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Abstract 
 
The computational problems solved by the sensory and motor systems appear very 
different: one has to do with inferring the state of the world given sensory data, the 
other with generating motor commands appropriate for given task goals. However 
recent mathematical developments summarized in this chapter show that these two 
problems are in many ways related. Therefore information processing in the sensory 
and motor systems may be more similar than previously thought – not only in terms of 
computations but also in terms of algorithms and neural representations. Here we 
explore these similarities as well as clarify some differences between the two systems. 
 
 
Similarity between inference and control: an intuitive introduction 
 
Consider a control problem where we want to achieve a certain goal at some point in 
time in the future – say, grasp a coffee cup within 1 sec. To achieve this goal, the motor 
system has to generate a sequence of muscle activations which result in joint torques 
which act on the musculo-skeletal plant in such a way that the fingers end up curled 
around the cup. Actually the motor system does not have to compute the entire 
sequence of muscle activations in advance. All it has to compute are the muscle 
activations right now, given the current state of the world (including the body) and 
some description of what the goal is. If the system is capable of performing this 
computation, then it will generate the resulting muscle activations, the clock will 
advance to the next point in time, and the computation will be repeated.  
 
How can this control problem be interpreted as an inference problem? Instead of aiming 
for a goal in the future, imagine that the future is now and the goal has been achieved. 
More precisely, shift the time axis by 1 sec and create a fictive sensory measurement 
corresponding to the hand grasping the cup. The inference problem is now as follows: 
given that the fingers are around the cup and that the world was at a certain state 1 sec 
ago, infer the muscle activations which caused the observed state transition. As in the 
control problem, all that needs to be inferred are the muscle activations at a single point 
in time (1 sec ago); if this can be done then the clock will advance (to say 0.99 sec ago) 
and the computation will be repeated. 
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The above inference problem does not have a unique solution, because there are many 
sequences of muscle activations that could have caused the state transition we are 
trying to explain. Even at the final time the arm could be in many postures which all 
correspond to a successful grasp, thus the fictive measurement is incomplete. The same 
ill-posedness is present in the control problem and is known as motor redundancy 
(Bernstein 1967). Inference problems do not normally involve this kind of redundancy. 
Indeed the inference here is rather unusual: there is a period of time (1 sec in our 
example) when there are no sensory measurements, and the only available 
measurement at the end of the movement is incomplete. We could consider a different 
control problem which corresponds to a more usual inference problem involving 
complete sensory measurements. That control problem is one where we are given a 
detailed goal state at each point in time, i.e. a reference trajectory for all musculo-
skeletal degrees of freedom, and have to generate muscle activations so as to force the 
plant to track this trajectory. When the latter control problem is mapped into an 
inference problem, the sequence of detailed goal states turns into a sequence of 
complete sensory measurements, thus eliminating redundancy. It is important to realize 
however that trajectory tracking represents only a small fraction of ecologically relevant 
behaviors (Todorov and Jordan 2002). Thus the natural control problem (which involves 
a large amount of redundancy) corresponds to an unnatural inference problem (where 
sensory data is very sparse) and vice versa. Inference is easier if complete sensory 
measurements are available at all times, and similarly, control is easier if detailed goal 
states are specified at all times. 
 
This reasoning suggests that control is a harder problem than inference, at least in the 
temporal domain. Indeed inference in the absence of measurements is called prediction 
(except that here it is performed backwards in time), and prediction tends to be hard. 
On the other hand, redundancy makes it possible to be sloppy most of the time and still 
achieve the goal. This is because, even if the initial part of the movement somehow goes 
wrong, there is time later in the movement to observe what happened and take 
corrective action. The analog of this property in the inference domain is that long-term 
predictions tend to be inaccurate while short-term predictions (which correspond to 
motor commands close to the goal) are more accurate. 
 
The above transformation from control to inference has been instantiated in formal 
models (Attias 2003). This is done by setting up a dynamic belief network (see below) 
which represents the states and actions at different points in time, treating the goal state 
as being observed, and performing Bayesian inference to find the actions. The 
shortcoming of this approach is that inference is performed over the product space of 
states and actions – which for a typical motor control problem is prohibitively large. In 
the rest of the chapter we will pursue a different approach, where the control problem 
will turn out to be equivalent to an inference problem involving only states. Actions 
will be defined implicitly as transitions between inferred consecutive states. 
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Now let us now ask the opposite question: can we start with an inference problem and 
transform it into a control problem? Consider the problem of estimating the current 
state of the world given our previous estimate and the current sensory measurement. 
One way to do this is to use a predictor-corrector method: combine the previous 
estimate with a model of one-step dynamics to obtain a prediction of the current state, 
and then correct the prediction so as to make it more compatible with the current 
measurement. The corrected estimate will achieve some trade-off between being close 
to the prediction and agreeing with the measurement. The corresponding control 
formulation is as follows. The entity being controlled (internally) is the state estimate. 
The control signal corresponds to the correction needed to achieve better agreement 
with the measurement. Suppose the control is chosen so as minimize a sum of two 
costs: an energy cost and an accuracy cost. The energy cost is minimal when there is no 
correction. The accuracy cost is minimal when the correction is complete. The control 
which minimizes the sum of these costs will lie somewhere in between the two 
extremes, thus achieving a similar trade-off as the predictor-corrector method. 
 
We now see that, in the spatial domain, inference can be harder than control. This is 
because the estimator "controls" (i.e. corrects) all aspects of the estimated state. In the 
coffee-drinking example, the estimator may deal not only with the arm and the cup but 
also with the picture on the wall, the mountains we can see through the window, and 
many other things that have no relevance to motor actions. Note however that this 
implies a somewhat outdated view of perception in which all aspects of the sensory 
input are processed in parallel on equal footing. In reality perception may be geared 
towards serving the needs of the ongoing behavior – which in our example means 
ignoring the picture and the mountains and focusing on the arm and cup. In the latter 
view, inference and control have similar spatial complexity in terms of what needs to be 
computed (state estimate versus control signal). However the input to this computation 
(sensory data versus task goal) is always higher-dimensional for the sensory system. 
 
The above transformation from estimation to control corresponds to the idea of 
minimum-energy filtering (Mortensen 1968), where estimation is formulated as a 
minimum-energy tracking problem and is solved using optimal control methods. The 
shortcoming of this approach is that it only yields point estimates, while a lot of 
evidence (see below) indicates that the brain computes probability distributions rather 
than point estimates. In the rest of the chapter we will pursue a different approach 
where the estimator computes the full Bayesian posterior. 
 
To summarize the main points in this section, the similarities between control and 
estimation arise when task goals are associated with sensory measurements and control 
signals are associated with corrections to the state estimate. Our discussion was framed 
in the context of optimal control and optimal/Bayesian inference, which was not a 
coincidence. Indeed we will see below that optimality is the source of these similarities. 
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Duality of Bayesian inference and optimal control in isometric tasks 
 
Here we provide a concrete example illustrating the duality between Bayesian inference 
and optimal control. Let u be a vector of muscle activations, t the resulting vector of 
joint torques, and M the matrix of moment arms which maps muscle forces 
(proportional to muscle activations under isometric conditions) to joint torques: t = Mu. 
Isometric means that there is no movement. Since there are more muscles than joints, a 
desired torque t* can be achieved by infinitely many muscle activations u. This is a 
manifestation of motor redundancy. In order to select one out of all possible u the 
motor system needs some selection criterion. Suppose this criterion is to keep the sum 
of squared muscle activations as small as possible. Then u can be found by minimizing 
the cost function: 
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The first term is an accuracy cost which is minimal when the desired torque is exactly 
achieved. The second term is an energy cost which is minimal when all muscle 
activations are zero. The parameter r determines the relative importance of the two. 
Quadratic cost functions are usually scaled by a factor of 1/2 for convenience. We have 
shown (Todorov 2002) that the above cost function as well as more realistic versions of 
it predict the empirical phenomenon of cosine tuning, i.e. the fact that muscle activation 
varies with the cosine of the angle between the mechanical pulling direction of the 
muscle and the direction of end-effector force (Hoffman and Strick 1999). 
 
We now turn to the corresponding inference problem, which involves a Gaussian prior 
over the elements of u with mean 0 and variance 1/r, and a fictitious measurement 
corresponding to goal achievement, namely y = t*. Bayesian inference requires a 
generative model, i.e. a model of how the (noisy) sensory measurement was generated 

given the state. In this case the generative model is y = Mu + εεεε where the elements of εεεε 
are Gaussian with mean 0 and variance 1. Applying Bayes rule (see below) and using 
the formula for a Gaussian, we obtain the posterior probability of u given y: 
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Thus the posterior probability in the inference problem (equation 2) coincides with the 
exponent of the negative cost in the control problem (equation 1), and in particular the 
most probable muscle activations coincide with the optimal muscle activations. 
 
This completes our example of duality in isometric tasks. Although it is a simple 
example which does not involve state variables changing over time, it nevertheless 
illustrates a key idea used extensively later. The idea is that costs and probabilities are 
related by an exponential transformation. This is to be expected: costs add while 
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probabilities multiply, and it is the exponential transformation that turns sums into 
products. The same transformation shows up in other fields as well. In statistical 
mechanics for example, the energy of a given state and the probability of finding the 
system in that state at thermal equilibrium are related by the Gibbs distribution – which 
is the exponent of the negative energy. 
 
We are now ready to develop a general form of duality between optimal control and 
optimal/Bayesian inference over time. To this end we will first review the concepts of 
optimality in sensory and motor processing, and note the similarities and differences 
between the two formalisms. This analysis will then indicate how the control problem 
should be phrased so as to become mathematically equivalent to Bayesian inference. 
 
 
Optimality in sensory and motor processing 
 
While all aspects of neural function have evolved to produce behavior beneficial to the 
organism, the evolutionary pressures on real-time sensory and motor processing may 
have been particularly strong and direct because of the crucial role such processing 
plays in getting food to the mouth, escaping predators and generally keeping the 
organism alive. It is then not surprising that the underlying neural mechanisms perform 
about as well as any information processing system subject to the same constraints 
could perform – in other words, near-optimally. Indeed optimality is becoming the 
theoretical framework of choice of studying both sensory and motor systems (Todorov 
2004, Kording and Wolpert 2006, Doya et al. 2007). 
 
In the sensory domain optimality corresponds to Bayesian inference. In the simplest 
setting it involves three probability distributions over the (relevant) state of world: the 
prior, the likelihood and the posterior. They are related according to Bayes rule: 
 

(3)  ( ) ( ) ( )xpriorxylikelihoodxposterior |∝  

 
The prior summarizes everything we know about the state of the world before 
observing the measurement. The likelihood (which formalizes the generative model) is 
the probability of measurement y being generated when the world is in state x. The 
posterior summarizes everything we know after the measurement is taken into account. 
If there are multiple independent measurements, the right hand side of equation (3) 
contains the product of the corresponding likelihoods. The latter setting is used in 
models of cue integration, where subjects are presented with two (often incompatible) 
sensory cues and asked to estimate some property of the world. Such experiments have 
provided the simplest and perhaps most compelling evidence that perception relies on 
Bayesian inference (e.g. Ernst and Banks 2002). The probability distributions used in 
these studies are typically Gaussians. 
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Unlike the static nature of many cue-integration experiments, sensory processing in the 
real world takes place in time and requires integration of measurements obtained at 
different points in time. This is called recursive estimation or filtering. The basic update 
scheme applied at each point in time has the predictor-corrector form: 
 

(4)  ( ) ( ) ( ) ( )∑∝
prev
x

prevprev xpxxdxylxp ||  

 
Here p(x) is the posterior at the current state, p(xprev) is the posterior at the previous state 
(which we have already computed at the previous time step), l(y|x) is the likelihood 
function and d(x|xprev) is the stochastic one-step dynamics of the world. When 
estimating the state of the body, the dynamics d will also depend on the control signal 
available to the sensory system in the form of an efference copy. The product of d and p, 
which is being summed over, is the joint probability of x and xprev. The sum 
marginalizes out xprev and yields a prediction (or prior) over x. In this way the posterior 
at one point in time is used to compute the prior at the next point in time. The 
multiplication by the likelihood l is the sensory-based correction discussed earlier. 
 
A number of experimental findings support the notion of Bayesian inference over time 
(Wolpert et al. 1995, Kording and Wolpert 2004, Saunders and Knill 2004). These studies 
typically use arm movements, not so much for the purpose of studying the motor 
system but as a continuous readout of perception. Such studies demonstrate that 
subjects take into account multiple sources of information over time (visual and 
proprioceptive, along with internal predictions) and rely on that information to guide 
movements. As in cue integration, the probability distributions assumed here are 
typically Gaussian. When the dynamics are linear and all noise is Gaussian, the 
posterior is also Gaussian and can be computed using the Kalman filter. 
 
There is a graphical representation of Bayesian inference problems (Figure 1a) known 
as a graphical model or a belief network (dynamic belief network when time is 
involved). This representation is very popular in statistics and machine learning (Pearl 
1988). Belief networks help understand the mathematical models intuitively, and will 
also be useful later in clarifying the relationship between estimation and control. To 
avoid confusion keep in mind that unlike neural networks, the nodes in belief networks 
do not correspond to neurons and the arrows do not correspond to synaptic 
connections. Instead the nodes correspond to collections of random variables, whose 
probabilities are presumably represented by populations of neurons. The arrows strictly 
speaking encode conditional probabilities, but in reality they often correspond to the 
causal relations in the world, as illustrated in Figure 1a. We only show part of the 
network containing the states of the world at two consecutive points in time as well as 
the corresponding sensory measurements/inputs. Filled gray circles denote variables 
whose values are observed and which therefore contribute a likelihood function. Empty 
circles denote variables whose values are to be inferred. The forward arrows encode the 
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stochastic dynamics of the world, i.e. the one-step transition probability d. The 
downward arrows encode how sensory measurements are generated as a function of 
world states. This generative model may incorporate a model of optics in vision or a 
model of acoustics in audition, plus a model of sensory transduction in the 
corresponding modality. One can think of perception as a computational process which 
inverts the generative model in a probabilistic sense (this idea goes back to Helmholtz). 
 
Optimality has also been applied in motor control, perhaps even more extensively than 
in perception. This may be because, apart from its general appeal as an organizing 
principle, optimality appears to be the right way to resolve redundancy. There is a 
wealth of experimental data (for reviews see Todorov 2004, Kording and Wolpert 2006) 
suggesting that the motor system generates actions that maximize task performance or 
utility. Optimal control models have accounted in parsimonious ways for numerous 
features of motor behavior on the levels of kinematics, dynamics and muscle activity. 
There are two general approaches: open-loop control and closed-loop control. Open-
loop control pre-computes the entire sequence of motor commands from now until the 
goal is achieved, while closed-loop control (or feedback control) only computes the 
current motor command given the current state estimate, and then uses information 
about the next state to compute the next command. Since movements are under 
continuous sensory guidance, the latter type of model corresponds more closely to what 
the brain does. Although optimal feedback controllers are harder to construct, we now 
have efficient algorithms and fast computers that enable us to explore such models. 
 
Here is how optimal feedback control works in a nutshell. Define an instantaneous cost 
which accumulates over time and yields a cumulative cost. The instantaneous cost is 
usually a sum of a control cost r(u) which encourages energetic efficiency, and a state 
cost q(x) which encourages accuracy, or more generally, getting to desirable states and 
avoiding undesirable states. Also define the one-step stochastic dynamics du(xnext|x) 
which is similar to the one-step transition probability in Bayesian inference except that 
it now depends on the control u explicitly. The objective is to find an optimal control 
law, i.e. a mapping from states to controls which minimizes the expected cumulative 
cost. This computation is facilitated by the optimal cost-to-go function v(x), defined as 
the cost expected to accumulate if the plant is initialized at state x and is controlled 
optimally thereafter. The optimal cost-to-go function plays a key role because it 
summarizes all relevant information about the future and allows us to compute the 
optimal control at the present time using greedy optimization without look-ahead. This 
function is the unique solution to the Bellman equation: 
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The control u which achieves the minimum is the optimal control at the current state x. 
This equation is quite intuitive: it says that the optimal cost-to-go can be broken down 
into the instantaneous cost incurred at the current state when applying the optimal 
control, plus the optimal cost-to-go for the movement originating at the next state. The 
expectation (sum over xnext) is needed because the dynamics are stochastic and the next 
state is known only in a probabilistic sense. Equation (5) can always be solved 
numerically using dynamic programming, which involves computing the minimum 
over u and assigning it to v(x) for each x and each time step. For large problems 
however this computation is often intractable. 
 
One special case where equation (5) can be solved efficiently is the case of linear 
dynamics, Gaussian noise and quadratic costs. In such problems (known is LQG) the 
optimal cost-to-go is quadratic and can be computed with a method very similar to the 
Kalman filter. Note that a Gaussian is the exponent of a quadratic function, the product 
of two Gaussians is the exponent of the sum of the corresponding quadratics, and a sum 
of quadratics is again a quadratic (as illustrated in the isometric task example). So both 
the Kalman filter and the LQG optimal controller are based on manipulating quadratics; 
indeed the underlying equations are identical. This duality was discovered by Kalman 
(1960) and was the first indication that optimal estimation and optimal control are 
closely related. We recently showed (Todorov 2008) that Kalman's duality is special to 
the LQG setting and does not generalize. However there exists another form of duality 
that does generalize. It was developed by Mitter and Newton (2003) in continuous time 
and Todorov (2006, 2008) in discrete time. The two developments are technically quite 
different and yet yield related results. Our presentation in the next section will use the 
discrete-time version which is more intuitive and also turns out to be more general. The 
continuous-time version can be obtained as a special case, by assuming Gaussian noise 
and taking a certain limit. 
 
 
General duality of Bayesian inference and optimal control 
 
Comparing equations (4) and (5) we can already see a similarity between optimal 
control and Bayesian inference. The state cost q and the likelihood l are related in the 
sense that they both inject new information about x in each step of the recursive process. 
The optimal cost-to-go v and the posterior p are related in the sense that they both 
accumulate information about x over time. The one-step dynamics d are present in both 
control and estimation. One equation involves sums while the other involves products, 
but sums can be turned into products by the exponential transformation. Yet we also 
see a difference: while equation (4) specifies the posterior p directly via an explicit 
formula, equation (5) specifies the optimal cost-to-go v indirectly as the solution to an 
unsolved optimization problem. Neither the control cost r(u) nor the dependence of du 
on u have analogs in (4), suggesting that whether or not the optimal control problem is 
dual to a Bayesian inference problem will depend on how we define r(u) and du. 
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In order to establish a general duality, we will define the control signal as a probability 
distribution over possible next states. This is unusual but in retrospect natural. What 
controls do is affect the plant dynamics. So we can characterize them directly in terms of 
how they affect the plant dynamics. For a stochastic plant this characterization takes the 
form of a probability distribution u(xnext). Thus the one-step dynamics are simply: 
 

(6)  ( ) ( )nextnextu xuxxd =|  

 
According to this definition the controller has the power to impose on the plant 
whatever dynamics it wishes. We will restrict this power somewhat, by defining the 
passive dynamics d(xnext|x) in the same way as in the inference problem, and allowing u 
to be non-zero only if d is non-zero. The passive dynamics capture the effects of gravity, 
interaction forces and motor noise. The above restriction means that the control signals 
can cause only those state transitions which could have occurred by accident, i.e. the 
noise and the controls are restricted to act in the same subspace. For musculo-skeletal 
plants where the controls correspond to muscle activations, the noise model should be 
restricted to muscle space and should not be allowed to act directly on, say, arm 
position (which would be physically unrealistic anyway). The above restriction also 
means that we cannot model external perturbations acting on objects of interest. Such 
perturbations are often used experimentally to probe the visual feedback control laws, 
however they are uncommon in the real world. 
 
Having a model of passive or uncontrolled dynamics allows us to define the control 
cost in a natural way. Intuitively such a cost should measure how large the control 
signals are. Larger control signals have larger effects on the plant dynamics, i.e. they 
push the plant further away from its passive dynamics. This suggests a control cost 
which measures the difference between the probability distributions u(xnext) and 
d(xnext|x). Differences between probability distributions are most commonly measured 
using Kullback-Liebler (KL) divergence, thus the control cost will be defined as: 
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Definitions (6) and (7) yield a family of control problems which still satisfy the Bellman 
equation (5) but have additional structure that can be exploited. A control problem in 
our family is defined by specifying the state cost q(x) and passive dynamics d(xnext|x). 
Once q and d are given, we can substitute (6) and (7) into (5) and observe that the 
minimization with respect to u can be performed analytically, due to properties of the 
KL divergence. We omit the derivation and summarize the results. The results are 
expressed most conveniently in terms of a desirability function defined as: 
 

(8)  ( ) ( )( )xvxz −= exp  
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When the optimal cost-to-go v(x) is small the function z(x) is large, thus the term 
"desirability". It also rhymes with probability, which is appropriate because z will turn 
out to behave like a probability distribution. It can now be shown that the optimal 
control (i.e. the optimal next-state probability distribution) at state x is: 
 

(9)  ( ) ( ) ( )nextnextnext xzxxdxu |* ∝  

 
This form of control is illustrated in Figure 2. Given the current state x, we multiply the 
one-step passive dynamics d(xnext|x) by the desirability z(xnext), normalize to obtain a 
proper probability distribution u*(xnext), and sample the next state from it. Note that 
multiplication by the desirability z has the effect of shifting the passive dynamics d 
towards more desirable states. 
 
We still need to compute z. This is done by substituting the optimal control (9) into the 
Bellman equation (5), dropping the min operator, and exponentiating so as to obtain an 
update for z rather than v. The resulting update is: 
 

(10)  ( ) ( )( ) ( ) ( )∑−=
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x
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The similarity with Bayesian inference (equation 4) is now obvious: the desirability z 
corresponds to the posterior probability p, the exponentiated state cost exp(–q) 
corresponds to the likelihood l, and the one-step transition probability d plays the same 
role in both cases. The only difference is that z is updated backward in time while p is 
updated forward in time. This is because control is about the future while inference is 
normally about the past. However if we construct the inference problem as outlined 
earlier, i.e. provide fictive sensory measurements in the future, then Bayesian inference 
and optimal control become mathematically equivalent. 
 
Optimal control can then be represented with the belief network shown in Figure 1b. 
This network is drawn upside-down so as to highlight an important difference between 
inference and control. In inference the known quantities (sensory measurements) are 
near the periphery, while in control the known quantities (task goals) are deep inside 
the CNS. Conversely, the outputs of the sensory system are deep inside the CNS while 
the outputs of the motor system are close to the periphery. Both diagrams are oriented 
so that the CNS is up and the periphery is down. One network involves "world states" 
and the other "plant states", however these two notions of state may actually be similar. 
This is because the motor system has to represent not only the state of the body (plant) 
but also all relevant aspects of the state of the environment, while the sensory system 
may not represent all aspects of the world but instead focus on those relevant to the 
ongoing behavior. 
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Thus far estimation and control were discussed separately, while in the brain they are 
performed simultaneously. Can we think of both sensory and motor processing 
 as being part of the same computation? This can be done by combining the two belief 
networks in Figure 1 and performing Bayesian inference on the composite network. The 
sensory measurements in the past would be real while those in the future would be 
fictive. The probability over past states would encode what we believe has already 
happened, while the probability over future states would encode what we believe will 
happen if we act optimally. The control problem was set up in such a way that having a 
prediction about the future is equivalent to specifying a control signal which turns this 
prediction into reality. Note that such a unified computational scheme would be only 
approximately optimal, because the controller here was designed with the assumption 
that the current state is known with certainty. This form of approximation tends to be 
quite accurate and is often used in control engineering (it is known as certainty-
equivalence control). The approximation fails when the uncertainty about the state 
affects the optimal actions – as in tasks which involve trade-offs between exploration 
and goal achievement. In that case the state in the control problem can be augmented 
with the uncertainty about the state in the inference problem (Simpkins et al. 2008). 
 
To summarize this section, we described a family of optimal control problems that are 
mathematically equivalent (i.e. dual) to Bayesian inference. The state costs and the 
passive dynamics in our formulation are completely general and can be defined in 
whatever way is necessary. The only constraints are that the control signals must act in 
the same subspace as the passive dynamics, and the control cost must equal the KL 
divergence between the controlled and passive dynamics. In the continuous-time limit 
this control cost reduces to the familiar quadratic energy cost. Control problems which 
do not satisfy the above constraints do not seem to have exact duals, yet they can often 
be approximated with problems which satisfy the constraints (Todorov 2006). 
 
 
Intermediate representations: sensory features and motor synergies 
 
On the system level, sensory processing performs a transformation from sensory inputs 
to inferred states, while motor processing performs a transformation from task goals to 
motor commands. However neither transformation is performed monolithically by a 
single brain area. Instead there are multiple brain areas involved, and most of them use 
neural representations which correspond to neither the input nor the output of the 
overall computation but to something in between. Similarly, if we analyze a typical 
computer program, we will notice that most of the variables declared in it are internal 
variables representing intermediate results. How do such intermediate representations 
relate to the overall computation? One way to address (or rather, avoid) this question is 
the Computer Science way, adapted to Neuroscience by Marr (1982). There one makes a 
strict distinction between the problem being solved, the algorithm for solving it, and the 
implementation of the algorithm in software or hardware or wetware. While this 
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approach has many merits, a significant drawback is that computational-level analyses 
tell us little about the underlying neural representations and the interactions among 
them. In this section we outline a somewhat different approach which enables us to 
relate intermediate representations to the overall computation more directly. We will 
first develop the idea for sensory systems and then see how it applies to motor systems. 
 
Intermediate sensory representations are often called "features" and thought to be 
features of the "stimulus". But what is a stimulus? Is it the sensory input, or is it the 
relevant aspect of the world reflected in the input? If features are defined as functions of 
the sensory input, then they do not belong on the computational level and we are back 
to Marr's strict separation. Suppose instead that features are statements about the state 
of the world. For example, suppose the activity of an "edge detector" in primary visual 
cortex is not a statement about the presence of an edge in the retinal image, but a 
statement about the state of the world which caused the retinal image to contain an 
edge. In this view features are part of the generative model (Figure 3a). The sensory 
input is modeled as a (probabilistic) function of the features instead of the other way 
around. Bayesian inference can be applied to such a hierarchical generative model 
without modification. One prediction is that at every intermediate level of sensory 
processing there will be both bottom-up and top-down effects. This is because the 
probability of any variable in a belief network generally depends on all other variables. 
The beauty of this approach is that different levels of the generative model can be 
instantiated in different brain areas, and as long as the communication within and 
between areas corresponds to Bayesian inference, the entire distributed system will 
perform a single computation, using perhaps a single algorithm (see below) which 
operates in parallel on multiple representations. 
 
Let us now apply the same idea to the motor system. The closest analog of a sensory 
feature in motor control is the notion of a motor synergy. It corresponds to some 
intermediate representation which is more abstract than the full musculo-skeletal state 
but more detailed than the task goal. By analogy to the sensory system, we propose that 
synergies are part of a hierarchical generative model – which in the case of the motor 
system is a (probabilistic) mapping from plant states to task goals. Synergies are often 
thought to be related to motor commands rather than plant states, however recall that 
in our formulation motor commands are implicit, and can be recovered from the 
probability of the future states under the optimal controls. As illustrated in Figure 3b, 
synergies can be used for both spatial and temporal abstraction. For example, a synergy 
might be a statement about the shape of the fingertip trajectory over a short period of 
time. The fact that the synergy corresponds to a period of time and not a single point in 
time yields temporal abstraction. The fact that the synergy corresponds to only some 
aspects of the state of the plant and not the entire state (e.g. it does not specify all the 
joint angles but only the fingertip position) yields spatial abstraction. Different forms of 
spatial and temporal abstraction have played an important role in designing automatic 
controllers for complex tasks, suggesting that the brain may also rely on such tools. 
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Thus intermediate representations in both sensory and motor systems can be thought of 
as being part of hierarchical generative models. One might ask, however, what is the 
point of having such representations when generative models can be built without 
them? For example, given the full state of the arm we can directly compute where the 
fingertips are, without the help of motor synergies. Similarly, we can directly compute 
the retinal image resulting from a given configuration of 3D objects and light sources, 
without relying on sensory features (this is what computer graphics does). Indeed 
intermediate representations are not only unnecessary to build generative models but 
may even complicate the construction of such models. However, the goal of both the 
sensory and motor systems is not so much to build generative models but rather to 
invert them. The inversion is the harder problem, and is also the problem that has to be 
solved in real time. Intermediate representations are likely to facilitate this inversion – 
by providing various forms of abstraction and enabling the inference algorithm to 
construct the final answer in manageable pieces. Thus intermediate representations may 
exist not for the sake of representation but because they facilitate the computation. 
 
One might also ask, where do intermediate representations come from? In sensory 
systems, it has been shown that unsupervised learning applied to collections of natural 
sensory inputs can recover the features observed experimentally. The most notable 
examples come from the visual system (Olshausen and Field 1996) although the 
approach has also been applied successfully to the auditory system (Lewicki 2002). 
Unsupervised learning looks for statistical regularities in high-dimensional data. 
Traditional unsupervised learning methods like principal components analysis (PCA) 
reduce the dimensionality of the data. In contrast, the forms of unsupervised learning 
thought to be used by sensory systems tend to increase dimensionality, i.e. they form 
over-complete (and sparse) representations. This may seem counterproductive, 
however it resonates well with recent computational approaches where increasing 
dimensionality simplifies computation. Support vector machines and kernel methods in 
general are based on this idea (Scholkopf and Smola 2001). Liquid state machines in 
Neuroscience have the same flavor (Maass et al. 2002). 
 
Unsupervised learning has also been applied in motor control to extract candidate 
synergies (D'Avella et al. 2003, Santello et al. 1998). However the situation here is 
qualitatively different. While in sensory systems unsupervised learning is applied to 
sensory data available to the brain during learning/development, in motor systems it is 
applied to movement data available to the brain only after it has mastered the motor 
task. If we agree that appropriate synergies must exist before successful movements can 
be generated in a given task, then the brain cannot learn those synergies from successful 
movements. In other words, the unsupervised learning methods used by motor control 
researchers are not a feasible model of learning by the motor system. A feasible model 
should learn based on information available at the time of learning. The one thing that 
is always available is the input – which in the case of the motor system corresponds to 
the task goals. Thus the analog of learning features from sensory inputs would be 
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learning synergies from task goals. Unfortunately the task goals are not directly 
accessible to an external observer, so the application of unsupervised learning as 
outlined here is not easy, yet we suspect it is worth pursuing. 
 
Another insight into motor synergies that comes from the analogy with sensory systems 
is the number of synergies. It is widely believed that motor synergies serve the purpose 
of dimensionality reduction; indeed they are usually defined as the outputs of 
dimensionality reduction algorithms. However, as discussed earlier, dimensionality 
expansion rather than reduction may be more beneficial in terms of simplifying 
computation. Furthermore, the number of different neural activation patterns in, say, 
primary motor cortex, greatly exceeds the number of musculo-skeletal degrees of 
freedom. If we agree to think of neural activity in motor areas as representing synergies, 
in the same way we think of neural activity in sensory areas as representing features, 
the dimensionality-expansion point of view becomes unavoidable. 
 
This view represents a significant departure from the established thinking about motor 
synergies, and may at first seem incompatible with the evidence that large amounts of 
variance (in movement kinematics or EMGs or isometric forces) can be explained by 
small numbers of components. How can behavioral evidence for dimensionality 
reduction be reconciled with intermediate representations performing dimensionality 
expansion? One answer comes from our work on optimal control (Todorov and Jordan 
2002, Todorov 2004), where we showed that an optimally-controlled redundant system 
will exhibit signs of dimensionality reduction regardless of how the controller is 
implemented. If that is the case, and the motor system is good at approximating optimal 
controllers, then a lot of the dimensionality-reduction results currently taken as 
evidence for synergies may instead be indirect evidence for optimality. The over-
complete intermediate representations which we propose to call synergies may be the 
mechanism that enables the motor system to perform near-optimally. 
 
 
Algorithms for learning and online computation 
 
Bayesian inference and optimal control are of interest in many fields (e.g. Statistics, 
Computer Science, Signal Processing, Control Engineering, Economics). Consequently 
many algorithms have been developed. While none of them can yet compete with 
biological sensory and motor systems on complex real-world problems, this repository 
of algorithmic knowledge is an important source of insights into what the brain might 
be doing. We refer the reader to (Doya et al. 2007) for an extended discussion. Here we 
only make a few points relevant to this chapter. 
 
One class of Bayesian inference algorithms, known as belief propagation (Pearl 1988), 
are reminiscent of computation in recurrent neural networks except that the messages 
being exchanged are probability distributions (presumably encoded by populations of 
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neurons). The analog in optimal control is dynamic programming – which for the 
family of control problems described above is reduced to belief propagation. An 
important corollary of the estimation-control duality is that sensory population codes 
thought to represent probability distributions (Doya et al. 2007) can be equally useful in 
motor control. Both belief propagation and dynamic programming are global methods 
in the sense that they aim to compute functions over the entire state space. For large 
problems this is unlikely to be doable in real time. In the control domain this point is 
well appreciated; indeed dynamic programming is normally applied offline so as to 
pre-compute/learn the optimal control law. The latter is then used online to generate 
motor commands as a function of plant states and goal parameters (e.g. target 
positions). The equivalent in Bayesian inference would be to learn a direct mapping 
from sensory inputs to state estimates – which is not how people usually think about 
inference. There may be several reasons for this: (i) the input to the sensory system is so 
high dimensional that learning such a mapping is infeasible; (ii) inference is an easier 
problem than control (recall our discussion of redundancy) and so the computation is 
easier to perform online; (iii) the brain actually learns direct mappings from sensory 
inputs to estimated states, but this is not yet reflected in most Bayesian inference 
algorithms. One exception here is the Helmholtz machine (Dayan et al. 1995), which is a 
belief network augmented with a mechanism for learning the direct mapping discussed 
above (i.e. the inverse of the generative model). 
 
Regardless of whether and how much of the transformation is learned, it is clear that a 
lot of processing takes place in real time in both the sensory and motor systems. There is 
a simple way to combine the advantages of learning and online computation: learn a 
global but approximate transformation, use it online for initialization, and then apply 
an online algorithm to refine the solution locally around the current state. Locally, 
probabilities and costs can be approximated by simplified models (e.g. Gaussians and 
quadratics) which afford faster computation. Such local approximation methods are 
available in both estimation (the extended Kalman filter) and control (iterative LQG or 
differential dynamic programming). In the case of control, local improvement requires 
unfolding the time axis up to a certain horizon. This is known as receding-horizon 
control. For our family of control problems it is illustrated with the belief network in 
Figure 3b. If the motor system relies on such methods, we should expect to find 
neurons coding the state of the plant at multiple points in time in the future. Indeed it 
has often been noted (e.g. Kalaska et al. 1998) that the latency between neural firing and 
motor behavior has a broad distribution, and on average is substantially longer than 
what one would expect from conduction latencies alone. Such data can tell us how 
much unfolding is taking place in the motor system. The answer is on the order of 200 
msec for reaching movements, although more complex tasks (for which we do not have 
data) may require unfolding over longer time horizons. 
 
Bayesian inference problems can also be solved using sampling methods. An example is 
Gibbs sampling, which works by choosing a node to be updated, re-sampling its value 
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from the conditional probability given the current values of its neighbors, choosing 
another node etc. After a "burn-in" period, the samples generated in this way match the 
correct Bayesian posterior. The estimation-control duality makes it possible to apply 
sampling algorithms to optimal control problems as well. Sampling algorithms have not 
been seriously considered as models of brain function, but perhaps they should be, for 
several reasons. First, these are the only algorithms that are actually guaranteed to solve 
the problem (even though it may take a long time). All other algorithms when applied 
to continuous state variables require function approximation, and as a result may never 
converge or converge to the wrong answer. Second, sampling is inherently parallel. 
Other algorithms can be parallelized but not to the same extent. This is an important 
consideration given the staggering number of neurons in the brain. Third, sampling is 
inherently stochastic. Implementing it in a deterministic computer requires a pseudo-
random number generator. The brain has internal sources of noise (e.g. failures of 
synaptic transmission) which could be used as random number generators – implying 
that neural noise may be a feature rather than a nuisance.  
 
In summary, a range of algorithms for Bayesian inference and optimal control have 
been developed in multiple fields. Furthermore, the estimation-control duality makes it 
possible to take estimation algorithms and apply them to control problems and vice 
versa. Such algorithms are very relevant to Neuroscience because they solve the same 
problems that the sensory and motor systems appear to be solving. Which of these 
algorithms resemble the ones used by the brain is not yet clear (but see Doya et al. 
2007). Algorithmic issues have generally received limited attention in Neuroscience, 
perhaps because they are hard to address experimentally. This is in contrast with 
system-level computations which can be addressed using behavioral data, and neural 
representations which can be addressed using single neuron data. Indeed a lot is 
already known about both system-level computations and neural representations, in 
both the sensory and motor systems. This knowledge imposes strong constraints, 
which, in conjunction with algorithmic insights from multiple fields, may soon enable 
us to go after the brain's algorithms in a systematic way. 
 
 
Acknowledgements 
 
This work was supported by the US National Science Foundation. 
 



17 

 

References 

Attias, H. (2003)  Planning by probabilistic inference.  In International Conference on 
Artificial Intelligence and Statistics. 
 
Bernstein, N. (1967)  The Coordination and Regulation of Movements.  Pergamon, Oxford. 
 
Dayan, P., Hinton, G., Neal, R. and Zemel, R. (1995)  The Helmholtz Machine.  Neural 
Computation, 7, 1022-1037. 
 
D’Avella, A., Saltiel, P. and Bizzi, E. (2003)  Combinations of muscle synergies in the 
construction of a natural motor behavior.  Nature Neuroscience 6: 300–308. 
 
Doya, K., Ishii, S., Pouget, A. and Rao, R. (2007)  Bayesian Brain: Probabilistic Approaches 
to Neural Coding.  MIT Press, Cambridge MA. 
 
Ernst, M. and Banks, M. (2002)  Humans integrate visual and haptic information in a 
statistically optimal fashion.  Nature 415: 429-433. 
 
Hoffman, D. and Strick, P. (1999)  Step-tracking movements of the wrist. IV. Muscle 
activity associated with movements in different directions.  J Neurophysiol. 81: 319–333. 
 
Kalman, R. (1960)  A new approach to linear filtering and prediction problems.  ASME 
Transactions J Basic Engineering 82:35–45. 
 
Kalaska, J., Sergio, L. and Cisek, P. (1998)  Cortical control of whole-arm motor tasks.  In 
Sensory Guidance of Movement 176–201, Glickstein, M. ed., Wiley, Chichester, UK. 
 
Kording, K. and Wolpert, D. (2004)  Bayesian integration in sensorimotor learning.  
Nature 427: 244–247. 
 
Kording, K. and Wolpert, D. (2006)  Bayesian decision theory in sensorimotor control.  
Trends in Cognitive Sciences 10: 320-326. 
 
Lewicki, M. (2002)  Efficient coding of natural sounds.  Nature Neuroscience 5: 356–363. 
 
Maass, W., Natschlager, T. and Markram, H. (2002)  Real-time computing without 
stable states: a new framework for neural computation based on perturbations.  Neural 
Computation 14: 2531-60. 
 
Marr, D. (1982)  Vision.  Freeman, San Francisco. 
 



18 

 

Mitter, S. and Newton, N. (2003)  A variational approach to nonlinear estimation.  SIAM 
J Control and Optimization 42: 1813-1833. 
 
Mortensen, R. (1968)  Maximum-likelihood recursive nonlinear filtering.  J Optimization 
Theory and Applications 2: 386–394. 
 
Olshausen, B. and Field, D. (1996)  Emergence of simple-cell receptive field properties 
by learning a sparse code for natural images.  Nature 381: 607–609. 
 
Pearl, J. (1988)  Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.  
Morgan Kaufmann, San Francisco. 
 
Santello, M., Flanders, M. and Soechting, J. (1998)  Postural hand synergies for tool use.  
J Neuroscience 18: 10105-10115. 
 
Saunders, J. and Knill, D. (2004)  Visual feedback control of hand movements.  J 
Neuroscience 24: 3223-3234. 
 
Scholkopf, B. and Smola, A. (2001)  Learning with Kernels: Support Vector Machines, 
Regularization, Optimization, and Beyond.  MIT Press, Cambridge MA. 
 
Simpkins, A., de Callafon, R. and Todorov, E. (2008)  Optimal trade-off between 
exploration and exploitation.  In American Control Conference. 
 
Todorov, E. (2002)  Cosine tuning minimizes motor errors.  Neural Computation 14: 1233–
1260. 
 
Todorov, E. (2004)  Optimality principles in sensorimotor control.  Nature Neuroscience 7: 
907-915. 
 
Todorov, E. (2006)  Linearly-solvable Markov decision problems.  In Advances in Neural 
Information Processing Systems. 
 
Todorov, E. (2008)  General duality between optimal control and estimation.  In IEEE 
Conference on Decision and Control. 
 
Todorov, E. and Jordan, M. (2002)  Optimal feedback control as a theory of motor 
coordination.  Nature Neuroscience 5: 1226–1235. 
 
Wolpert, D., Gharahmani, Z. and Jordan, M. (1995)  An internal model for sensorimotor 
integration.  Science 269: 1880–1882. 
 
 



sensory
inputs

world
states

dynamics
model

generative
model

sensory
inputs

world
states

t-1 t

plant
states

task
goals

dynamics
model

forward
kinematics

t t+1

plant
states

task
goals

... ...

(a) (b)

Figure 1 - belief networks for Bayesian inference and optimal control.

(a) - Shaded nodes correspond to observed quantities while open nodes correspond
to random variables whose (marginal) probabilities are to be computed. The dynamics
model is the probability distribution of the next state given the current state. The
generative model is the probability distribution of the sensory input given the state.

(b) - The optimal control problems in this chapter are mathematically equivalent to
Bayesian inference problems, thus they can be represented with belief networks.
The forward kinematics play the role of a generative model and indicate whether the
goal is achieved by the current state of the plant. The actual generative model specifies
a probability distribution proportional to exp(-q(x)) where q(x) is the state cost.
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Figure 2 - optimal control with probability distributions.

The passive dynamics d(xnext|x) is the probability distribution of the next state when
the system is not controlled. The control u(xnext) is the probability distribution of the
next state when the system is controlled. The optimal control u*(xnext) is proportional to
the product of the passive dynamics d(xnext|x) and the desirability function z(xnext).
Multiplying a narrow probability distribution by a smooth function has the effect of
shifting the distribution along the gradient of that function. Thus the optimal control
is similar in shape to the passive dynamics but is shifted towards more desirable states.
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Figure 3 - belief networks for hierarchical Bayesian inference and optimal control.

(a) - By defining intermediate sensory representations (features) we can construct
hierarchical generative models. The features become part of the model of how sensory
inputs depend on states of the world. They are not needed to build generative models,
but presumably facilitate the inversion of such models using Bayesian inference.

(b) - By defining intermediate motor representations (synergies) that depend on only
some aspects of the state but over extended periods of time, we can achieve both spatial
and temporal abstraction. This is done using cost functions of the form q(h(xt ... xt+d))
where h are the synergy states and d is the temporal abstraction horizon.
The synergies become part of the model of how goal achievement depends on the
plant state. Control is about achieving goals that are removed in time, which requires
unfolding the time axis and representing multiple time steps. Limiting this unfolding
to a fixed number of steps into the future is called receding horizon control. At the
horizon t+h we need some approximation of the desirability function z(xt+h).




