation is quite different;
indeed, most error-correcting codes are linear (over the field GF(2)), and
thus preserve componentwise exclusive-or. A class of linear codes that is
particularly well suited to computation with unreliable gates is the class of
low-density parity-check codes, introduced by Gallager [Gal63]. This suit-
ability was exploited by Taylor [Ta68a) for reliable storage of information
with unreliable gates and memory cells, and in [Ta68b] for reliable compo-
nentwise exclusive-or with unrellable gates (the results in [Ta68b} concerning
other operations are incorrect).

The result of Taylor on storage of information has been refined by Kuznet-
sov [Kuz73] to a form that is (within constant factors) optimal as regards
both the amount of information stored and (the logarithm of) the length
of time for which it is preserved. The only drawback of Kuznetsov’s result
is that, while explicit constructions have now been found for low-density
parity-check codes (see Margulis [Mar82] and Imrich [Im84]), Kuznetsov’s
result still depends upon a random-coding argument. It would be of interest
to replace this by an explicit construction. It would also be of interest to
determine the complexity of the initial coding and final decoding required by
this scheme.
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Let us now consider the simultaneous computation of a set of m functions, '}
each of which is the sum modulo 2 of some of their n arguments. fm=1

and the funcnon is the sum of all n arguments, then (as we have éeen in

§3), the mmxmum possible size with reliable components is ©(n), but with ;

unreliable components it is ©(nlogn). If n = m, the minimum size depcnds

has shown that for all such sets, the minimum possible number of unreliable

. of course on the pamcular functions. Lupanov [Lup56] has shown that for
“all such sets of funcuons the minimum possible number of reliable gates is |
O(n?/logn), and for “almost all” such sets it is Q(n?/logn). Pippenger [Pi85] !

components is also O(n?/logn). This provides yet another example of a .

situation in which the minimum possible numbers of reliable and unreliable -

components differ by at most a constant factor.

6. Variations. This section is devoted to a djscussion of two other ap-
proaches to the problem of reliable computation with unreliable components,
approaches that are based on models for computation and unreliabilify that
are different from those von Neumann used.

The neural nets used by von Neumann have come to be viewed as a mem-
ber of a class of models in which “gates” are interconnected to form networks.
There is a similar but distinct class of models in which “contacts™ are the ba-
sic components, and it was such a model that Shannon [Sh38] used in the
paper that first applied Boolean algebra to logical networks. Such models
were used by Shannon in other papers on logical networks (in particular,
[Sh49]), including one with Moore [MoSh56] entitled Reliable circuits us-
ing less reliable Telays. A great deal of additional work has been done for
such models; most of this work assumes a fixed or slowly growing number
of failures (see Andreev [An86] for references), but Petri [Petr69] retains the
assumption used by Moore and Shannon of independent failures with fixed
probability.

With contact networks, it is possible to tolerate component failure prob-
abilities arbitrarily close to 1/2; and for any such fixed component failure
probability, it is possible to achieve network failure probabilities arbitrarily
close to 0. This striking difference from gate networks may be attributed to
the fact that in contract networks, more of the computation is done by the
interconnection pattern (which is not subject to failure), rather than by the
components. This is clearly a weakness of the fatlure model, for in practice
there are certainly “open circuits” and “short circuits” that do not correspond
to the failure of any single contact.

There is an analogous weakness in the failure model of von Neumann, in
that “wires” are assumed to carry signals from gate to gate in a way that is
not subject to failure. For wires of bounded length, this presents no prob-
lem, since a failure of the wire can be ascribed to the gate that drives it or
the gate that senses it. But if gates occupy a fixed volume, large networks
embedded in three-dimensional space will have large distances between most

3
|




320 . NICHOLAS PIPPENGER

pairs of gates, and unless special care is taken many wires will traverse such
distances. (Random constructions, such as those proposed by von Neumann,
and explicit constructions, such as those proposed by Pippenger and Gécs,
inevitably have long wires.) It may reasonably be argued that the probability
of a signal successfully traversing a long wire decreases exponentially with its
length, if the cross-section of the wire remains fixed as its length increases.
The prospect of formulating and justifying a model accounting for the
physical disposition of gates in space and for the failures of communication
among them may appear daunting, but there is a simple model that easily
neets objections based on lerfgths of wires, and which can overcome a num-
ber of objections related to power supply and heat removal as well. This
model is the “cellular automaton”, or “iterative array”, whith was used by
von Neumann in the context of self-reproduction [vN66]. In this model, com-
putation is performed by an infinite collection of finite automata positioned
periodically in one- or more-dimensional space. The state of each automaton
at a given time step depends on its state and those of its neighbors at the im-
mediately preceding time step; this dependence is the same for all automata
and all time steps. This model requires no direct communication beyond
neighbors and, once furnished with conventions for input and output, pro-

- vides a satisfactory computing medium. The automata can, of course, be

rﬁade unreliable in the same way as are gates.

This model bears a strong resemblance to many that are used in physics to
study magnetization, condensation, percolation, and other phenomena that
exhibit a “phase transition”. (Most such physical models are “static”, and are
used to study equilibria, but many have “dynamic” counterparts; it is these
that are analogous to cellular automata.) The distinguishing feature of a phase
transition is that a qualitative change in the overall organization of the system
occurs when a parameter passes a critical threshold. After consideration of
many specific examples, the following principle became part of the folklore of
statistical mechanics: phase transitions can occur in systems with two or more
dimensions, but not in one-dimensional systems. In the context of cellular
automata with unreliable components, this principle takes the form of the
following conjecture: a one-dimensional cellular automatorf with unreliable
components is “ergodic”, that is, tends to an equilibrium distribution that
is independent of the initial state. Put simply, a one-dimensional unreliable
cellular automaton cannot “remember”.

This conjecture was disproved by Gacs [G4c86]; the proof makes use of
ideas from a rather vague attempt at disproof due to Kurdjumov [Kur78]. The
essential feature of these constructions is that they simultaneously solve the
problems of storage and computation with unreliable components; they do
this recursively and depend upon “universality” and “fixed-point” arguments
similar to those used by von Neumann in his discussion of self-reproduction
[vN51a, vN66]. (If the requirement that the state transition rule be indepen-
dent of time and position is dropped, reliable storage by a one-dimensional
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unreliable cellular automaton can be achieved by a much simpler scheme due
to Cirelson [C78], which does not involve universal computation.)

- In two or more dimensions, the situation is much simpler. Despite an
early misstatement by Ising [Is25], it has been known since 1936 that two-
dimensional static magnetic systems can exhibit a phase transition (see Peierls
[Pei36], Kramers and Wannier [KrW41], and Onsager [On44] for a beauti-
ful example). It remained to formulate an analog with suitable dynamics to
achieve reliable storage and computation with unreliable components. This
was done by Toom [To74] in 1974; in [To80] Toom gave a remarkably sim-
ple transition rule that is nonergodic: ai each step, take a majority vote
among your state, that of your northern neighbor, and that of your eastern
neighbor. The use of Toom’s rule for reliable computation by two- and fhree-
dimensional unreliable cellular automata has been discussed by Gacs [Gdc87]
and by Gacs and Reif [GdcR88], who have given an independent proof of
the nonergodicity of Toom’s rule based on a “renormalization” argument.
Recently, Berman and Simon [BS88] have given a simplification of Toom’s
proof. This development leads to a most interesting open problem (for-
mulated by Gdcs [G4c86]) that concerns “self-organization” with unreliable
components. The two-dimensional nonergodic media constructed by Toom
have distinct translation-invariant equilibrium distributions; is it possible for
a one-dimensional medium to have this property?

This survey began with remarks on von Neumann’s interest in the con-
nections among computation, physics, and biology. It is fitting that it has
concluded with examples of how ideas connected with phase transitions and
self-reproduction have played a role in solving some of the problems arising
from his legacy.
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