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Abstract

A fundamental capacity of the perceptual systems and the brain in general is to deal with the novel and the unexpected. In vision, we can
effortlessly recognize a familiar object under novel viewing conditions, or recognize a new object as a member of a familiar class, such as a
house, a face, or a car. This ability to generalize and deal efficiently with novel stimuli has long been considered a challenging example of
brain-like computation that proved extremely difficult to replicate in artificial systems. In this paper we present an approach to generalization
and invariant recognition. We focus our discussion on the problem of invariance to position in the visual field, but also sketch how similar
principles could apply to other domains.
The approach is based on the use of a large repertoire of partial generalizations that are built upon past experience. In the case of shift

invariance, visual patterns are described as the conjunction of multiple overlapping image fragments. The invariance to the more primitive
fragments is built into the system by past experience. Shift invariance of complex shapes is obtained from the invariance of their constituent
fragments. We study by simulations aspects of this shift invariance method and then consider its extensions to invariant perception and
classification by brain-like structures. ! 1999 Elsevier Science Ltd. All rights reserved.
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1. The problem of shift invariance

Our visual system can effortlessly recognize familiar
objects despite large changes in their retinal images. The
image of a given object changes due to variations in the
viewing conditions, for example, changes in the viewing
direction, illumination, position and distance. The visual
system can somehow compensate for these changes and
treat different images as representing an unchanging object.
Many of the images we see are novel either because they
depict objects not seen before, or because familiar objects
are seen under a new combination of viewing conditions.
Yet, the visual system can use its past experience with the
same or similar objects to correctly classify and recognize
the viewed objects.
One of the image transformations that the visual system

can compensate for is a change in the retinal position of the
viewed object. This is a relatively simple transformation,
and yet there are no satisfactory and biologically plausible
models of how shift invariance is obtained in the brain. In
this section we review briefly the main approaches to shift

invariance and their shortcomings, together with the main
relevant psychophysical and physiological findings.

1.1. Main approaches to the modeling of shift invariance

An image that falls at different retinal locations is initially
registered and analyzed, at the levels of the retina, LGN, and
primary visual cortex, by different sets of neuronal mechan-
isms. To achieve shift-invariant perception, these different
initial representations presumably reach a common unified
representation at some higher levels of the visual system.
How is this obtained by the circuitry of the brain? Is this an
innate or an acquired capacity? If it has an acquired compo-
nent, must it be learned for each object individually, or can
it be generalized from some objects to others?
Perhaps the simplest (but highly redundant) approach to

obtaining shift invariance is by what may be called “full
replication”. According to this approach, a specialized
neuronal mechanism is dedicated to the detection of a
given shape, such as the letter “A” of a particular shape,
at a given position in the visual field. To recognize the same
shape at different locations, multiple replications of the
same detection mechanism are used. The detectors at the
different locations can then converge upon higher order
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cortical units, which will exhibit shape-specific, but posi-
tion-invariant response.
Some approaches used replication of shape-detecting

mechanisms but at different levels of complexity (Földiák,
1991; Fukushima, 1980). Invariance is achieved by first
detecting simple image features, such as line segments,
and then combining them to create increasingly complex
feature detectors. For example, a T-shape can be detected
by combining horizontal and vertical line detectors within a
small neighborhood. A problem with this scheme is that the
spatial relation between the features is lost in the combina-
tion. In the scheme we develop in Section 2 shift invariance
for complex shapes is also based on the shift invariance of
simpler components but in a manner that avoids this and a
number of other shortcomings.
At the opposite extreme to this highly redundant approach

is the normalized representation approach. The general idea
behind this approach is to transform the input image into a
normalized central representation, common to all retinal
positions, and let the pattern analyzing mechanisms operate
upon this common representation. This general approach is
frequently used in artificial computer vision systems. A
biological model using a common normalized representa-
tion was proposed by Olshausen, Anderson, and Van Essen
(1993, 1995) based on attention-dependent mechanisms.
The model is able to handle position and scale invariance
by shifting and scaling image regions between input and
output arrays. A region in the image is selected by an atten-
tional window, and the sub-image inside this window is
mapped onto an object-centered reference frame, regardless
of its shape and size. This is obtained by a “dynamic rout-
ing” circuit that controls the connection strengths between
input and output layers. A shortcoming of this model is that
the scheme requires a complex network with unrealistic
switching mechanism of individual synapses. A second
shortcoming is that the model does not generalize naturally
to other invariances such as rotations in space. A third
problem of the normalized representation approach in
general is that it implies shift invariance for arbitrary
novel shapes. As we shall see in the following section,
this property is inconsistent with psychophysical results
(Dill & Fahle, 1997; Nazir & O’Regan, 1990) that reveal
significant limitations of shift invariance for novel, complex
shapes.
Other models can often be viewed as lying at intermediate

points between full replication and a single normalized
representation. For example, back-propagation networks
were trained to obtain shift invariance in particular applica-
tion domains such as character recognition (Le Cun et al.,
1989). The hidden layers is these networks develop inter-
mediate representations that are more compact than full
replication, but do not produce a single normalized repre-
sentation of the input. It turned out that shift invariance is
difficult to obtain in such networks. Special mechanisms
such as weight-sharing that is biologically implausible
were sometimes incorporated to endow the networks with

a higher degree of shift invariance. In conclusion, none of
the mechanisms proposed so far can obtain shift invariance
in a computationally efficient and biologically plausible
manner.

1.2. Empirical evidence

In this section we review briefly the main empirical
evidence, both psychophysical and physiological, related
to models of shift invariance. We also include a brief
comparison with evidence regarding size invariance in
object recognition. The basic characteristics of these find-
ings will be used in the model described in the subsequent
section.

1.2.1. Psychophysical studies
Psychophysical studies have shown both the power and

the limitations of shift invariance in the human visual
system. A number of studies have shown that under favor-
able conditions considerable position invariance can be
obtained. For example, Biederman and Cooper (1991)
obtained evidence for a high degree of position invariance
for line drawings of familiar objects. The evidence was
based on priming experiments, showing that the amount
of priming was unaffected by translation of five degrees in
the visual field. Bricolo and Bülthoff (1992) also obtained
evidence that humans can recognize images of shaded three-
dimensional objects at new retinal locations.
With respect to changes in size, priming experiments by

Fiser and Biederman (1995) also showed that the decrease
in reaction time following priming was independent of
whether the primed picture of a familiar object was
presented at the same size as the original picture or at a
different size. However, when testing the effects of size on
recognition using a same/different task, a systematic size
dependence for reaction times and error rates was observed.
A similar increase of recognition latencies with the discre-
pancy in size between learned and viewed shapes was also
found by Bricolo and Bülthoff (1993), and by Jolicoeur
(1987).
Experiments that measured shift invariance more

directly, especially using complex and novel stimuli,
revealed substantial limitations on the degree of shift invar-
iance exhibited by the visual system. For example, in
experiments by Nazir and O’Regan (1990), subjects were
trained on the discrimination of novel patterns at one loca-
tion, and then tested at a nearby (0.49–2.4") location. Signif-
icant decrease in performance was found at the new
location. Similar results were obtained recently by Dill
and Fahle (1997) and Dill and Edelman (1997). Using some-
what different methodology and patterns, they also found
that extensive training to discriminate between similar novel
patterns at one location did not improve performance when
tested at a new location. It was also found that for isolated
figures the location to which the subject attended did not
affect the performance in their shift-invariance tests, which
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is significant for some theories that rely on directing atten-
tion to achieve shift-invariant recognition (Olshausen et al.,
1993; Salinas & Abbot, 1997).
In conclusion, it appears that considerable shift invar-

iance can be obtained with highly familiar shapes and
when fine discrimination between similar shapes is not
required. For novel shapes, when fine discrimination is
required, shift invariance in considerably reduced. The
experiments suggest that shift invariance is not automatic
and universal. It requires training with specific patterns that
must be presented at multiple locations. It also appears that
there is an effect of generalization across patterns, namely,
training for a set of patterns can improve the performance
for similar patterns. In the experiments of Dill and Fahle, for
instance, the performance in discriminating the novel
patterns was above chance from the outset, presumably
because of past training with other patterns. Similarly,
novel images that are new variations of highly familiar
objects (as in the experiments by Biederman and Cooper)
tend to produce a relatively high degree of shift invariance.

1.2.2. Shift and size invariance in the visual system
From physiological studies of receptive field properties

along the primate visual pathway it appears that shift and
size invariance is built gradually from the primary visual
cortex to high-level visual areas in the infero-temporal
cortex. A limited degree of shift invariance for oriented
line and edge stimuli is observed already at the level of
the primary visual cortex, area V1. As was shown by
Hubel and Weisel (1962), complex cells in V1 exhibit
shift-invariant responses to their preferred stimuli over a
limited range.
At higher stations along the visual pathway, units typi-

cally exhibit specificity to more complex stimuli, and this
specificity is often maintained over increasingly large recep-
tive fields. Units in area V4 were shown to respond opti-
mally to more complex local patterns than simple linear
features, including radial, concentric, and hyperbolic grat-
ing patches (Gallant, Braun & Essen, 1993). Most of these
units show similar response magnitude and specificity
across their receptive fields. Lesion studies in V4 by Schiller
and Lee (1991) suggest that this cortical area plays an
important role in obtaining translation invariance of
complex shapes, since a lesion to this area has significant
effects on the animal’s ability to recognize a familiar shape
at new locations. Similar results were obtained in a subse-
quent study (Shiller, 1995) with respect to size invariant
recognition.
The tendency to create units with more complex shape

specificity and larger position invariance continues in the
areas of the infero-temporal cortex (Desimone, Albright,
Gross & Bruce, 1984; Gross, 1992; Gross & Mishkin,
1977; Ito, Tamura, Fujita & Tanaka, 1995; Perrett, Rolls
& Caan, 1982; Tanaka, 1993; Tanaka, Saito, Fukada &
Moriya, 1991). For example, Desimone et al. (1984)
found that stimulus selectivity of IT cells was maintained

over substantial changes in stimulus position as well as size;
cells responded to face images ranging in size from 2.5 to
10", anywhere within receptive fields as large as 40–60"
centered on the fovea. Tanaka and coworkers (1991,
1993) found columns in IT that contain cells responsive to
complex visual features. The receptive fields of these cells
were large (average square root of the area 13.62 ^ 7.32"),
and many showed comparable responses across their recep-
tive fields, and changes in stimulus size as large as eightfold.
Ito et al. (1995) showed that anterior IT cells exhibit signif-
icant invariance to changes in the retinal images of objects
in position as well as size. A minority of the cells in IT are
more position and size specific, for example, the response
decreases significantly with doubling the stimulus size.
Using a different experimental method, fMRI brain imaging
of human subjects, Malach, Grill-Spector, Edelman, Itzchak
and Kushnir (1998) obtained evidence that a cortical region
termed the lateral occipital complex (LO), that has been
implicated in object perception, exhibits considerable shift
and size invariance for grey-level pictures of complex
objects.
The results suggest that shift invariance emerges in the

hierarchy of visual areas in the primate visual system in a
series of successive stages, and it is accompanied by an
increase in the complexity of the shapes analyzed by these
units. Units in the primary visual cortex respond to simple
visual features such as lines and edges over a limited region.
Units in areas of the infero-temporal cortex respond to
complex patterns and views of object-parts and complete
objects over large portions of the visual field. It is unclear,
however, how this elaboration of shape specificity together
with increased position tolerance is obtained in the stream of
processing from low to higher visual areas. In the following
sections we propose and test a model that naturally incor-
porates these aspects of shape analysis by the visual system.

2. Shift invariance by the conjunction of fragments

We have seen above the limitations of both the full repli-
cation and the single representation approaches to the
problem of shift-invariant recognition. The full replication
model is straightforward, and it uses the brain’s inherent
parallelism and the existence of multiple units responding
selectively to a variety of different shapes. At the same time,
the proposal to have a separate mechanism at each location
tuned to each recognizable image is implausible because of
its extreme redundancy and the limited ability to generalize
to new patterns. As for the single representation approach,
the normalization process appears biologically implausible,
and this approach does not account for the main properties
of units along the visual pathway, and does not account for
the role of learning in obtaining shift invariance for novel
families of stimuli.
Our proposed approach to shift-invariant recognition (as

well as to other aspects of invariant recognition) is an
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intermediate one. It uses full replication, but at the level of
object fragments rather than complete views. These shape
fragments can then serve as building blocks for defining
much larger sets of complex shapes. According to this
view, the brain will learn over time to extract appropriate
shape fragments, as well as the connection between similar
fragments at different locations. Shift invariance for
complex shapes is then obtained from straightforward
conjunctions of the responses to the more elementary frag-
ments comprising the full shape.
The fragment detectors are simpler than full-view detec-

tors, but more complex than elementary feature detectors
such as an oriented edge. In this scheme, not all object
representations are stored at each position, but only a
number of partial fragments, at a number of complexity
levels. As we shall see, view-fragments of this type can be
used in such a manner that a relatively small number of
features can allow the invariant recognition of a much larger
set of complex patterns.
A generalization of this approach is also proposed for

other forms of invariant recognition. The general proposal
is that the brain constructs, on the basis of past experience, a
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Fig. 1. Detecting a shape by the conjunction of overlapping fragments. F2
unit responds to the maximal activity of its F1 units.

Fig. 2. Example of face parts from a system for face detection using the conjunction of fragments. The system uses multiple overlapping fragments, at different
levels of resolution. Figure prepared by E. Sali.



large repertoire of partial generalizations. It stores view-
fragments of different complexity as well as the equivalence
relations among them. This stored repertoire is then used in
processes involved in invariant recognition, generalization,
and object classification.
A schematic illustration of the conjunction of overlapping

fragments is shown in Fig. 1. An input shape is to be
detected anywhere within a neighborhood (R in the figure).
Different partial fragments of the shape are detected by units
tuned to different partial shapes, and replicated at different
locations (F1 in the figure). The first stage towards position
invariance is obtained by the convergence of these units to
generate fragment detecting units that are position invariant
within their receptive fields (F2 in the figure).
The detection of the full shape is then obtained by the

conjoint activation of the constituent fragments. Inhibition
can also be used to preclude the existence within the recep-
tive field of fragments that do not belong to the input shape.
As we shall see, it is crucial for the proper operation of this
scheme that the shape will be covered by a redundant and
overlapping set of fragments. These properties enforce the
correct spatial arrangement of the constituent fragment.
Another aspect of this scheme is that it is not possible in
general to create the invariant fragments in a single step.
Fragments are constructed in a number of steps, and at each
successive step units respond to increasingly complex
shapes and over larger regions in the visual field.
The most fundamental problem that arises in attempting

to derive invariance to complex shapes from the invariance
to simpler components, is the problem of spatial relations. It
may appear that the mere conjunction of the constituent
fragments will be insufficient for recognizing correctly the
full shape. This is because the spatial relations among the
fragments are not specified explicitly. This may cause
the recognition system to confuse two different shapes that

are comprised of identical fragments, but in a different
spatial arrangement. Spatial relations between components
can be captured, however, by the use of multiple, overlap-
ping fragments. For example, in representing an image of a
face by the conjunction of fragments, the fragments will not
be limited to the use of a small number of natural, disjoint
parts such as the eyes, nose, mouth, etc., as in other
proposed schemes (Biederman, 1985). Instead, multiple
overlapping fragments will be used, including fragments
covering, for instance, a part of an eye with a portion of
the nose, internal features with portions of the bounding
contour, etc. Fig. 2 illustrates examples of face-fragments
from a model under development for face detection based
on the conjunction of fragments. If the face figure is rear-
ranged, so that the face parts appear in a jumbled configura-
tion, some of the parts such as the eye or nose may still be
detected, but many of the other fragments will no longer be
present.
The use of multiple overlapping fragments to implicitly

code for spatial relations, and overcome the problem of part
rearrangement, is illustrated in the next section. This section
describes the application of the scheme for shift-invariant
recognition in a domain of simplified line drawings. As we
shall see, in this domain a small number of simple fragments
can be used for uniquely defining, in a shift-invariant
manner, a much larger set of more complex shapes.

2.1. Shift-invariant recognition of simple line shapes

As discussed in the preceding section, we suggest that
shift invariance can emerge in a highly parallel network of
localized detectors for a sufficiently rich family of overlap-
ping shape fragments. Low-level layers of this network
contain at each location a set of detectors tuned to different
partial shapes. These partial shapes, or fragments, are not
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Fig. 3. Shapes and shape fragments: (a) examples of input shapes; (b) examples of fragments, W denotes free ending X denotes a junction.



universal in nature, but depend on the set of images to be
recognized. For example, the set of shape fragments used to
recognize written characters will be different from the frag-
ments used to recognize face images. At subsequent layers
in the network the localized fragment detectors are
combined to create position-invariant detecting units.
Finally, complex shapes are detected by the conjoint activa-
tion of the fragment detecting units.
We tested the scheme of achieving shift invariance by the

conjunction of shape fragments in two domains—simple
line shapes, and grey-level patches. The main issues
addressed by these simulations are the following. First,
that shift-invariant recognition can be obtained by the

co-activation of the constituent fragments, without expli-
citly coding for their spatial relations. Second, the issue of
generalization, namely, that shift invariance can be obtained
for novel shapes, provided that they share some similarity
with known shapes. Finally, the simulations examined
aspects of efficiency, for example, how large is the set of
shape-fragments needed to encode a large set of input
shapes.
In the domain of line shapes, the input shapes we consid-

ered were line drawings generated by connecting pairs of
points on a square grid, somewhat analogous to letter-like
figures and other simple line drawings. Examples of such
shapes are shown in Fig. 3(a). The shapes were restricted to
be connected figures, rather than a random collection of
lines, and we tested shape families of different sizes, e.g.
shapes that are up to 3 × 3 or 4 × 4 grid elements. The task
of the simulated network is to recognize correctly the input
shapes falling anywhere within a much larger input grid. We
assume at each point the existence of a set of simple part
detectors. The parts were limited to connected pairs of line
segments, as shown in Fig. 3(b). These simple parts are also
assumed to contain information about line ending, analo-
gous to “end inhibition” in primary cortex units. That is,
line endings within a part are divided into either a free
termination or a part of a more extended line. The number
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Table 1
Non-uniqueness results for 3 × 3 input shapes and 736 shift-invariant frag-
ment detectors

Input shapes of size 3 × 3

Number of shapes (n) 10 003
Number of fragments 736
Non-unique shapes 16
Standard deviation 0.0004
Fraction of non-uniqueness
! !x ^ 1!96! !x"

0.0016 ^ 0.0008

Fig. 4. Unique and non-unique decomposition: (a) a collection of fragments and the unique shape composed of these fragments, W denotes free ending, X
denotes a junction; (b) two different shapes with the same fragment composition.



of parts we used was small compared with the number of
shapes tested. Mathematically, the number of different
shapes of size n × n grows exponentially with n2. Interest-
ingly, it can be shown that the same holds true for the set of
connected rather than all line figures. In contrast, the
number of possible parts of the type we used grows only
polynomially in n. In the case of 3 × 3 shapes we studied, we
used several hundred parts to deal with tens of thousands of
input shapes.
To generate parts, we first generated a set of line figures,

and then simply used all the parts, that is, connected line-
pairs that appeared in these figures, as well as rotated
versions of these parts. We next generated a much larger
set of line shapes, and tested whether these shapes were
defined uniquely by the combination of their fragments,
without any additional information regarding spatial
arrangement. To this end, we developed a search algorithm
that can take as input a collection of parts, and produce all
the possible (connected) line shapes that are composed of
this set of parts. In this manner we could take an input line-
shape, and first find its constituent parts. The parts typically
covered the input shapes in a redundant, overlapping
manner, namely, each segment in the shape was covered
by more than a single part. We then tested whether the
same collection of parts could be used to generate a different
shape that has the same local fragments but arranged glob-
ally in a different configuration.
Statistical results for a sample of about 10 000 input

shapes of size 3 × 3 are shown in Table 1 (from Soloviev,
1997). The shift-invariant system was tested on a sample of
different randomly generated input shapes to find the degree
of its non-uniqueness, that is, the fraction of different inputs
having the same representation in the space defined by the
shift-invariant fragments. The fragments were defined as
pairs of input edges having two types of joints—”free”
and “non-free”. Overall, a total of 736 fragments were
used. The results illustrate that unique decomposition is
almost always guaranteed. Using a set of several hundred
shape fragments, a much larger set of inputs can be defined
uniquely by the conjunction of their constituent fragments.
Only in a small fraction of the shapes, some ambiguity
remains. The last two rows estimate the deviations one
can expect from the experimental result. (The standard
deviation was determined under the simplified assumption
of independent Bernoulli trials, and the last row is an esti-
mation of the 95% interval.) An example of unique and non-
unique shapes is shown in Fig. 4. It can be seen that the two
shapes having the same fragment structure are visually
similar, this was typical of the non-unique cases we have

examined. Uniqueness can be further enhanced, if desired,
by extending the set of fragments. This can be done in two
ways. First, specific new fragments can be added to the
system to deal with specific ambiguities. This raises inter-
esting questions for further studies, both computational and
psychological, regarding incremental learning procedures
by the system, to improve its invariant recognition. Second,
as can be expected, we also verified that by using from the
outset a more discriminative set of fragments, the fraction of
non-uniquely defined shapes decreases. Table 2 shows an
example using fragments defined with four different types of
joints—“free end”, “corner”, “straight”, and “junction”.
The size of the shapes was larger in this test !4 × 4"" posing
a more challenging task, but of over 10 000 input shapes
tested, all were uniquely defined in terms of the conjunction
of their constituent fragments.
We conclude that the joint activation of the fragments

composing a shape is powerful by itself, without additional
explicit information regarding relative spatial relationships,
to encode large sets of shapes with high degree of specifi-
city. Further, a limited set of fragments can encode uniquely
a large set of more complex shapes. If the system contains
shift-invariant units for the basic fragments, it will also
exhibit shift invariance for novel complex shapes, as long
as the new shapes are constructed from existing shift-invar-
iant “building blocks”. For completely novel family of
shapes that are not expressed well by existing fragments,
shift invariance will be limited. It can improve with practice
as the system learns to extract and use additional fragments,
derived from the new family of shapes.
The example outlined above used a single step, from

fragments to complete figures. When the figures are larger,
and when the connectivity assumption used in the line
shapes is not used, it becomes natural to construct the frag-
ments in a number of successive steps, where at each step
the intermediate shapes become larger and more complex. A
simple example of this multi-stage construction is illustrated
next, in the domain of binary patches taken from real
images.

2.2. Shift-invariant recognition of image patches

In the human brain, shift-invariant units appear to be
constructed hierarchically in a number of successive stages,
where at each stage the units generalize over larger regions
of space, and respond to more complex configurations. We
wished therefore to examine whether the hierarchical
construction of increasingly larger units offers an advantage
over possible alternatives in which large units are
constructed from smaller ones in a single step. In this part,
we used small image patches obtained from real grey-level
images of different objects. By using these patterns we also
wanted to get some information regarding the nature of
small image fragments that appear in natural images.
To simplify the analysis we first transformed the grey-

level images into binary ones, using the following
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Table 2
Results for a 4 × 4 input grid

Input shapes on a 4 × 4 grid

Number of shapes 10 596
Number of non-unique shapes 0



procedure. The input images were convolved with an edge
detecting filter shaped as the Laplassian of a Gaussian,

H # !"2G"I!

This is a standard filter used in image processing, and it is
also an approximation of the receptive field shapes of retinal
ganglion cells (Marr & Hildreth, 1980). Binary images are
then obtained by using the sign of the filtered image, that is,
the negative values are all set to black, and the positive
values to white. This simplification also has the advantage
that the resulting image no longer depends on absolute grey
levels and is less dependent upon small variations in the
illumination conditions.
We started the construction of fragments by using small

micro-patterns of 3 × 3 patches. The number of such micro-
patterns is limited (512), so we assumed that all or most of
these patterns can be detected and used for the construction
of larger units. The small fragments are used next to
construct larger micro-patterns, of size 5 × 5! A single 5 ×
5 patch contains within it nine smaller 3 × 3 patterns. One
question that arises in light of the discussion so far is
whether the larger patterns in this case are unambiguously
determined in terms of the joint activation of the constituent
sub-units. Mathematically, the question is whether nine
micro-patterns taken from a 5 × 5 patch can be put together
in more than a single arrangement. To answer this question,
a depth first search (DFS) algorithm was applied to the tree
of possible arrangements. The search is heavily constrained,
because fragments must overlap properly. After execution
of the DFS, the number of possible different reconstructions
was recorded. Using a sample of about 17 600 patterns
taken from real images, we found that about 3.4% of the 5 ×

5 patterns proved to have a non-unique representation in
terms of their nine 3 × 3 micro-patterns. This reconstruction
is performed for analyzing the feasibility of constructing
invariant units in this manner, it does not imply, of course,
that the brain must use a reconstruction stage in order to
reach invariant recognition. We conclude that the represen-
tation in terms of the small micro-patterns is unique for the
large majority of the patterns. An example of a non-unique
representation is shown in Fig. 5. The figure shows three
different 5 × 5 patterns that have the same composition in
terms of their smaller fragments. If desired, this ambiguity
can be further reduced by incorporating a small number of
additional fragments. It also turned out that in this case
ambiguity can be avoided entirely by using somewhat
different decomposition: if elongated 5 × 2 micro-patterns
are used (four horizontal, four vertical), complete unique-
ness is obtained. As summarized in Table 3, in most cases
the representation of 5 × 5 patterns taken from natural
objects by micro-patterns is unique.
Because the larger patterns (5 × 5 in our schematic exam-

ple) are determined uniquely by the conjunction of their
constituent micro-patterns, it becomes possible to construct
shift-invariant units for the larger patterns by a convergence
of the more elementary sub-units within a region. This can
lead, as discussed further below, to the emergence of inter-
mediate units, that will respond, in our schematic example,
to a given micro-pattern over a 5 × 5 region.
The next issue we wish to examine is to compare the

construction of larger image fragments either hierarchically
or non-hierarchically. In the non-hierarchical method, large
units are composed directly from the small micro-patterns,
and in a hierarchical scheme intermediate units are used. For
the current argument, the crucial test is whether the larger
patterns can be specified by the combined activation of their
participating micro-patterns. As it turns out, this representa-
tion becomes increasingly ambiguous as the size of the
patterns is increased. For example, for 6 × 6 patterns (that
contain 16 micro-patterns) the level of ambiguity is 5%, and
for 7 × 7 patterns (containing 25 micro-patterns) the ambi-
guity increases to about 13% of the patterns. These results
were obtained using the DFS algorithm that considers all
possible patterns. It is also of interest to consider not all
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Fig. 5. Nine 3 × 3 micro-patterns and three different 5 × 5 patterns composed of these micro-patterns.

Table 3
Results on non-uniqueness (all possible reconstructions by the DFS)

Percent on non-uniquely
represented 5 × 5 patterns

Micro-patterns Non-uniqueness (%)
Nine 3 × 3 3.4 ^ 0.3
Eight 5 × 2#2 × 5 0
Nine 3 × 3! four 5 × 2#2 × 5 0.9 ^ 0.3



possible patterns, but only “natural” patterns that arise from
natural images. We used a sample of about 20 000 patterns
obtained from natural images, and tested them for unique-
ness. A pattern was considered ambiguous if it shared the
same representation in terms of micro-patterns with a differ-
ent pattern in our sample.
The results are shown in Table 4. The table also compares

two possible variations of specifying larger units in terms of
smaller building blocks. A small micro-pattern may occur
within the large pattern more than once. The system may
represent the number of occurrences for each of the micro-
patterns, or, in a simpler representation, just the presence or
absence of a micro-pattern. The first possibility is denoted in
the table as “with R” (with repetitions), and the simpler
representation as “without R”.
The results concerning ambiguity are compared with the

hierarchical construction of large !10 × 10" patterns from
micro-patterns via intermediate !5 × 5" patterns. As shown
in Table 5, in the hierarchical construction the ambiguity is
significantly reduced. If all the participating fragments are
used, the ambiguity is eliminated. It is also possible to use a
fraction of the fragments (only nine out of the 36 sub-
patterns), without compromising much in terms of ambigu-
ity. As before, it is also interesting to note that the remaining
ambiguous patterns are visually quite similar. It is of interest
to note in this regard that the construction from sub-units
offers a natural similarity measure between patterns, which
is their degree of overlap in terms of the constituent frag-
ments.
The results indicate that the convergence, in a single step,

of small image-fragments to define considerably larger frag-
ments can result in ambiguous units that respond in a similar
manner to several different patterns. The construction of
invariant units becomes more robust if it is performed

hierarchically: units responding to small fragments
converge to create intermediate units, which in turn
converge to create larger units. The system will eventually
contain units encoding fragments of different size and
complexity.
We have seen in the discussion above how we can use the

local convergence of different patterns within a restricted
region to create well-defined larger fragments. For the
purpose of shift-invariant recognition it is also useful,
however, to bring together the responses of a set of identical
fragments from a much larger region of the visual field.
As a simplified concrete example, consider the detection

of a particular target pattern, say of size 5 × 5" at different
retinal locations within a large region, by the combined
activity of smaller 3 × 3 micro-patterns. This can be accom-
plished in a straightforward manner by assuming the exis-
tence of detectors for a particular type of micro-pattern, but
at different locations, that is created by the convergence of
the micro-patterns onto a single detection unit. This unit,
which we will refer to as a shift-invariant fragment, will
respond to the presence of the micro-pattern in question
anywhere within the large region. The creation of such
units depends on a prior learning stage by the system. Biolo-
gically plausible models have been described for the crea-
tion of such units, that emerge by simple synaptic
modification rules as a result of patterns drifting across
the retina (Földiák, 1991; Parga & Rolls, 1998). In this
manner the local fragment-detectors converge onto a more
global unit that responds to the presence of a particular
fragment anywhere within a large region of the visual
field. As a result, the presence of the target pattern anywhere
within the region will activate all the micro-patterns it
contains.
In this scheme, a novel target pattern, seen only at one

location, can be recognized at other locations as well. The
target will activate at the two locations a similar set of
micro-patterns. If the micro-patterns at the two locations
converge, as proposed, onto the same shift-invariant higher
level fragment detectors, the system will be able to imme-
diately generalize from the initial to the new location.
It appears natural to combine such a scheme of conver-

ging sub-units with a mechanism that limits the region in the
visual field within which information is collected for the
purpose of recognition, especially when the pattern to be
recognized is embedded within a larger pattern. Within the
context of the larger pattern, many additional micro-pattern
detectors will be activated. This complicates the task and
may lead to “false conjunctions” (Treisman & Gelade,
1980) if all or most of the micro-patterns are present but
not in the correct configuration. If the analysis of the pattern
is restricted, however, to a region around the target pattern,
the simulations indicate that possible misidentification will
be reduced, or eliminated entirely if the analyzed region is
sufficiently small.
Reliable recognition at the new location, especially for

embedded figures, can be aided therefore by segmentation
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Table 4
Ambiguity for the non-hierarchical representation

Percent of non-unique fragments in several 3 × 3

Method Result (%)

With R Without R

5 × 5 in 9 3 × 3 0.39 ^ 0.09 0.39 ^ 0.09
6 × 6 in 16 3 × 3 0.48 ^ 0.09 2.07 ^ 0.19
10 × 10 in 64 3 × 3 1.19 ^ 0.13 6.99 ^ 0.30

Table 5
Ambiguity for the hierarchical representation. Uniqueness was tested on a
sample of 7600 patterns, and by a comprehensive depth-first search (DFS,
last row)

Percent of non-uniquely represented 10 × 10

Method Results (%)
36 5 × 5 (on a sample) 0
9 5 × 5 (on a sample) 0.09 ^ 0.07
9 5 × 5 (DFS) 0.6 ^ 0.2



or attentional processes that restrict the gathering of relevant
information to the neighborhood of the pattern to be
analyzed. If similar principles operate in the brain, it is
not surprising that in human vision recognition also depends
on image segmentation and attentional processes (Ullman,
1996).
Let us summarize our conclusions regarding the hierarch-

ical construction of units, first in the framework of the small
grey-level patches we have considered as an example, and
then in a more general manner. We have seen in the discus-
sion above that both local and global convergence of the
fragments play a useful role in obtaining shift-invariant
recognition. Regarding global convergence, we have seen
how the shift-invariant recognition of a pattern can be
obtained within a large region using the combined activity
of the smaller fragments it contains. For example, a 5 × 5
patch can be detected in a shift-invariant manner by the
combined activity of the 3 × 3 micro-patterns. For this
purpose it is convenient to use global convergence of the
micro-patterns combined with a segmentation or attentional
process that restricts the region over which information is
gathered.
We have also seen that for the recognition of considerably

larger patterns (10 × 10 in our example), it is not enough to
use information from the elementary micro-patterns, but
fragments of intermediate size must be used. Such inter-
mediate units can be created by the local convergence of
smaller micro-patterns. It then becomes possible to recog-
nize large patterns in a shift-invariant manner as well. In our
example, 5 × 5 intermediate units are used to recognize
reliably the large patterns, and these intermediate units by
themselves are constructed from the local convergence,
within their receptive fields, of the more primitive micro-
patterns. The elementary micro-patterns are therefore used
in the system to create higher-order units in two comple-
mentary ways. First, micro-patterns of different types are
combined locally to define more complex local fragments.
Second, micro-patterns of the same type are combined more
globally to create shift-invariant units that respond to the
micro-pattern over a large region. This is an inherent aspect
of the system’s architecture, and we can therefore expect
similar types of unit to exist in the human visual system as
well.
We conclude that the construction of invariant units

becomes more robust if it is performed hierarchically:
units responding to small fragments converge to create
intermediate units, which in turn converge to create larger
units. The system will eventually contain units encoding
fragments of different size and complexity. This hierarchy
of fragments can be used to recognize in a shift-invariant
manner patterns of any desired size and complexity. The
main challenge confronted by a shift-invariant recognition
system is to recognize correctly a novel shape, seen at one
location, when presented again at a new location. Within the
fragment-based scheme, the shift-invariant recognition of a
novel shape will be obtained by the combined activity of the

partial fragments activated by the shape. Full invariance will
be obtained for novel shapes, provided that the shape in
question can be encoded in terms of the existing fragments.
If the encoding in terms of existing fragments is only partial,
and does not encode the novel shape uniquely, then the
invariance exhibited by the system will not be complete:
for example, it may confuse a given shape with a similar
shape at a different location.

3. Computation of pattern invariance in brain-like
structures

In this section we first summarize the main properties of
the approach to shift invariance and its implications, and
then discuss the application of a similar approach to other
aspects of invariant pattern perception.

3.1. Shift invariance

The main goal of the approach discussed so far is not to
develop a detailed biological model for shift invariance, but
to outline an approach for dealing with more general aspects
of invariant recognition and generalization in brain-like
structures. We will therefore summarize only some basic
aspects of shift invariance and then discuss their implica-
tions and possible extensions.
The basic model is that shift invariance of shapes is

obtained by the conjunction of more primitive shift-invar-
iant building blocks. Unlike the cortical shift theory, this
approach does not rely on a single canonical representation,
but uses multiple replications of similar units at different
locations in the visual field. However, replication takes
place not at the level of the complete patterns that are
being recognized, but at the level of primitive image frag-
ments. The construction of fragments is performed hier-
archically, in a number of stages. The fragments used are
specific to a family of shapes, unlike previous schemes that
used universal simple shape elements such as line segments
or Gabor patches.
In any scheme that uses fragments, a basic issue that

arises is the problem of rearrangement. That is, the system
should not confuse a given shape with a different one that is
constructed from the same fragments, but arranged in a
different configuration. The basic mechanism used in the
proposed scheme to impose the correct spatial arrangement
is the employment of a rich enough set of fragments, with
sufficient overlap.
This mechanism can suffice by itself if enough overlap-

ping fragments are used. This has been demonstrated by
Minsky and Papert (1969) in their analysis of perceptrons,
by showing that figures are determined uniquely by what
they termed the figure’s 3-vector spectra. Briefly, Minsky
and Papert considered binary images of arbitrary black
figures against a white background. They considered simple
image fragments composed of triplets of black image points,
and showed that the collection of fragments contained in a
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shape defines the shape uniquely. The extensive overlap
between fragments is crucial for imposing the spatial config-
uration, and therefore schemes (such as the neocognitron by
Fukushima, 1980) that do not exploit this property, are more
prone to the rearrangement problem.
The use of primitive image fragments such as all triplets

of figure-points has several disadvantages. In particular, the
number of primitives is prohibitively large, and the scheme
is relatively prone to occlusion. Our proposed scheme there-
fore employs a smaller number of more realistic fragments.
The use of image fragments to deal with shift and other

forms of invariance requires some form of image segmenta-
tion, or coarse figure-ground separation, as a part of the
recognition process. If the pattern we wish to recognize is
embedded within a much larger and complex context, and if

no image segmentation is performed, then, in addition to the
fragments included in the target pattern, other fragments
will be activated. This makes the detection of the target
pattern more difficult and less reliable. To reduce the clutter
of extraneous fragments, it is useful to restrict the region of
analysis to the neighborhood of the shape being analyzed.
Our simulations indicate, however, that only a rough form
of image segmentation is required for this purpose. If the
segmentation is imprecise, then some of the figure frag-
ments will be missing, and some additional fragments,
that belong in fact to the background rather than the
shape, will be activated. A similar problem of missing frag-
ments will also arise when a part of the shape is occluded by
other objects in the scene. In either case, unless the system is
required to make fine distinctions between shapes that have
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Fig. 6. (a) Examples of 5 × 5 micro-patterns obtained from natural objects. We consider the possibility that V1 detects micro-patterns of this type. (b)
Histograms corresponding to the orientation/symmetry measures calculated for micro-patterns obtained from natural objects (top) and for randomly generated
micro-patterns (bottom).



closely similar composition in terms of their fragments, the
system will be able to tolerate the deletion or addition of
image fragments. Unlike some other recognition schemes
that rely on the detailed shape of the object’s bounding
contour, the fragment-based scheme is not required to
delineate the pattern precisely, and it is inherently tolerant
to clutter and occlusion.
In describing a shape by a collection of simpler frag-

ments, it is natural to include fragments at different levels
of resolution. For example, as can be seen in Fig. 2, in
addition to partial fragments at high-resolution, there are
also low-resolution fragments that give a coarse representa-
tion of the entire shape. The coarse global fragments are also
useful in imposing the global configuration, and the smaller,
high-resolution fragments capture the precise details.
To summarize, let us recapitulate briefly how shift invar-

iance is obtained by the system. The main issue to examine
is how a novel shape, learned at one location, will be recog-
nized correctly at other locations. When presented at the
initial location, the new shape will activate a set of frag-
ment-detecting units at different levels of complexity. As
mentioned earlier, the local fragment detectors are assumed
to activate more global units that respond to the presence of
their preferred fragment within a larger region of the visual
field. The exact nature of the fragments incorporated in the
system will depend on the history of the system, in particu-
lar, its prior experience with similar shapes. In natural cases,
the shape to be recognized will often belong to a familiar
class, and in this case, as we have seen in the simulations,
the set of activated fragments is expected to provide a
detailed and unique representation of the shape. When the
shape is seen at a different location, the same set of (global)
fragment detectors will be activated, leading to correct iden-
tification at the new location. If the shape is embedded at the
new location within a larger context, then additional frag-
ments will be activated. Detection of the target shape will
now occur if this larger set of activated fragments contains
all the shape’s fragments as a subset. In this case identifica-
tion will be less reliable. Reliable recognition at the new
location can be obtained by segmentation or attentional
processes that can restrict the gathering of relevant informa-
tion to the neighborhood of the pattern to be analyzed.
If the target shape belongs to a novel set that is not well

represented by existing fragments, then translation invar-
iance will be more limited. The system will fail initially
to make fine discriminations between the target shape and
similar shapes. The degree of discriminability will depend
on the already existing fragments: two shapes that have
identical or similar representations in terms of existing frag-
ments will be confusable. Following learning at a given
location, the system will eventually store additional frag-
ments that can deal with the new shapes. But since the new
shapes were shown at one location only, the system will not
have the machinery to generalize the newly acquired discri-
minations to other regions. Shift invariance for the new class
of stimuli will develop gradually, as the system learns to

extract additional fragments at multiple image locations.
These properties of the fragment-based scheme agree well
with the observed psychophysics of shift invariance, as
discussed in Section 1.

3.2. Possible implications to V1

In the proposed scheme the system uses at each stage a
repertoire of different patterns, starting from small micro-
patterns and building more complex object-fragments. This
view suggests that the initial analysis, at the level of the
primary visual cortex, may not be restricted to the detection
of a small number of primitives such as straight lines and
edges, but a more elaborate repertoire of micro-patterns.
Fig. 6(a) shows examples of small micro-patterns that re-
occur in patches of natural images we have analyzed.
Although the micro-patterns extracted from natural

images are not just straight edge and line fragments, they
tend to show statistical preference for oriented local
patterns. To examine this characteristic of natural micro-
patterns, we used a measure of orientation vs. symmetry
of micro-patterns. The distribution of the black pixels within
the micro-pattern can be estimated by an ellipsoid at the
center of the distribution, with its axes estimated by the
pattern’s second moments (specifically, by the square
roots of the eigenvalues of the pattern’s covariance matrix).
The measure we used was calculated by the following
formula:

# # 1# e1# $max
$min "

where $max and $min are the eigenvalues of the covariance
matrix. If the micro-pattern is completely symmetrical, then
the eigenvalues are the same, and # # 0! If the micro-pattern
is completely oriented, then the ratio of the eigenvalues
becomes infinite, and # # 1! Note that the orientation
measure does not change if black pixels are shifted inside
of the micro-pattern, because the covariance matrix is invar-
iant under translation of the pixels.
The orientation measure was calculated for the different

5 × 5 micro-patterns obtained from the set of natural objects
and for randomly generated micro-patterns. Random binary
matrices were taken from the discrete uniform distribution.
The histograms corresponding to the calculated measures
are shown in Fig. 6(b). It is clear from the figure that 5 × 5
micro-patterns obtained from the set of object images are
significantly different in terms of their orientation distribu-
tion from those taken from randomly generated images. If
the primary visual cortex contains in fact multiple units
selective to many different types of micro-patterns that are
prevalent in natural images, this population will show strong
orientation preference of the type shown in Fig. 6. It will
show a range of orientation preferences, with a large propor-
tion exhibiting high orientation preference. Given the
current state of knowledge, it is difficult to distinguish
between the more standard view of V1 as encoding a
restricted set of standard units, and the view suggested
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here of a much richer repertoire of different micro-patterns
reflecting the occurrence of micro-patterns in natural
images.

3.3. More general invariances

The scheme outlined above, where shapes are represented
by their more primitive fragments, shares a number of basic
properties with units in the visual system, including the
gradual increase in receptive field size along the ventral
visual pathway, and the selectivity to increasingly complex
shapes. As expected from the scheme, the preferred stimuli
of units along this pathway are usually characterized in
terms of their preferred two-dimensional patterns (rather
than, for instance, a three-dimensional primitive shape),
and the preferred stimuli are usually image fragments of
different complexity, rather than the shape of a complete
object.
The scheme makes use of the high degree of parallelism

that characterizes brain-like structures, using many units
with different preferred shapes. It is primarily “memory
based”, using sub-patterns seen in the past, and it uses
simple computations that appear more biologically plausi-
ble than, for example, the use of internal shifting mechan-
ism, or the use of abstract structural descriptions. The
computations employed are fast, and do not require lengthy
iterative calculations. These properties were illustrated so
far using shift invariance as an example, and it is natural to
examine the application of a similar approach to more
general problems of invariant recognition.
A general property of the fragment-based approach is that

it uses a large repertoire of partial generalizations built upon
past experience, to deal effectively with novel patterns.
Building upon its exposure to many visual stimulations,
the system learns many instances of equivalence between
sub-patterns. Based, for example, on the drift of patterns
across the retina, it learns that a shape fragment at one
location can be replaced by another shape at a neighboring
location. This will lead in time to the creation of a unit that
responds to this shape at multiple locations (Földiák, 1991;
Parga & Rolls, 1998). This unit that responds to the same
sub-pattern at different locations, now encodes a potential
partial generalization, that can be used in the future in the
context of new patterns. Over time the system will store a
large number of partial shapes together with possible gener-
alizations. When confronted with a novel stimulus, and
assuming that the stimulus can be well encoded by exiting
fragments, the system will be in a position to use its store of
partial shapes and potential generalizations to identify the
novel shape in its entirety as equivalent to a previously seen
shape.
Similar principles can be applied to other aspects of

invariant pattern perception. For example, the image of a
three-dimensional object changes with the object’s pose,
that is, the relative orientation in space between the object
and the viewer. The human visual system is highly adept at

compensating for the complex image transformations
induce by changes in three-dimensional pose (Ullman,
1996). For objects in a familiar class such as a face or a
car, remarkable generalization is obtained on the basis of a
single image of a novel object (Moses, Ullman & Edelman,
1996). Here, too, the system can store partial generalizations
based on past exposure to the class of objects in question. As
in the case of acquiring shift invariance, it will learn from
experience how different fragments of face images change
their appearance as the face changes its three-dimensional
orientation. A unit will respond, for example, to an image
fragment depicting a partial view of the eyes region, an
eyebrow, the hairline region and the like, at different spatial
orientations. As before, these fragments do not correspond
necessarily to well-defined face parts, such as an eye or a
nose, but may represent any partial face fragment. As in the
case of shift invariance, a high degree of spatial overlap
between fragments will be used to impose the proper spatial
arrangement. In addition to the use of overlapping image
fragments, it is also possible to use non-overlapping frag-
ments to specify a spatial relation in a qualitative manner,
for example, that fragments from the eyes region must lie
above a nose-fragment. We found that such units are useful
in object classification tasks considered next, but we will not
discuss them here in detail.
Another domain that can use similar principles is that of

object classification. In object classification, the task is to
assign an object, including novel objects, to a general class
such as a face, a car, a house, and the like. Classification is a
natural skill for humans, and is performed quickly and
effortlessly even by young children. In fact, for humans,
classification comes easier than individual object recogni-
tion. It is easier to recognize an object as a car, for instance,
than to recognize a specific make, such as a Toyota Camry
or a Honda Accord. For current computer vision systems,
the opposite is true. Individual objects are easier to recog-
nize in such systems, because particular object models can
be specified with precision. In contrast, it is difficult to
instruct a computer system to recognize a general class,
since the shape of the individual objects within the class
may vary considerably.
In the case of classification, equivalence can be defined

between image fragments on the basis of a substitution rela-
tion: if the eye region in a face, for example, can be replaced
by a different eye region, and still represent a coherent face,
then the two image fragments representing the eye regions
will be considered as two instances of a more general unit.
This is similar to shift invariance, where two fragments
representing the same shape at different locations were
considered two instances of a more general unit. As in the
case of shift invariance, the system will acquire a repertoire
of fragments of different size and complexity, with equiva-
lence, or replacement relations, that serve as a basis for
generalization to novel shapes. In this scheme, a novel
face, for instance, will be classified correctly even if it is
quite different as a whole from all previously seen faces,
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provided that the eyes are sufficiently similar to the eyes of a
face seen before, the mouth region to a similar region in a
second face, and so on. Preliminary computational experi-
ments, to be described elsewhere, with a classification
system based on these principles showed good results in
classifying a variety of face and car images.

3.4. Learning issues

A basic characteristic of the proposed approach that
distinguishes it from most alternative approaches is that it
depends on past experience and the learning of many partial
examples rather than the application of some general rules.
For example, shift invariance is obtained not by a general
shift operation, but by the convergence of related image
fragments from different locations. This raises important
questions regarding learning from past examples. The learn-
ing task in this scheme can be divided into two main issues.
First, how the system learns to extract useful shape frag-
ments, and second, how it learns to associate related frag-
ments and form more generalized units. We will not discuss
these learning issues in detail, but only comment briefly on
the acquisition of fragments and their associations.
With respect to image fragments, it appears that useful

fragments can be extracted from image parts that are
common to a number of different objects. If the same sub-
image appears as a common part in a number of different
objects, then it is likely to be a useful building block for
representing this set of objects. The common fragment is
more likely to be useful if it is a structure of significant size,
as then it is unlikely to have been generated accidentally.
Even if just two images have a significant common struc-
ture, it may be worth while to extract the common part as a
potentially useful fragment. This is because two unrelated
images are statistically unlikely to have a significant
common structure. If such a common part does exist, it is
unlikely to be accidental, and it may represent a significant
structure that will appear in novel objects as well. The learn-
ing process can therefore proceed on the basis of a small
number of examples, rather than by seeking statistical regu-
larities in a large population of stimuli, as in some statistical
learning schemes.
The system needs also to associate together related frag-

ments, for example, two similar fragments at different loca-
tions, or two fragments representing an object part at
different three-dimensional orientations. This can be
obtained by spatio-temporal continuity of patterns across
the retina as objects move in the world, and as the gaze
shifts across the scene. As indicated by the phenomenon
of apparent motion, the visual system has a strong and prob-
ably innate tendency to associate together image regions on
the basis of spatial and temporal contiguity. Several neural
network models have shown how synaptic learning rules
can implement such association between consecutive
views (Földiák, 1991; Parga & Rolls, 1998).
For the purpose of object classification, the association

between equivalent fragments can be based, as mentioned,
on a replacement relation. If, within a pattern P, a fragment
F1 in one view can be replaced by a different fragment F2 in
another view, then it will be useful to store an association
between the two fragments as a potential generalization in
other contexts as well. As a specific illustration of this repla-
cement relation, consider two views of the same face, one
with a neutral expression, the other with a smiling expres-
sion. Most of the face pattern will remain unchanged, but
some parts will be replaced, e.g. the neutral by a smiling
mouth. The system can conclude that the face in this case is
composed of an unchanged part, combined with another
region that can take one of two (or more) forms. The learned
association between the two fragments will be used in the
future in the context of other patterns as well. That is, the
two forms of the mouth regions will be treated as equivalent
in novel face images, and this will allow the system to make
useful generalizations.
In conclusion, the acquisition of invariant perception in

this scheme depends on a continuous learning process.
Based on its visual experience, the system will extract
image fragments that are likely to be useful building blocks
for more complex patterns. Based on certain relations
between patterns, such as spatio-temporal contiguity and
replacement, it will form associations between fragments
and create higher-order, more abstract units that respond
to a number of fragments that can be considered equivalent
for the purpose of invariant perception.

4. Summary

Invariant perception is an achievement of biological
visual systems that is difficult to replicate in artificial
systems. We have outlined an approach to the computation
of pattern invariance that appears more suitable for brain-
like structures than alternative approaches. In this approach,
invariance for complex patterns is based on a large number
of stored relationships between more elementary image
fragments. Invariant perception therefore depends on a
continuous process of learning from visual experience.
During this process, the system extracts and stores image
fragments that are likely to be useful building blocks for
representing a family of related shapes. Based on certain
relationships between fragments, in particular spatio-
temporal contiguity and replacement, the system creates
higher-order units that respond to a number of different
fragments. In the case of position invariance, for example,
the shift of patterns across the retina will lead to the creation
of units that respond to fragments representing the same
shape at different locations. Such units can be viewed as
encoding partial potential generalizations that can be used
later in the context of novel shapes. The stored image frag-
ments are constructed hierarchically, at different levels of
complexity, and equivalence can be established between
fragments at different levels.
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We have illustrated how this approach can apply to shift
invariance. Based on a limited number of fragment detectors
that are replicated throughout the visual field, the system
can recognize correctly a large number of more complex
shapes in a shift-invariant manner. Shift invariance is there-
fore not a built-in mechanism, based, for example, on an
internal shift circuitry, but an acquired skill built upon
multiple partial examples. As a result, this scheme will
share certain limitations of shift invariance with the
human visual system. The generalization of shape recogni-
tion to new positions will not apply equally to all shapes.
Novel shapes that can be represented well, with a high
degree of discriminability, by existing fragments, will
generalize well to new locations. For other shapes, that
are not well captured by already existing fragments, shift
invariance will be initially limited, and will require the
learning of new fragments at multiple locations. We have
also seen in the computational studies how the use of multi-
ple overlapping fragments enforces the correct arrangement
of the participating fragments. Enforcing the correct
arrangement can also be aided by processes of image
segmentation or by an attentional process that limits the
region over which visual information is analyzed.
The scheme is consistent with a number of general prop-

erties of units in the visual system, including the gradual
increase in receptive field size along the ventral visual path-
way, and the selectivity to increasingly complex shapes. As
expected from the scheme, intermediate units along the
visual pathway have preference to a variety of different
two-dimensional patterns, and the preference up to the
level of anterior IT is often to partial image fragments rather
than complete objects or object parts.
In human vision, it is likely that invariant perception

involves more than a single mechanism. The scheme
described above is therefore not supposed to account for
all aspects of invariant perception and pattern classification.
It seems particularly appropriate for aspects of recognition
and classification that are immediate and can deal effec-
tively with familiar classes of objects, including novel indi-
viduals within these classes. In such cases, classification and
recognition are obtained within a short time (down to about
100–200 ms), leaving little or no time for complex iterative
computations (Rolls, Tovee & Lee, 1991; Thorpe & Imbert,
1989). The computations in the proposed scheme can be
accomplished for the most part in a single feed-forward
sweep. Top–down connections that appear to play an
important role in recognition and classification (Ullman,
1996) can play a useful role in the proposed scheme, but
their role will not be analyzed here further.
The generalization capacity arises in this scheme not

from mastering abstract rules or applying internal transfor-
mations, but from using the collective power of multiple
specific examples that have partial overlap with the novel
stimulus. To obtain such memory-based generalization, the
scheme makes use of several characteristic properties of
brain-like structures. It employs a high degree of

parallelism, using a large collection of units with different
preferred shapes. It relies on high degree of connectivity to
associate and bring together related fragments. Finally, it
relies on continuous modification and learning processes
that use visual experience to form the appropriate associa-
tions. This results in a scheme that can use its past experi-
ence to deal effectively with novel stimuli and generalize to
new situations.
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